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Abstract

A method for generating inflow conditions for direct numerical simulations
(DNS) of spatially-developing flows is presented. The proposed method is
based on variational data assimilation and adjoint-based optimization. The
estimation is conducted through an iterative process involving a forward in-
tegration of a given dynamical model followed by a backward integration of
an adjoint system defined by the adjoint of the discrete scheme associated to
the dynamical system. The approach’s robustness is evaluated on two syn-
thetic velocity field sequences provided by numerical simulation of a mixing
layer and a wake flow behind a cylinder. The performance of the technique
is also illustrated in a real world application by using noisy large scale PIV
measurements. This method denoises experimental velocity fields and recon-
structs a continuous trajectory of motion fields from discrete and unstable
measurements.

Keywords: Data driven simulation, Variational assimilation, Automatic
differentiation, Adjoint equations, Inlet condition specification, PIV, Wake
flow

1. Introduction

In spite of significant developments in computational methods over the
past few decades, a number of real flows with moderate Reynolds number
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are still very difficult to simulate accurately due to complex and unknown
boundary conditions. Such boundary conditions arising for instance in real
world turbulent boundary layer flows require to be properly formalized and
taken into account in order to faithfully reproduce the main flow features.
Besides, such flows require a high computational effort as they are charac-
terized by unsteady mixing due to eddies at many scales. To overcome these
issues and limit the computational cost, new strategies that aim at simu-
lating only a region of interest in the flow have recently been developed.
A critical issue that arises as a direct consequence is the imperative need
for the correct specification on this simulation region of all the boundary
conditions, which become unsteady. Generating proper inlet conditions for
unsteady simulations of spatially developing flows requires the generation of
vector fields evolving in time in agreement with the spatiotemporal dynamics
of the flow.

Usually, turbulent mean velocity profiles can be used and some random
noise superimposed in order to start some artificial perturbation supposed to
mimic the real instantaneous behaviour of the turbulent flow. In this case, a
lack of realistic turbulent structures induces a transient region near the inlet.
This development region has no physical significance in general and is of no
practical interest. Another solution consists in using an auxiliary (tempo-
ral or spatial) simulation where velocity data are stored at a given section
corresponding to the inlet boundary of the main simulation (Lund et al.,
1998). Such a technique provides satisfactory results for specific studies, but
its application remains difficult for complex flow configurations. Moreover,
such calculations are expensive in time and/or storage capacities. Procedures
based on low order dynamical models and proper orthogonal decomposition
(POD) (Druault et al., 2004; Perret et al., 2008) are probably less expensive
for the generation of inflow data than the above method. However, such a
procedure requires that direct numerical simulation (DNS), large-eddy sim-
ulation (LES) or experimental datasets are available to compute the most
energetic modes, with an appropriate set of time dependent projection co-
efficients providing phase information. The reconstructed inflow data are
more realistic, however the experimental databases usually suffer from either
low spatial resolution, common with hot-wire anemometry measurements or
limited temporal resolution, when using Particle Image Velocimetry (PIV)
measurements. Special treatment must then be applied to alleviate the low
resolution issues. Alternative methods rely on synthetic turbulence genera-
tion (Keating et al., 2004). This is of particular interest when only limited
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turbulence statistics data are available for the procedure. The usual approach
consists in generating a velocity signal that exibits some statistical profiles
learned from experimental data or empirical correlations.
So far, the proposed stategies proceed hence in two separate stages. In a first
step, the inflow condition is built from numerical or experimental data. Then
the simulation of the downstream development of the flow is conducted from
this information. As a consequence, this second step highly depends on the
first one. Noisy or incomplete inlet conditions (with no or erroneous small
scales information) may lead to numerical catastrophe or to unrealistic over-
smoothed velocity fields. To alleviate such problematic issue, an atractive
solution consists in gradually modifying the inflow condition in such a way
to enforce the simulation to remain the closest as possible to the data with
respect to a given criterion. This is in essence an optimal control strategy to
learn the inlet conditions from measurements.

With this state of mind, we propose here to explore an optimal control ap-
proach -referred in the litterature as variational data assimilation (VDA)- al-
lowing generating simultaneous transitional initial and inflow boundary con-
ditions and reproducing the spatiotemporal dynamics of an experimentally
observed flow. VDA (Le-Dimet and Talagrand, 1986) is a technique derived
from optimal control theory (Lions, 1971). It is expressed as the minimiza-
tion with respect to a control variable of an objective function that measures
a discrepancy between a state variable and noisy measurements, subject to
a constraint given by the state variable dynamics. The control variable may
be for instance a parameter of the dynamics or the initial condition. Assum-
ing that both the model and the objective function are differentiable, VDA
proposes to solve this inverse problem looking for a control that cancels out
the gradient of this cost function through the use of adjoint minimization
techniques. Such techniques enable to compute the functional gradient by
means of the adjoint of the tangent linear dynamics. The tangent linear dy-
namics and its adjoint are provided by automatic differentiation (AD) tools.
In the present study, the gradient descent minimization is coupled with a
limited memory BFGS deterministic gradient based optimization algorithm
(Liu and Nocedal, 1989).
Coupled with this dynamics we consider available noisy measurements of the
velocity at discrete instants separated by a given latency (much larger than
the DNS time step). By modifying the initial and inflow condition of the
system, the proposed method provides the state of an unknown function on
the basis of a DNS model and noisy measurements.
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It should be emphasized that such an experiment/simulation association can
be considered as a procedure for generating realistic inflow conditions for a
numerical simulation, but also as a procedure for a dynamical data postpro-
cessing, where the DNS is used to improve experimental data by restoring
the part of the information that has been missed or deteriorated during the
measurement step.
It is important to outline, that this study aims at constituing only a first
proof of concept of the methodology capabilities. We will hence consider
only the case of 2D flows. The extension to 3D though computationally
much more intensive could be devised on the same basis.

2. Data Assimilation

Variational data assimilation allows estimating over time state variables
trajectory of a system of interest. It can be seen as a procedure in which
noisy and eventually incomplete data are filtered out by a dynamical system
with hidden parameters. This framework allows to handle in a natural way
high-dimensional state spaces and is thus intensively used in environmental
sciences (Le-Dimet and Talagrand, 1986) for the analysis of atmospheric
or oceanic flows in view of their forecast. More precisely, the problem we
are dealing with consists in recovering a system’s state X(x, t) obeying a
dynamical law, given some noisy and possibly incomplete measurements Y
of the state. The measurements, in this context also called observations, are
assumed to be available only at discrete points in time t∗ separated by a given
latency ∆tobs. This is formalized, for any location, x, at time t ∈ [t0, tf ], by
the system

∂tX(x, t) + M(X(x, t), η(t)) = 0 (1)

X(x, t0) = X0(x) + ε(x), (2)

where M is a nonlinear dynamical operator depending on a control parameter
η. The term X0 is the initial vector at time t0, and ε is an (unknown) additive
control variable on the initial condition.

2.1. Dynamical Model

In this study the dynamics of interest consists of the pressure-velocity
formulation of Navier-Stokes equations. Those equations and the numerical
implementation we consider in this study are briefly described hereafter.
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2.1.1. Governing Equations

Mass and momentum conservation principles are represented by the Navier-
Stokes equations, which have the following form for an incompressible fluid

∇ · u = 0 (3)

∂u

∂t
= −∇p− ω × u + ν∆u, (4)

where ν is the kinematic viscosity, p(x, t) the dynamic pressure field (P +
1
2
ρ|u|2), u(x, t) the velocity field, and ω(x, t) the vorticity field (∇× u).

2.1.2. Numerical Method

In this study we will rely on the numerical code Incompact3d, based on
sixth-order compact finite difference schemes and a Cartesian grid to solve
the incompressible Navier-Stokes equations (Laizet and Li, 2011). The in-
compressibility condition is ensured via a fractional step method introducing
a Poisson equation for the pressure. An original characteristic of Incom-
pact3d is that this equation is directly solved in the framework of the mod-
ified spectral formalism. More precisely, the Poisson solver is only based on
Fast Fourier Transforms (FFT) despite the use of inflow/outflow boundary
conditions (Laizet and Lamballais, 2009). The time advancement is per-
formed using a second-order Adams-Bashforth scheme. Free-slip boundary
conditions are applied at y = ±Ly/2, whereas outflow boundary conditions
at x = Lx are determined through the resolution of a simplified convection
equation

∂u

∂t
+ Uconv

∂u

∂x
= 0, (5)

where Uconv is a mean convection velocity of the main structures in the out-
flow region calculated at each time step.

2.2. Cost Functional

Basically, data assimilation is formulated as a goodness of fit problem
under a particular additional constraint: the state dynamics (1-2), which
expresses the dependence of the system’s state variable X ≡ u(γ) on the
control variable γ = {ε(x), η(t)} ≡ {u(x, t0) − u0(x),u(xin, t) − uin(t)}.
These control variables correspond to deviations between, on the one hand,
the initial condition u(x, t0) and a reference initial state u0 and, on the other

5



hand, between the flow in the inlet section, xin, and a reference time varying
inlet condition uin. The initial and inlet references will be further precised
later on. The optimal control objective consists then to find a control (or
error) of lower magnitude (with respect to an appropriate norm) that leads
to the lowest discrepancy between the measurements and the flow velocity.
Formally, this is expressed as the minimization of the following cost function

J(γ) =

∫ tN

t1

∫
ΩA

‖ω(x, t)− ωobs(x, t)‖2
R dx ∆t∗dt

+

∫
ΩCob

‖u(x, t0)− ub(x, t0)‖2
Qob

dx

+

∫ tN

t0

∫
ΩCin

‖u(xin, t)− u(xin, t)‖2
Qin

dx dt, (6)

where t1 ∈ [t0, tN ] denotes the initial time of the assimilation window, ω
indicates a spatial average of the vorticity field generated from the model
output, ωobs stands for the vorticity field associated to the PIV observations,
ub(x, t0) designates the observed initial velocity field (referred as the back-
ground state) and γ = {u(x, t0),u(xin, t)} is a smoothed version of the con-
trol variable. Here, u(x, t0) denotes a spatial average of the initial condition
whereas u(xin, t) corresponds to a temporal average of the inflow condition.
The times t∗ denote the set of measurements instants and ∆t∗ represents
a Dirac comb: ∆t∗ =

∑
k δ(t − k∆tobs), indicating formally that observa-

tion are available with a periodicity ∆tobs. The norms ‖ · ‖R, ‖ · ‖Qob
and

‖ · ‖Qin
are induced norms of the inner products < R−1·, · >, < Q−1

ob ·, · >
and < Q−1

in ·, · >; R, Qob and Qin are covariance matrices of the assimilation
space (spatial domain ΩA), initial control space (spatial domain ΩCob

) and
inlet control space (spatial domain ΩCin

). Few remarks can be done here.
First of all, we choose in this study to express the data discrepancy with re-
spect to vorticity in order to strengthen the noise measurement. Concerning
this, previous experimental data assimilation tests were performed by using
a control law based on flow measurements relying on velocity, showing that
this strategy, in spite of its straightforward implementation, has the following
disadvantages:
(i) It increases dramatically the assimilation domain size to take into account
the velocity components and as such, we reduce the performance of the min-
imization algorithm regarding its convergence properties, i.e. by enhancing
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the interval of uncertainty for a minimizer of the functional.
(ii) It introduces ambiguity in the criterion used to identify the location of
the spatial assimilation errors, due to strong differences observed between
both velocity components.
Otherwise, for numerical stability reasons, the spatial resolution (dx) used in
our simulation code is generally much higher than that of the observations
(dxg) supplied by large scale Particle Image Velocimetry (PIV) measure-
ments. The spatial averaging filter applied to the DNS vorticity field allows
comparing the flow velocity with the coarse grid vorticity field associated to
the observations. The spatial averaging is here defined through a discrete
Gaussian filter with support: Λ = {(x, y) ∈ ΩC | (x2 + y2) ≤ (dxg/dx)2}.
This filtering is reminiscent of the usual weighting function defined over the
span of the interrogation window in conventional correlation PIV implemen-
tations.
The observation model relating the measurements and the state variables can
be formally written as:

gσb ∗ ∇×︸ ︷︷ ︸
H

u(x, t∗) = ωobs(x, t∗) + ζ, (7)

where gσb is a Gaussian kernel with 3σb = dxg/dx. Here the operator ’∗’
denotes the convolution product and the variable ζ is a Gaussian noise.
Previous assimilation experiments show that as a consequence of neglecting
the third term of the functional, the optimization process generates peak
shape patterns on velocity profiles of the inflow estimated condition. Those
peaks occur at instants t∗ corresponding to the observations, revealing that
the cause of this pattern is based on the response of the optimization algo-
rithm to the first term of the functional, which only takes into account the
model solution u(x, t∗) evaluated at discrete points in time t∗ but ignores
what happens during the intermediate temporal states. In order to reduce
the magnitude of those peaks, the strategy involved in the third term of the
functional consists in comparing the current inflow condition, u(xin, t), with
a weighted temporal average u(xin, t) obtained by means of a Gaussian func-
tion over the interval [t∗−∆tobs, t

∗+ ∆tobs]. This averaging time is chosen to
preserve the global accuracy of temporal discretization and to affect only a
time interval between the nearest observations of the flow. We consider that
the present smoothing procedure applied to the expected value of the inflow
condition is very soft in the sense that when a coarse temporal resolution
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is used, no significant reduction of spurious patterns can be obtained. In
contrast, when the inflow solution is directly smoothed at every iteration, we
have observed that a strong reduction of those peaks is often possible, even
at very low resolution, but with a simultaneous artificial smoothing of the
overall flow not fully compatible with the purpose of a VDA.
This approach allows the inflow condition to change gradually over the whole
sequence time range [t0, tf ]. The role of the third term of the functional is
thus to enforce a temporal continuous trajectory of the solution but also to
impose a base flow corresponding to the flow harmonic component absent
from the vorticity observation. The control variables are assumed to be re-
lated to a filtered version of the velocity component up to a Gaussian noise.
This is formalized through relations:

u(x, t0) =gσb(·, t0) ∗ ub(x, t0) + ε ∀x ∈ ΩCob
(8)

u(xin, t) =gσin(xin, ·) ∗ u(xin, t) + η ∀x ∈ ΩCin
,∀t ∈ [t0, tN ], (9)

where ε and η are Gaussian variables encoding respectively the noise on the
initial condition and on the inlet condition. The value of the considered
standard deviation for the inlet condition have been set in practice in order
to allow a smoothing on n consecutive image frames (nσin = ∆tobs/dt).

2.3. Adjoint Model

Regarding the minimization of the objective function, a direct numerical
evaluation of the functional gradient is computationally infeasible, because
this would require to compute perturbations of the state variables along all
the components of the control variables (δε, δη) - i.e. to integrate the dy-
namical model for all perturbed components of the control variables, which
is obviously not possible in practice. As described in Appendix A a solu-
tion to this problem consists in relying on an adjoint formulation (Le-Dimet
and Talagrand, 1986). Within this formalism, the gradient functional is ob-
tained by a forward integration of the dynamical system (1-2) followed by a
backward integration of an adjoint variable, λ, which is driven by a dynam-
ics defined from the adjoint of the tangent linear dynamical operator, ∂XM,
and the tangent linear observation operator, ∂XH. This reverse dynamics,
referred as the adjoint dynamics, is defined as:

− ∂tλ(x, t) + (∂XM)∗ λ(x, t) = (∂XH)∗R−1(Y −H(X(x, t))) (10)

λ(x, tf ) = 0, (11)
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allows expressing the functional gradient with respect to the control variables.
This gradient whose expressions are derived in Appendix A reads:

∂J
∂ε

= −λ(t0) + I−1
c (X(t0)− CbXb),

∂J
∂u

= (∂uCu)
∗ F−1(Cuu− u0) + (∂uM)∗ λ.

(12)

These cost functional derivatives, involve the linear tangent expression of
several operators. Although only their numerical expression will be needed,
we detail further their analytic expression in the following. As can be noted
from (7) the observation operator H is linear. Its linear tangent expression
is itself, so we have in 2D (as the smoothing filter is symmetric):〈

ωobs, g ∗ ∇ × u
〉

=
〈
gσ ∗ ωobs, ∂xv − ∂yu

〉
=
〈
∇⊥gσ ∗ ωobs,u

〉
, (13)

with the orthogonal gradient defined as ∇⊥ = (∂y,−∂x). We have hence
immediately:

(∂XH)∗ = gσ ∗ ∇⊥. (14)

Let us also remark that in 3D, this expression would further simplifies to H
as the curl operator is auto-adjoint.
As for the control variables, they involve general linear relations (8-9) of the
form

u(x, t0) = gσ ∗ ub(x, t0) + ε (15)

Cuu(xin, t0) = η, (16)

with Cu = (δ − gσ)∗ and where δ is the Dirac mass and gσ a spatial or tem-
poral filtering. The adjoint linear tangent operator of Cu is hence itself.
Concerning the dynamics, the exact adjoint of the discrete scheme associ-
ated to the dynamical system is needed for an accurate implementation of
the adjoint dynamics. It is thus necessary to construct a numerical proce-
dure that corresponds to the adjoint of the tangent linear expression of the
discrete scheme used to implement the dynamics. To this end, we will rely
on an automatic differentiation tool, called Tapenade (Hascoet, 2003). This
systematic approach leads however to massive use of storage, requiring code
transformation by hand to reduce memory usage as explained in the next
section.
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2.4. Building Adjoint Algorithms through AD

Automatic Differentiation (AD) is a technique to evaluate derivatives of
a function F : X ∈ Rm 7→ Y ∈ Rn defined by a computer program P.
In AD, the original program is automatically transformed or extended to a
new program P’ that computes the derivatives analytically (Griewank, 2000).
It can be used to build a program encoding the tangent linear numerical
expression of the discrete implementation of a given operator or its adjoint.
Such automatic derivation, guaranties thus to compute the exact numerical
adjoint. In our case, we set the input X ≡ γ and function F has a single real
output (the cost).

2.4.1. Application of AD

An AD tool uses the source of the program that computes the state dy-
namics (1-2), and identifies this program with a composition of mathematical
functions, one per run-time instruction. Denoting {Ik}k=1→p the sequence of
instructions executed at run-time, each of them implementing an elementary
function fk, the function F computed by P is:

F = fp ◦ fp−1 ◦ · · · ◦ f2 ◦ f1. (17)

Setting W0 = X and Wk = fk(Wk−1), the chain rule gives us the Jacobian of
F :

F ′(X) = f ′p(Wp−1) · f ′p−1(Wp−2) · · · · · f ′1(W0). (18)

The so-called adjoint (or reverse) mode of AD aims at computing the product
of the transposition of F ′ by a given weight vector Y to get:

X = F ′t(X) · Y = f ′t1 (W0) · f ′t2 (W1) · · · · · f ′tp (Wp−1) · Y . (19)

In this way, the adjoint mode of AD builds a new code P that computes
{W k−1 = f ′tk (Wk−1) ·W k}k=p→1, by using values from P in the reverse of their
computation order. The stack needed to store Wk is the bottleneck of reverse
AD. In order to keep it small enough, we applied a storage/recomputation
strategy described as follows:
(i) During the computation of the cost function J , we store in memory only
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Wk at instants t∗.
(ii) During the computation of the adjoint variable X ≡ λ, we restart the
program on snapshot Wk until Wk+1 in the forward sweep of P, storing in
memory all the intermediate values Witime at each DNS time step. Later, in
the backward sweep, each Witime is restored from the stack to be used by P.

In our case, by setting the weight vector Y ≡ Y , the code P enables to
get the gradient functional X = F ′t(X) · Y ≡ ∇Y . Concerning this issue,
one can think of Y as a weighting vector on Y , the results of a function
F : X ∈ Rm 7→ Y ∈ Rn, that defines a scalar composite result, of which we
compute the gradient. Alternatively, given a program P that discretizes and
computes the function F , AD in the reverse mode creates a new program P

that computes the transposed Jacobian of F multiplied by a given vector. In
our optimization context, F has a single output (the cost) and therefore the
program P computes exactly the gradient of F by considering Y ≡ Y . Thus,
the reverse mode of AD takes as input a single vector Y that defines the
composite optimization criterion for which the gradient must be computed.

2.4.2. Validation checks

The usual process to validate the AD generated codes consists in validat-
ing the tangent derivatives with respect to finite differences, and to validate
the reverse derivatives with respect to the tangent derivatives using the dot-
product test. More precisely, choosing an arbitrary state X (initial and inflow
condition in our case) and an arbitrary direction Ẋ, we compute the finite
difference FD = [F (X+εẊ)−F (X)]/ε. Using the tangent differentiated pro-
gram, we compute Ẏ = F ′(X) · Ẋ. Using the adjoint differentiated program,
we compute X = F ′t(X) · Ẏ . The dot-product test just checks that

〈X, Ẋ〉 = 〈F ′t(X) · Ẏ , Ẋ〉 = 〈Ẏ , F ′(X) · Ẋ〉 = 〈Ẏ , Ẏ 〉, (20)

up to an admissible error.

2.5. Optimization with Gradient Descent

In our optimization problem, Hessian matrix of the cost function is too
dense if we take into account the large number of variables involved, i.e.
(2 · nx · ny + 2 · ny · ∆itime), where nx, ny is the number of grid points
in control space domain ΩC , and ∆itime the number of DNS time steps
in [t0, tf ]. So, in order to reduce the cost of storing and manipulating it, we
have chosen a limited-memory quasi-Newton method which maintains simple
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and compact approximations of Hessian matrices (Liu and Nocedal, 1989).
We have used an algorithm known as L-BFGS, which is based on the BFGS
updating formula

γk+1 = γk + αkpk, (21)

where αk is the step length, pk = −Hk∇Yk is the search direction, and Hk

denotes a first order approximation of the Hessian in the direction of the
previous increment. This approximation is updated at every iteration by
storing the vector pairs

sk = γk+1 − γk, yk = ∇Yk+1 −∇Yk. (22)

The step length is computed from a line search procedure to satisfy the Wolfe
conditions.
We have chosen a stop criterion for the L-BFGS algorithm based on gradient
reduction from its initial value, i.e. ‖∇F (Xk)‖/‖∇F (X0)‖ < 1 · 10−5.

3. Results

First, the correctness and the computational cost of the AD is checked.
Subsequently, the values we chose for the different parameters of the method
are described. Then, validations of the control on initial and inflow conditions
are carried out using three different setups: a synthetic image setup based on
a mixing layer and synthetic/experimental setups based on a circular cylinder
wake.

3.1. Correctness of AD codes

In order to assess the validity of the differentiated codes, we performed
validation experiments (dot-product test) by running the generated tangent
(forward mode AD) and adjoint (reverse mode AD) codes many times, with
the same value of X (independent state introduced by the initial and in-
flow condition) but with different values of Ẋ (direction in the input space
along which the derivatives are computed), where the directional variables
are assumed to be composed by the application of a Gaussian noise (with
zero mean and unit variance) to the independent ones. This can be formally
written as:

u̇(x, t0) =u(x, t0) + τ · ε ∀x ∈ ΩCob
(23)

u̇(xin, t) =u(xin, t) + τ · η ∀x ∈ ΩCin
,∀t ∈ [t0, tN ], (24)
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τ 0.01 0.1
〈FD,FD〉 5.94345959284251984E-006 6.05599345995614287E-006

〈Ẏ , Ẏ 〉 5.94345528277551301E-006 6.05598865931465216E-006

〈X, Ẋ〉 5.94345528277551301E-006 6.05598865931465470E-006

τ 1.0 10.0
〈FD,FD〉 7.23940570717684538E-006 2.48837235816609840E-005

〈Ẏ , Ẏ 〉 7.23936862789542849E-006 2.48777886326398566E-005

〈X, Ẋ〉 7.23936862789542849E-006 2.48777886326398194E-005

Table 1: Validity test of the AD technique as the noise on the directional variables is
increased (ε = 10−7).

where ε and η are gaussian variable encoding respectively the noise on the
initial condition and on the inlet condition, and τ is a scalar noise amplitude
parameter. Results shown in Table 1 for each arbitrary direction obtained by
varying τ with random draws of (ε, η), indicate that the tangent norm and
the adjoint norm match very well, up to the last few digits. This shows that
the tangent and adjoint codes really compute the same derivatives indepen-
dently of the arbitrary direction of choice. The norm obtained with Finite
Differences (FD) matches only to half the machine precision, because of the
inaccuracy of FD approximation. This validity test enables us to ascertain
that the program doing F ′t(X) is indeed adjoint to the program doing F (X),
and thus the proposed code for the adjoint operator is precisely consistent
with the operator itself.

3.2. Computational cost

To assess the computational cost of the method, the AD generated code
was run on a desktop machine with a 3.40 GHz Intel Core i7-2600 CPU with
8 GB of RAM. Performance results are shown in Table 2 corresponding to
VDA Test A for a DNS mesh size of 109×339 grid points in control space
domain. Table 2 shows that the forward and backward implementations are
cost competitive. Further, this gives a ratio of 2.7 between the run-times of
the gradient and function evaluations, indicating that the overall cost of the
adjoint method is reasonable. The generated code required 33.5 MB of tape
size and 15 hours to reach the assimilated trajectory, showing that:
(i) The proposed storage/recomputation strategy, based on storing an ap-
propiate number of intermediate states during the forward path of differen-
tiation and then recalling them in the reverse computation, is effective in
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terms of memory consumption.
(ii) While this is not a trivial computational cost for a 2D test case, it does
bring the optimization of unsteady problems into the realm of possibility.

Computation of the cost function 1.08
Computation of the adjoint variable 2.98
Forward sweep 1.38
Backward sweep 1.31

Table 2: Computational cost of the AD generated code. Times are normalized to the total
computational cost of the flow solution (i.e. the time needed to complete a trajectory of
the dynamic model), which takes 91.3 s in the case of VDA cylinder wake experimental
test A.

3.3. Parameter estimation

The only parameters of the method are constituted by the covariance
matrices associated to the observations R, the initialization Qob and the dy-
namical model Qin. For the observation, we systematically imposed R=1.
The initialization covariance matrices are defined with respect to the initial-
ization model. In the case of synthetic model (given through velocity fields
provided by a combination of DNS and filtering techniques), we fixed the
covariance matrix to Qob=10. When initializing from the first PIV field of
the sequence, the value Qob=100 is introduced. Concerning the dynamical
model covariance matrix, we fixed it to Qin=1 for the synthetic sequences,
as in this case the dynamic is quasi respected and to Qin=10 for real world
applications with larger dynamical uncertainty.

3.4. Control on the Initial Condition

In order to assess the benefits of our technique, we carried out a VDA
experiment applied to the identification of the initial condition from a spa-
tially evolving 2D mixing layer flow by using numerical data. The velocity
ratio between low and high speed is 0.66 and the Reynolds number based on
the velocity difference of two streams and the inflow vorticity thickness δω0

is Re = 400. The governing equations are directly solved using 401x257 grid
points in x and y directions respectively. The assimilation domain size was
Lx=200δω0, Ly=512δω0, and the grid resolution in x direction was ∆x=0.5δω0.
The stretching of the grid in y direction leads to a minimal mesh size of
∆ymin=0.15δω0.
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As a first step, a precursor simulation was run to provide artificial inflow
conditions for the assimilation experiment. The spanwise section retained
and fixed subsequently to the inlet section of the assimilation domain is lo-
cated at the beginning of the convection region of vortical structures. This
VDA experiment was done in a so-called twin experiment framework whereby
the direct model trajectory is used to generate synthetic observations. The
initial velocity field has been then perturbed using zero mean Gaussian noise
and an additional spatial filtering is applied to this vector velocity field in
order to provide the noisy field at the start of the assimilation process. Syn-
thetic observations are given by a sequence of 20 velocity fields generated
from the model’s original outputs starting from the unperturbed field.

In this experiment the functional J(γ) considered depends only on the
initial condition, and comes to an initial value control problem. Figure 1(a)
illustrates the performance of the optimization loop for an integration period
of 2δω0/Um (with a DNS time step of 0.01δω0/Um) and an observation fre-
quency equal to 0.1δω0/Um, where Um is the mean convective velocity at the
inlet. After 44 iterations the cost function decreases by 99.8% from 8 · 10−3

to 1.6 · 10−5. Figure 1(b) shows the temporal evolution of the assimilation
error with respect to the initial unperturbed observation (our reference or
true state). The initial trajectory is generated from the model output start-
ing from the perturbed observation at t = t0 (initial estimate for L-BFGS
algorithm), and the assimilated one is obtained from the best estimate for
the initial state found by L-BFGS.

As can be seen, the minimization algorithm corrects the error of the initial
guess and converges to a global minimum point that is close to the true state
point. The initial condition of the model is retrieved, yielding a very good
agreement with the unperturbed velocity fields. Figure 2 indicates that the
true state at the start of the assimilation window (top panel) is recovered
with a very good accuracy (bottom panel) from the perturbed one (middle
panel), showing the quality of the derivatives obtained.

3.5. Control on the Initial and Inflow Condition

In the previous assimilation experiment, an artificial inlet condition ob-
tained from the reference DNS trajectory was used as a fixed parameter in
our optimization system, and then γ = {u(x, t0)}. From now on, in addition
to the flow initial condition we will incorporate inflow condition as a supple-
mentary control parameter. In order to make it possible, we need to provide
an initial estimate for the inflow condition, i.e. uk=0(xin, t) and the initial
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(a) (b)

Figure 1: (a) Reduction of the cost function and the gradient norm versus the number
of minimization iterations with the L-BFGS algorithm. (b) Temporal evolution of the
squared norm of the discrepancy between each velocity field generated from the model
output u(x, t) and the reference value uref (x, t).

condition. Similarly to the previous experiment, we initialized the initial
condition to the observed data at the initial time:

uk=0(x, t0) = uobs(x, t0). (25)

A natural choice to provide an initial value of the inflow condition consists
in using the complete sequence of observations together with a ”frozen” tur-
bulence Taylor’s hypothesis. From Taylor’s hypothesis, the spatial changes
caused by advection between two contiguous observations are set to ∆xobs =
Um ∆tobs, where Um is the mean convection velocity at the inlet section. One
solution for the initial estimate of the inflow condition emerges immediately
as

uk=0(xin, tσ) = uobs(xσ, t
∗), (26)

where xσ = xσ(∆xobs, dx), tσ = tσ(t∗,∆tobs, dt). Despite this solution is
strongly based on the Taylor’s assumption of frozen turbulence, we will see
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Figure 2: Vorticity fields at the start of the assimilation window. True field (top), initial
perturbed field (middle) and retrieved optimal initial condition (bottom).

that such hypothesis imposed only on the initial run allows us to face situa-
tions for which this hypothesis is not valid. This ability will be nevertheless
paid by an increase of the number of iterations to reach convergence.
In order to assess the performance of the VDA method for the specification of
inflow condition we have constituted a benchmark composed of DNS results
and experimental PIV data. The numerical simulation and the experimental
data concerns both a wake behind a circular cylinder at Reynolds 125 and
170 respectively (Reynolds number based on the free stream velocity U∞,
the kinematic viscosity ν and the diameter of the circular cylinder D). For
these Reynolds numbers, the transition to turbulence takes place in the wake.
This regime is identified with the Bénard-von Karman vortex street and the
largest scales remain bidimensional (Zdravkovich, 1997).

3.5.1. Numerical Data Assimilation

The VDA approach is now validated through a twin experiment in which
the observation data are built from a numerical simulation of reference, a

17



Figure 3: Computational flow configuration of VDA cylinder wake tests.

circular cylinder wake at Reynolds 125. Our computational domain size
is Lx × Ly =20D×20D and the corresponding number of points is nx ×
ny =1801×721. A constant flow is imposed at the entrance of this reference
(ground truth state) domain, and the center of the cylinder is located at
xcyl =8D downstream of the inflow. The simulation was carried out with a
time step ∆t =0.012D/U∞. A sequence of 50 velocity fields with 10∆t time
steps between them has been kept to build a discrete sequence of flow motion
snapshots. The spatial domain size has been reduced from the computational
domain size to 9D×9D. The inlet section of the assimilation domain has been
chosen at 22D from the center of the cylinder, i.e. (xin−xcyl) =14D, in a way
to satisfy Taylor’s hypothesis by verifying 〈u′yu′y〉max/Um ≈0.1 at the inlet.
To mimic a typical experimental situation, the spatial resolution has been
reduced by a factor 5, yielding 65×64 points for the assimilation domain in
the streamwise and normal directions. In Figure 3 is depicted the geometry
of the two-dimensional problem considered. In order to properly adjust the
observation data to the numerical grid, a buffer zone has been created to
verify the specific lateral boundary conditions required by DNS by means
of a ramp interpolation function introduced only at the beginning of each
optimization iteration.

Figure 4 presents the observation and model dynamics trajectories at two
different stages of the assimilation process. The initial trajectory is generated
from the model output by starting from the spatially interpolated observation
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Figure 4: VDA cylinder wake twin test. Temporal evolution of the squared norm of
the vorticity field; diamonds: observations; dashed line: initial approximation; solid line:
assimilated solution.

at t = t0, and using a temporally smoothed inflow condition constructed from
the observations by applying Taylor’s hypothesis.
The assimilated trajectory is obtained from the best estimate for the initial
and inflow condition found by L-BFGS algorithm. As it can be observed from
these results, this trajectory fits almost perfectly the observation data. The
inflow control variable enables to complete the missing elements of the initial
DNS dynamics trajectory to explain the data. The good results obtained in
this case were expected since the approach assimilate enough observations
to describe the time evolution of physical phenomenon. Indeed, ∆tobs was
equal to 10∆t thus providing more than 25 observations during one vortex
shedding. However in real world applications the constitution of a noise-
free velocity field PIV sequence at high temporal resolution is completely
unrealistic. We show in the following section results obtained with real world
PIV measurements.

3.5.2. Experimental Data Assimilation

Time-resolved 2D PIV measurements, in the wake of circular cylinder
at Reynolds 170, were carried out in one of the wind tunnels at Rennes
research centre of Irstea. A sequence of 10 velocity fields with a temporal
resolution of ∆tobs =1.2D/U∞ and with a temporal length of approximately
4 vortex shedding has been kept for building the snapshots sequence of the
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Figure 5: Temporal evolution of the spatial mean of the vorticity field for (left) VDA
cylinder wake experimental test A and (right) test B; diamonds: observations; dashed
line: initial approximation; solid line: assimilated solution.

flow motion. Two assimilation tests were performed by changing the inlet
location of the assimilation domain. During these tests the simulations were
carried out with a time step equal to ∆t =0.01D/U∞. Table 3 summarizes
the main spatial domain characteristics of these velocity fields. Figure 5
presents the observation and DNS trajectories for both VDA tests at two
different stages of the optimization cycle.

Test (xin − xcyl) (Lx × Ly)ΩC
(nx × ny)ΩC

(Lx × Ly)ΩA
(nx × ny)ΩA

A 10D 7.7D×24.2D 109×339 6D×8D 29×39
B 3D 14.2D×24.2D 199×339 12D×8D 59×39

Table 3: VDA cylinder wake experimental tests from PIV velocity fields. Characteristics
of the spatial domain. ΩC denotes the control space and ΩA the assimilation space.

As it can be observed from these curves, the assimilation technique enables to
modify inflow condition to recover with quite a good accuracy the trajectory
corresponding to the observations. When the inlet of the assimilation domain
is located downstream of the vortex formation region (VDA test A), initial
guess stay close to the observation data and the optimization algorithm re-
quires 150 iterations to reach the assimilated trajectory. On the other hand,
if the inlet belongs to the vortex formation region (VDA test B), Taylor’s
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Figure 6: Longitudinal evolution of (left) the mean vorticity and (right) the vorticity
fluctuation 〈ω′ω′〉 for (top) VDA cylinder wake experimental test A and (bottom) test B;
solid lines: assimilated solution; symbols: observations.

hypothesis does not hold anymore (the relative turbulence intensity is high)
and the initial approximation is far from the data. This leads to an increase
of the number of iterations required (400) to get the assimilated solution. To
characterize the assimilation results further and more quantitatively, mean
flow characteristics are compared. Figure 6 presents the downstream evolu-
tion of the profiles of both the mean and fluctuating vorticity for VDA tests
A and B.
It reveals that temporal mean properties of assimilated vorticity are in good
agreement with experimental ones. To illustrate the vorticity fields esti-
mated through the assimilation procedure, we plot in Figure 7 two pairs of
consecutive snapshots of the vorticity corresponding to the DNS and the PIV
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sequence for VDA test B.
Results indicate that despite observations with low spatial and temporal
resolutions, the assimilated state exhibits fine scale details revealing vortex
filaments. Furthermore, it should be noted that the proposed method pro-
vides a means to simulate a wake flow without simulating the flow around
the obstacle.
To investigate the spatial structure of the flow simulated by DNS, mean and
fluctuating velocity field contours are computed and compared to experimen-
tal results in Figures 10 and 11. In spite of the low statistical convergence
(only 1152 time steps are retained for the statistics computation in the case
of the DNS, which corresponds to the time required for the flow to shed 4
vortices), a good agreement is obtained for velocity field level sets as well
as velocity field shapes. Thus, even in the vortex formation region of the
assimilation domain, characteristics of the spatial structure of wake flows,
such as wake length and location of recirculation, are accurately reproduced
by the simulation.
Temporal evolution of the initial (based on the Taylor’s assumption) and op-
timal estimated velocity fields at the inlet section (Figures 8 and 9) exhibits
well organized regions both in the longitudinal and vertical components. The
noisy character and low temporal resolution of the experimental data leads
to high gradients in the generated velocity fields at the inlet section. Taking
account of the fact that the covariance parameters involved in the functional
(6) ensue from the assumption of an inexact dynamical law together with
noisy measurements and inaccurate initial conditions, and considering the
large uncertainty in the inital estimate for the inflow condition built from
the PIV sequence, one finds that the increase in the model covariance asso-
ciated to the inlet control space produces a solution closer to the expected
value, by giving a smoothed representation of the inflow condition.

4. Conclusions

In this work, a new method for generating inflow boundary conditions for
DNS has been introduced. This approach relies on variational data assimila-
tion principles and adjoint-based optimization. By modifying the initial and
inflow condition of the system, the proposed method allows us to recover
the state of an unknown function on the basis of a DNS model and noisy
measurements.

In the proposed method, attention has been paid not only to the correct
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Figure 7: VDA cylinder wake experimental test B. Vorticity fields at two discrete in-
stants in the assimilation window. (a) Experimental observation at t · U∞/D =6.4; (b)
Assimilated state at t · U∞/D =6.4; (c) Experimental observation at t · U∞/D =10.2; (d)
Assimilated state at t · U∞/D =10.2.
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modeling of the spatiotemporal dynamics but also to the proper spatial ad-
justment of the experimental data to the numerical grid. In particular, a
combination of interpolation and domain reconstruction techniques has been
employed to deal with the specific lateral boundary conditions required by
DNS. We described a number of improvements to reduce the memory needed
by reverse-differentiated programs. In order to test this new approach, DNS
of a 2D mixing layer flow and a wake flow behind a circular cylinder have
been performed to provide a synthetic database. Both twin experiments al-
lowed the validation of the solution methodology in a controlled scenario and
demonstrated the feasibility and the reliability of the proposed method. The
potential of the assimilation technique was also illustrated in a real world
application. For this purpose, the database consisted of a sequence of noisy
large scale PIV vorticity measurements. This first proof of concept shows
that the approach might be of particular interest to perform computation
of highly complex external flows, by considering inlet boundary conditions
taken far downstream from the body in order to avoid the expensive compu-
tation of the near wall region.

To go further, it could be interesting to introduce dynamical laws related
to the observed phenomenon at higher Reynolds numbers; in this sense, an
attempt at combining an experimental database to a LES code is now being
considered.

Even if free-slip lateral and convective outflow boundary conditions were
considered in all the tests in this work, the proposed methodology could be
extended to periodic, no-slip or open conditions depending on the flow con-
figuration considered. Periodic lateral boundary conditions can be imposed
directly via the spatial differentiation (derivative and interpolation) without
specific care in the time advancement. In contrary, the use of Dirichlet con-
ditions on the velocity (for no-slip or open conditions) needs to be defined
according to the time advancement procedure. In practice, the explicit na-
ture of the time discretization does not lead to particular problems for the
adaptation to the adjoint equations generated by automatic differentiation
in reverse mode. Furthermore, considering the outflow condition, the actual
configuration using a purely convective flow assumption could likely be well
improved by introducing the outflow boundary condition as a control param-
eter of the optimization problem.

Future works will also include extending the adjoint code capabilities to
include three-dimensional effects in data assimilation system. As far as this
is concerned, the DNS code (called Incompact3d) selected in this work has
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been recently adapted to massive parallel processing (Laizet and Li, 2011).
The benefit of computing the adjoint of the new parallel code is that the
parallelisation strategy adopted maintains the original structure of the code
since no changes are made in the computation of the spatial differentiations
and in the Poisson solver. On the contrary, we note two important issues in
the AD of message-passing parallel programs. The first issue is preserving
the association between variables and their derivative vectors not only during
memory allocation and floating-point operations, but also when data are sent
via messages. If the variable and its associated derivative object are to be
communicated using a single message, they must be packed together. If they
are to be communicated via separate messages, an association between these
messages must be maintained by using tags. The benefit of using packing
is that it is simple to maintain the association, while one disadvantage is
the overhead of packing and unpacking the data. Another disadvantage of
packing is that it may be necessary to allocate space for the packed data,
especially if the packing is explicit. The second issue is the differentiation
of parallel reduction operations. A reduction operation is an operation that
reduces N values residing on up to N processors to a single value using an
associative operator. These reduction operations are elementary operations
and as such, we cannot apply AD directly to the reduction operation, but
instead must provide a rule for computing the partial derivatives and a mech-
anism for applying the chain rule.

The tuning and the balance of the corresponding covariance matrices are
also intricate issues and we wished in this work to focus explicitly on the
methodology.

Appendix A. Variational data assimilation

Variational data assimilation aims at recovering the values of control pa-
rameters leading to the lowest discrepancy between the measurements and
the system’s state variable. This objective can be formalized as the mini-
mization of a cost functional, J : U × V → R, defined as:

J (u, ε) =
1

2

∫ tf

t0

‖Y(t)−H(X(u(t), ε, t))‖2
Rdt+

1

2
‖ε‖2

Ic +
1

2

∫ tf

t0

‖Cu(u(t))− uo(t)‖2
Fdt, (A.1)
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where the control variables consists of an unknown pertubation of the initial
condition around a known background state Xb:

X(x, 0) = CbXb(x) + ε(x),

and a dynamics parameter u(t) with an assumed value uo(t). This functional
which can be interpreted as the energy function associated to the a posteriori
distribution p(X|Y) in a Bayesian setup gathers three terms. The first term
comes directly from the measurement equation:

Y(x, t) = HX(x, t) + η(x), (A.2)

with η a zero mean Gaussian random field. It is a quadratic best fit term
between the observation and the state variable provided by the dynamics
integration:

∂tX(x, t) + M(X(x, t), u(t)) = 0 (A.3)

X(x, t0) = CbXb(x) + ε(x). (A.4)

The second term aims at specifying a low error on the initial condition
whereas the third term enforces the control variable to be close to a given
a priori value u0 of the control parameter. It is least squares best fit term
similar to the observation model. It involves eventualy a nonlinear/linear
operator Cu. This operator plays the same role as the background operator
Cb involved in the initial condition equation (A.4). Both of them encodes
eventually an incomplete observability situation of the initial condition and
the dynamics parameter control variable. The problem consists then to seek
deviations of the lowest magnitude both between the a priori dynamic pa-
rameter value, u0, and its current value and between the initial state and a
given - or observed - initial condition. For a null a priori control value a con-
trol of lowest norm is sought. Formally it is assumed that u(t) ∈ U , X(t) ∈ V
and Y(t) ∈ O are square integrable functions in Hilbert spaces identified to
their dual. The norms correspond to the Mahalanobis distance defined from
the inner products < R−1., . >O, < I−1

c ., . >V and < F−1., . >U of the measure-
ments, the state variable and the control variable spaces respectively. They
involve covariance tensors R, Ic and F related to the measurement error, the
error on the initial condition and the deviation between the control and its a
priori value. In our applications, these covariance tensors have been defined
as diagonal tensors (i.e. the noise is assumed to be uncorrelated in time
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and space). For example the observation covariance tensor has been set to a
covariance tensor of the form:

R(x, t, x′, t′) = σδ(x− x′)δ(t− t′), (A.5)

and similar expressions hold for F and Ic. In order to compute the gradient of
this functional we assume that X(u(t), ε; t) depends continuously on (u(t), ε)
and is differentiable with respect to the control variables u(t) and ε, on the
whole time range.

Appendix A.1. Differentiation

Noting first that dX = (∂X/∂u)δu(t) + (∂X/∂ε)δε, the differentiation of
equations (A.3–A.4) in the direction (δu, δε) reads:

∂tdX + ∂XM(X, u(t))dX + ∂uM(X, u(t))δu(t) = 0, (A.6)

dX(x, t0) = δε(x), (A.7)

where ∂XM denotes the linear tangent operators defined by:

lim
β→0

M(X + βX, u(t))−M(X, u(t))

β
= ∂XM(X)dX. (A.8)

We can check immediately that for a linear operator the linear tangent op-
erator is itself. The differentiation of the cost function (A.1) in the direction
(δu, δε) (denoting UT as the space of square integrable function on a spatio-
temporal domain) reads then:

〈∂J
∂u

, δu
〉
UT

=

∫ tf

t0

〈
Cuu(t)− u0(t), (∂uCu)δu(t)

〉
F
dt−∫ tf

t0

〈
Y(t)−H(X(t)), (∂XH) (

∂X

∂u
δu(t))

〉
O
dt, (A.9)

〈∂J
∂ε

, δε
〉
V

=
〈

(X(x, t0)− CbXb(x)), δε
〉
Ic
−∫ tf

t0

〈
Y(t)−H(X(t)), (∂XH) (

∂X

∂ε
δε)
〉
O
dt. (A.10)

27



Introducing the adjoint of the linear tangent operator (∂XH)∗, defined as:

∀(x, y) ∈ (V ,O), < (∂XH)x, y >O=< x, (∂XH)∗ y >V , (A.11)

and similarly the adjoint (∂uCu)
∗, these two relations can be reformulated

as:〈∂J
∂u

, δu
〉
UT

=

∫ tf

t0

〈
(∂uCu)

∗ F−1(Cu(t)− u0(t)), δu(t)
〉
U
dt−∫ tf

t0

〈
(∂XH)∗R−1(Y(t)−H(X(t)),

∂X

∂u
δu(t)

〉
V
dt, (A.12)

and〈∂J
∂ε

, δε
〉
V

=
〈
I−1
c (X(x, t0)− CbXb(x)), δε

〉
V
−∫ tf

t0

〈
(∂XH)∗R−1(Y(t)−H(X(t)),

∂X

∂ε
δε
〉
V
dt. (A.13)

Expressions (A.12-A.13) provide the functional gradients in the directions
(δu, δεm). We can remark from these expressions that a direct numerical
evaluation of these gradients is in practice completely unfeasible. As a matter
of fact, such an evaluation would require to compute perturbations of the
state variable along all the components of the control variables (δu, δε) – i.e.
integrate the dynamical model for all perturbed components of the control
variables, which is computationally completely unrealistic.

Appendix A.2. Adjoint model

An elegant solution of this problem consists in relying on an adjoint for-
mulation. To that end, the integration over the range [t0, tf ] of the inner
product between an adjoint variable λ ∈ VT and relation (A.6) is performed:∫ tf

t0

〈∂dX
∂t

(t), λ(t)
〉
Vdt+

∫ tf

t0

〈
(∂XM) dX(t), λ(t)

〉
Vdt+∫ tf

t0

〈
(∂uM) δu(t), λ(t)

〉
Vdt = 0. (A.14)
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An integration by parts of the first term yields:

−
∫ tf

t0

〈
− ∂λ

∂t
(t)) + (∂XM)∗ λ(t), dX(t)

〉
Vdt =

〈
λ(tf ), dX(tf )

〉
V −

〈
λ(t0), dX(t0)

〉
V +

∫ tf

t0

〈
δu(t), (∂uM)∗ λ(t)

〉
U
dt, (A.15)

where the adjoint of the tangent linear operators (∂XM)∗ : V → V and
(∂uM)∗ : V → U have been introduced. At this point no particular assump-
tions nor constraints have been imposed on the adjoint variable. However,
we are free to particularize the set of adjoint variables of interest in setting a
particular evolution equation or a given set of boundary conditions allowing
simplifying the computation of the functional gradient. As we will see it,
imposing that the adjoint variable λ is solution of the system:{

−∂tλ(t) + (∂XM)∗ λ(t) = (∂XH)∗R−1(Y −H(X(t)))
λ(tf ) = 0,

(A.16)

will provide us a simple and accessible solution for the functional gradient.
As a matter of fact, injecting this relation into equation (A.15) with dX(t0) =

δε and dX = (∂X/∂u)δu(t) + (∂X/∂ε)δε allows identifying the right hand sec-
ond terms of the functional gradients (A.12-A.13) and we get〈∂J

∂ε
, δε
〉
V

= −
〈
λ(t0), δε

〉
V

+
〈
I−1
c (X(t0)− CbXb), δε

〉
V
,〈∂J

∂u
, δu
〉
UT

=

∫ tf

t0

〈
δu(t), (∂uCu)

∗ F−1(Cuu(t)− u0) + (∂uM)∗ λ(t)
〉
U
dt

=
〈

(∂uCu)
∗ F−1(Cuu− u0)) + (∂uM)∗ λ, δu

〉
UT

.

From these relations, one can now readily identify the two components of the
cost function derivatives with respect to the control variables:

∂J
∂ε

= −λ(t0) + I−1
c (X(t0)− CbXb),

∂J
∂u

= (∂uCu)
∗ F−1(Cuu− u0) + (∂uM)∗ λ.

(A.17)

The partial derivatives of J are now simple to compute when the adjoint
variable λ is available. The knowledge of the functional gradient enables then
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to define updating rules for the control variables from iterative optimization
procedures. A quasi-Newton minimization process consists for instance of:

Xn+1(t0) = Xn(t0)− αnH̃−1
Xn(t0)(I

−1
c (Xn(t0)− CbXb)− λ(t0)),

un+1 = un − αnH̃−1
un ((∂unM)∗ λ+ (∂uCu)

∗ F−1(Cuun − u0)),
(A.18)

where H̃−1
xn denotes an approximation of the Hessian inverse computed from

the functional gradient with respect to variable xn; the constant αn is cho-
sen so that to respect Wolfe conditions. The adjoint variable is accessible
through a forward integration of the state dynamics (A.3-A.4) and a back-
ward integration of the adjoint variable dynamics (A.16). Let us point out
that considering a final condition for the state variable (through a similar
cost function term as for the initial condition) would change the null initial
condition of the adjoint dynamics into a term similar to the one involved
in the derivative with respect to the initial condition control variable. The
overall optimal control process is schematically summarized in Figure A.12.
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Figure 8: VDA cylinder wake experimental test A. Temporal evolution of the inflow
condition in the assimilation domain. Longitudinal velocity component (Left); Vertical
velocity component (Right); Initial estimate (Top); Best estimate (Bottom).
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Figure 9: VDA cylinder wake experimental test B. Temporal evolution of the inflow
condition in the assimilation domain. Longitudinal velocity component (Left); Vertical
velocity component (Right); Initial estimate (Top); Best estimate (Bottom).
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Figure 10: VDA cylinder wake experimental test A. Mean and fluctuating velocity field
contours in the assimilation domain. Experimental observations (Left); Assimilated state
(Right); Velocity modulus 〈u〉/U∞ (Top); Transverse Reynolds normal stress 〈u′yu′y〉/U2

∞
(Middle); Reynolds shear stress 〈u′xu′y〉/U2

∞ (Bottom).
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Figure 11: VDA cylinder wake experimental test B. Mean and fluctuating velocity field
contours in the assimilation domain. Experimental observations (Left); Assimilated state
(Right); Velocity modulus 〈u〉/U∞ (Top); Transverse Reynolds normal stress 〈u′yu′y〉/U2

∞
(Middle); Reynolds shear stress 〈u′xu′y〉/U2

∞ (Bottom).
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1. Set an initial condition: X(t0) = X0

2. From X(t0), compute X(t) with the forward integration
of relation (A.3)

3. Compute the adjoint variable λ(t) with the backward
integration of relation (A.16)

4. Update the initial value X(t0) and the parameter model
u with (A.18)

5. Loop to step 2 until convergence

Figure A.12: Schematic representation of the variational data-assimilation algorithm
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