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Le transport solide joue un rôle critique sur la stabilité et la morphologie des cours d'eau et a donc de fortes implications pour le développement durable et pour la réduction du risque d'inondation. La compréhension des processus mis en jeu est un problème de longue date imparfaitement résolu. De par la nature du matériel composant le lit des rivières, le charriage, i.e. le transport des sédiments qui restent en contact avec le fond, devrait être considéré d'un point de vue granulaire, et prendre en compte non seulement les interactions grain-fluide mais aussi grain-grain. La granulométrie étendue du lit conduit au phénomène granulaire de ségrégation par taille, encore appelé tri granulométrique, dans lequel les particules grossières se retrouvent généralement en surface et forment une couche de 'pavage'. La ségrégation est aussi connue dans le contexte industriel pour les problèmes de démixtion qu'elle engendre. Selon le rapport de taille entre les grains, il peut y avoir percolation spontanée, i.e. les petits grains s'infiltrent spontanément entre les grains plus gros, ou tamisage cinétique, i.e. les petits grains tombent uniquement au travers des pores ouverts dynamiquement. La présente étude a pour objectif de tester, à l'aide de données expérimentales, un modèle théorique continu basé sur une approche cinématique pour la ségrégation de deux tailles proches de particules (Gray et al. 2005(Gray et al. , 2006)). Dans un premier temps, des expériences ont été menées dans le but de mesurer l'évolution spatio-temporelle de la concentration en petites particules lors de l'écoulement d'un mélange bidisperse (cas dilué). Lors de ces expériences, des billes de verre sphériques de 4 mm et 6 mm de diamètre sont entrainées par un écoulement turbulent et super-critique dans un canal étroit (2D) à forte pente (10%) sur un lit mobile sous des conditions d'équilibre de charriage. Dans un second temps, ces expérimentations ont été comparés aux résultats du modèle, qui nécessitait en entrée les profils normaux de vitesse et les flux de billes expérimentaux. En première approximation, les résultats concordent puisqu'ils décrivent des profils de concentration ressemblants. Il a été mis en évidence que le modèle est très sensible aux profiles de vitesses en entrée, et que ses réultats dépendent de la compétition entre vitesse longitudinale et vitesse normale.

Contents Introduction

Transport of sediment through river channels has major consequences for public safety, management of water resources, and environmental sustainability. Indeed, the quantity of material transported by the rivers, and particularly by the mountain rivers, has strong involvement in the risks associated with watercourses. It can be responsible for bedlevel rising, bed incision or disturbances leading to overflows causing casualties, loss of property and public infrastructure (figure 1). Hence, the understanding of this challenging phenomenon is of great practical importance. Sediment transport in rivers is classified, in general, into two modes : bed-load and suspended-load (fig. 2). Bed-load transport corresponds to the grain motion close to the bottom, by rolling, sliding or saltating. Grains move by fits and starts with a mean velocity significantly lower than the water one. When the vertical component of the turbulent velocity becomes greater than the grain fall velocity, the grains are swept away by the flow and can move over long distances without reaching the bottom. It is the suspended-load transport. Note that the suspended material concentration is higher close to the bottom. One last mode of transport exists. It is the wash-load transport which consists of fine particles in suspension uniformly distributed over the flow height which do not originate from the riverbed and which don't interact with it. Unlike the first two modes, it does not play a morphological role, except on the occasion of sharp slowdown in dam reservoirs or during flood recession where the banks vegetation is a brake.

Water flow over a deformable bottom can carry sediments when the hydraulic forces are greater than the riverbed resistance. These sediment motions are characterized by the processes of erosion, transport and deposition which will affect the riverbed morphology but also the flow itself. Thereby, the hydraulics and the sediment transport act in a coupled manner [START_REF] Degoutte | Diagnostic, aménagement et gestion des rivières : hydraulique et morphologie fluviales appliquées[END_REF]). Note that in contrast with lowland rivers where this feedback phenomenon can usually be neglected, this is not the case in steep mountain steams with concentrated bed-load. Classically, relations between sediment rate and liquid flow rate are sought. Motion of particles are intrinsically linked with fluid velocity. The transport rate can be related to a dimensionless shear stress called Shields number Sh.

This study is about bed-load on steep slopes such as in mountain rivers. On streambeds, the wide range of grain sizes leads to segregation processes and especially to armoring, i.e. the formation of a coarser grains layer at the surface. This gravity-driven process can also occur in many natural phenomena such as snow avalanches, rock falls, mud-flows, density currents.

In the river science community, this process is studied within the framework of classical theory [START_REF] Houssais | Bedload transport of a bimodal sediment bed[END_REF]). Other approaches to explain segregation phenomenon come from granular physics. Indeed, this process affects also powder and grain motion in industrial contexts through mixing and demixing problems. In addition to the fluid-grain interactions, grain-grain interactions have to be taking into account.

Granular theoretical models try to explain the mechanisms of the segregation phenomenon in dry binary mixture flows. Numerous studies have compared these models and experiments [START_REF] Bridgwater | Particle mixing and segregation in failure zones -theory and experiment[END_REF], Savage & Lun (1988)...).

An experimental setup has been used at Irstea, Grenoble, to investigate bed-load transport of binary mixture on steep slope at the particle scale. The aim of this master thesis is to model the results of this experiment trough granular theory of binary mixture (Gray & Chugunov (2006)).

First time, the granular theory of the segregation process is related in details through the development of a kinematic approach based on continuous fundamental equations. Second time, experimental facilities and setup used to investigate segregation in bed-load transport is presented and the performed runs are analyzed. Finally, the experimental data are compared to model results.

Chapter 1

Bedload transport from a granular point of view

Bed-load transport has been widely studied from the perspective of the correlation between the water flow and the responding sediment flux. Yet not only grain-fluid but also grain-grain interactions are important, since, by definition, the bed-load is the transport of sediment remaining in contact with the stream bed.

Bed-load transport and granular flows

As highlighted by Frey andChurch (2009, 2011), the research on bed-load transport conducted by river science community should benefit of the progress made in the study of granular flows (literature of physics and chemical engineering). Indeed, the bed-load phenomena are closely connected with the granular nature of riverbed material, and the same processes occur in river flows and in industrial grain flows (fig. 1.1). The grain size sorting phenomenon is an example.

Figure 1.1: Illustration of the analogy between granular physics and alluvial sedimentary structures. On the left, reverse graded rearrangement of binary mixture of small transparent and large black beads due to segregation process (N. Andreini and C. Ancey, EPFL, Lausanne, Switzerland). On the right, armored surface (sectional and plan view) with the coarse materials above the finer matrix (J.R. Malavoi, Onema-Cemagref, Lyon, France).

I.1 8 BEDLOAD : A GRANULAR PHENOMENON

Pioneer contributions in both granular physics (1954) and sediment transport (1956) are the works of Bagnold.

The granular flows [START_REF] Jaeger | Granular solids, liquids, and gases[END_REF]) can be divided into three stages (fig. 1.2) : (1) a 'gaseous' state in which the flow is very rapid and dilute, and the particles interact by collision ; (2) an intermediate state in which the material is dense but still flows like a 'liquid', the particles interacting both by collision and friction ; (3) a quasi-static or 'solid' state in which the deformations are very slow and the particles interact by frictional contacts. Granular physic results have Figure 1.2: Illustration of the 'solid', 'liquid' and 'gas' flow regimes obtained by pouring steel beads on a pile. The lines represent the bead trajectories. (from [START_REF] Forterre | Flows of dense granular media[END_REF]) led to the formulation of theoretical models for these different regimes. Thus, models on the gaseous state have been developed based on an analogy with the real gases (kinetic theory). To describe the quasi-static state, models resulting from the rheology and the soil mechanics have been used (such as Coulomb-like models). In between, the 'liquid' state (also called 'dense' regime) is still poorly understood despite of active researches. All three flow-regimes might be found in bed-load transport (ex. saltation -gas flow regime ; rolling -liquid flow regime...).

Segregation process

One of the main characteristics of the polydisperse flows is the segregation phenomenon. Segregation in flowing mixtures generally results in coarse grains at the surface and smaller at the bottom, a phenomenon called 'reverse grading ' (ex. Brazil-nut effect). A consequence of this process is the difficulty to obtain an homogeneous mixing in the presence of different grains. For this reason, numerous investigations have been performed especially in the industry. [START_REF] Bridgwater | Particle mixing and segregation in failure zones -theory and experiment[END_REF] was a pioneer to carry out fundamental theoretical and experimental investigations in mixing and segregation mechanisms in particle flow.

The phenomenon of segregation is counterintuitive since, in the case of grains of the same nature (same density), the largest grains are also the heaviest and so, their upward displacement corresponds to the elevation of the gravity center of the entire set of grains, that means to the increase of potential energy (phenomenon out of equilibrium). In fact, it is a geometrical effect linked to the grain-size. Indeed, the small particles are more likely to fall between the grains than the coarse ones since they can pass into the large, as into the smaller pores. Two size-segregation phenomena have to be distinguished depending on the grain-size ratio. When the ratio of diameter of the larger to the smaller particles is sufficiently large, spontaneous percolation occurs, that means that the fines infiltrate (fall by gravity) through the pores between the larger grains until the bottom. When this ratio is close to unity, the small particles can percolate only through the moving bed, thanks to kinetic sieving. In this case, it is solely the flow dynamics which allows to have large enough pores to let percolate downward grains.

Chapter 2

Kinematic approach of size-segregation

Several theoretical approaches tried to explain the mechanism of segregation in flow. A first one consists of a generalization of the kinetic theory1 of polydisperse dense gases, but this model has some problems to predict certain observations in dense regime. The one presented here is the kinematic approach based on the mass conservation for binary mixture.

Binary mixture theory

Consider a binary mixture composed of large (l) and small (s) particles of the same intrinsic density ρ :

φ l + φ s = 1, (2.1)
where φ µ represents the mixture fraction per unit mixture volume of the particles (µ = l, s). It can be modeled by a continuous medium composed of two phases with partial densities defined per unit mixture volume ρ l and ρ s . Mixture theory assumes that every point in the material is simultaneously occupied by both phases [START_REF] Morland | Flow of viscous fluids through a porous deformable matrix[END_REF]). The mixture density is then given by :

ρ = ρ s + ρ l , (2.2)
where the partial densities are defined as ρ µ ≡ φ µ ρ (µ = l, s). Similarly, the bulk pressure of the mixture is the sum of the partial pressure p µ (µ = l, s) :

p = p s + p l . (2.3)
If the velocity of each phase (µ = l, s) is called u µ (intrinsic velocity fields), then the mean velocity of the mixture is written as :

u = ρ s u s + ρ l u l ρ .
(2.4) 

Mass conservation

The continuity equation can be written for each species :

∂ ∂t ρ µ + ∇•(ρ µ u µ ) = 0 (µ = l, s).
(2.5)

Note that if the mixture density ρ -corresponding also to the intrinsic density of a particle -is constant, the sum of the mass conservation laws over all constituents (eq. 2.5) combined with the Binary mixture theory, implies that the bulk velocity of the mixture u is incompressible (∇ • u = 0). The approach consists of uncoupling the mean flow and the process of segregation. By taking into account the mean velocity of the mixture (eq. 2.4), the continuity relation (eq. 2.5) becomes :

∂ ∂t ρ µ + ∇•(ρ µ u) = -∇• j µ (µ = l, s),
(2.6)

j l = -j s = ρ s ρ l ρ (u l -u s ), (2.7)
where j l and j s correspond to the mass flux of the large and small particles respectively.

The segregation flux is supposed to be perpendicular to the free-surface of the flow, so j s = -je z , where z is normal to the slope. This implies that u s = u l , v s = v l and w s = w l . The density ρ is equal to a constant. Thus, the continuity relation (eq. 2.6 and eq. 2.7) for the fines (µ = s) expressed as a function of the mixture fraction (dropping the s over φ) becomes :

∂ ∂t (φ) + ∂ ∂x (φu) + ∂ ∂y (φv) + ∂ ∂z (φw) = 1 ρ ∂ ∂z (j), j = ρφ(1 -φ)(w l -w s ).
(2.8)

(2.9)

The term (w l -w s ) is often called segregation velocity q. The models based on this single hyperbolic relation (eq. 2.8) allow to compute the spatial (3D) and temporal evolution of the concentration of small particles (φ) in a prescribed incompressible flow field. The difficulty is to defined the segregation flux j, or in other words the segregation velocity q .

Kinetic sieving model

The principle is that as grains move downslope, there are fluctuations in the void space and the finer grains are more likely to fall, under gravity, into gaps that open up beneath them, because they are more likely to fit into the available space than coarse grains. This leads to an asymmetry in the fluctuating movements induced by the layer exchanges. The small particles therefore percolate towards the bottom of the flow, and force imbalances squeeze the large particles towards the surface.
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Savage & Lun theory (Savage & Lun (1988))

Here, segregation mechanisms are studied by considering a simplified problem involving in steady two-dimensional flow down an inclined chute. In order to predict the size-segregation flux, this theory uses statistical mechanics and information entropy2 concepts. In a first step, a random fluctuating sieve model permits to describe the gravityinduced size-dependent void filling mechanism. Consider a superposition of layers of a binary mixture of spherical particles in a flow on slope characterized by a shear rate γ ≡ du/dz. At any instant, each layer forms a network with a random distribution of void space wherein the beads can fall by gravity (fig. 2.1). By somewhat simplifying [START_REF] Andreotti | Les milieux granulaires entre fluide et solide[END_REF]), the number of small and large beads which fall into the layer below is then defined as :

N µ ↓ = n µ D2 γ D v >D µ (D v + D)N (D v )dD v (µ = l, s), (2.10)
where D v is the void diameter, D µ is the small or large particle diameter, n µ is the number of small or large beads by volume unit, D ≡ n l D l +n s D s n l +n s is the mean particle diameter, and N (D v )dD v is the number of voids by surface unit with a diameter between D v and D v + dD v . The void-size distribution is chosen as :

N (D v ) ≡ n v Dv -D v m exp - D v -D v m Dv -D v m , (2.11)
where n v is the number of voids by surface unit (n v ∝ 1/ D2 ), Dv is the mean void diameter and D v m is the minimum void diameter. The descending mass flux of small or large beads is then :

j µ ↓ ≡ ρ µ w µ ↓ = -m µ N µ ↓ (µ = l, s), (2.12)
where m µ is the mass of a small or large bead, and w µ ↓ is the percolation velocity of the µ particles.

In a second step, by supposing that there is no overall mass flux in the normal direction, an ascending mass flux j SE ↑ has to balance the descending mass fluxes j s ↓ and j l ↓ associated with the gravity falling :

j s ↓ + j l ↓ + j SE ↑ = 0. (2.13)
This mechanism, supposed not size preferential, is called 'squeeze expulsion' (SE). Said in a different way,

w SE ↑ = - ρ l w l ↓ + ρ s w s ↓ ρ .
(2.14)

The net mass fluxes in the z-direction,

j µ = j µ ↓ + j µ ↑ = ρ µ (w µ ↓ + w SE ↑ ) (µ = l, s), (2.15)
are defined, using the equations (eq. 2.12) and (eq. 2.14), as :

j l = ρ s ρ l ρ (w l ↓ -w s ↓ ) = ρ l ρ m s N s ↓ - ρ s ρ m l N l ↓ ,
(2.16a)

j s = ρ s ρ l ρ (w s ↓ -w l ↓ ) = ρ s ρ m l N l ↓ - ρ l ρ m s N s ↓ . (2.16b)
Finally, knowing that ρ µ = m µ n µ (µ = l, s) and using the equations (eq. 2.10) and (eq. 2.16), the segregation flux j (eq. 2.9) can also be written as :

j = |j s | = ρ s ρ l ρ D2 γ D l D s (D v + D)N (D v )dD v .
(2.17)

The net mass flux of coarse particles is positive, so directed upwards, which is coherent. The segregation flux is zero when there is just one size of particle ρ µ = ρφ µ = 0 (µ = l, s) or D s = D l . Thus, the combination of the equations (eq. 2.15) and (eq. 2.17) shows that the segregation velocity q ≡ (w l -w s ) respects :

w l ↓ + w SE ↑ = + q SL φ s , (2.18a) w s ↓ + w SE ↑ = -q SL φ l , (2.18b)
and can be given by :

q SL = D γ D l D s D(D v + D)N (D v )dD v . (2.19)
According to Savage and Lun (SL), the segregation velocity depends on the shear rate, and on the mean particle diameter which is function of the diameter and of the proportion of small and large beads. Note that the gravity does not explicitly appear in the formulation, even if it is responsible for the segregation process.

The underlying assumption done is that the falling time D/g is short enough compared to the characteristic time of shear γ-1 to allow to the particles to migrate towards the bottom.

Gray & Thornton theory

The percolation of small particles in the kinetic sieving mechanism is a fundamentally gravity driven process, so it should not predict segregation in the absence of gravity. It is a weakness of Savage and Lun theory. In order to introduce gravity into the theory, Gray et al. proposed to model the percolation of the large and small particles using individual constituent momentum balances.

So, the momentum conservation laws for each constituents is written as :

∂ ∂t (ρ µ u µ ) + ∇•(ρ µ u µ ⊗ u µ ) = -∇p µ + ρ µ g + β µ (µ = l, s), (2.20)
where ⊗ is the dyadic product, -∇p µ is the partial pressure gradient, ρ µ g is the gravitational force, and β µ is the interaction force exerted on the µ-phase by the other constituent which respect the Newton's third law β s = -β l . Note that assuming that the normal acceleration terms are neglected, the sum of the momentum conservation laws over all constituents (eq. 2.20) under the conditions of the Binary mixture theory, implies that the bulk pressure of the mixture p is lithostatic :

∂ ∂z p = -ρg cos ζ, (2.21)
where ζ is the inclination angle of the chute to the horizontal. Assuming that while the fine grains percolate through the matrix, they support less of the overburden pressure than they should, and that therefore the coarse grains must carry proportionally more of the load, Gray & Thornton (2005) introduced a new pressure scaling :

p µ = f µ p (µ = l, s), (2.22)
where f µ is a factor which determine the proportion of the lithostatic load carried by each of the constituents. In order to respect the definition of the bulk pressure (Binary mixture theory, eq. 2.3), the factors satisfy :

f l + f s = 1. (2.23)
Likewise, the functions f µ have to satisfy the constraint that when one of the constituents is in a pure phase, it must support the entire load :

f µ = 1 when φ µ = 1 (µ = l, s).
(2.24)

A wide class of functions satisfy these constraints (eq. 2.23 and eq. 2.24). The first key assumption of Gray & Thornton (2005) consists of their choice :

f l = φ l + bφ s φ l , (2.25a) f s = φ s -bφ s φ l , (2.25b)
where b is the magnitude of a non-dimensional perturbation away from φ µ . The second key hypothesis of Gray & Thornton (2005) is the form of the interaction force β µ that is involved in the momentum balance (eq. 2.20) :

β µ = p∇f µ -ρ µ c(u µ -u) (µ = l, s), (2.26)
where c is the coefficient of inter-particle drag. On the right-hand side, the first term is a grain-grain surface interaction force while the second term is a linear KINEMATIC APPROACH OF SIZE-SEGREGATION velocity-dependent drag (resistance term). The first term p∇f µ combines with -∇(f µ p) in the momentum conservation (eq. 2.20) to leave -f µ ∇p, ensuring that the percolation process is driven by intrinsic rather than partial pressure gradients, by analogy with the percolation of fluids through porous solids in Darcy's law. Note that the equation (eq. 2.26) satisfies the constraint β l + β s = 0. Finally, the z-component of the momentum equation (eq. 2.20), combined with the two assumptions (eq. 2.22, eq. 2.25) and (eq. 2.26) becomes :

∂ ∂t (ρ l w l ) + ρ l w l (∇ • u l ) + u l • ∇(ρ l w l ) = - ∂ ∂z p (φ l + bφ s φ l ) -φ l ρ(g cos ζ + c(w l -w)), ∂ ∂t (ρ s w s ) + ρ s w s (∇ • u s ) + u s • ∇(ρ s w s ) = - ∂ ∂z p (φ s -bφ s φ l ) -φ s ρ(g cos ζ + c(w s -w)).
Assuming that the normal acceleration terms are negligible, and that the bulk pressure is lithostatic (eq. 2.21), the segregation velocity q ≡ (w l -w s ) respects :

w l -w = + q GT φ s , (2.27a) w s -w = -q GT φ l , (2.27b)
and is equal to :

q GT = b c g cos ζ.
(2.28)

According to Gray and Thornton (GT), the segregation velocity depends on the gravity (and so on the slope), on the perturbation over the overburden pressure and on the inter-particle drag coefficient. But, it doesn't depend directly on the bead diameters or on the proportion of beads, these parameters being already present on the mixture fraction term. Note that the net velocity of the large particles (eq. 2.27a) is positive (upward flux) and proportional to the concentration of smalls, while inversely, the net velocity of the small particles (eq. 2.27b) is negative (downward flux) and proportional to the concentration of larges.

This last model has been extended to the water-saturated flows by Thornton et al. (2006) with the addition of a passive fluid (a) in the interstitial pore space between the large (l) and the small (s) particles.

This implies some modifications in the Binary mixture theory. Consider the volume fraction per unit mixture volume Φ ν (ν = l, s, a) which verify :

Φ l + Φ s + Φ a = 1.
(2.29)

The equation (2.1) is available provided that the granular mixture fraction φ µ is defined as :

φ µ = Φ µ Φ g (µ = l, s), (2.30)
where Φ g ≡ Φ l + Φ s is the volume fractions of grains per unit mixture. The mixture density is given by : (2.31) where the partial densities are defined as ρ ν ≡ Φ ν ρ ν * (ν = l, s, a) and ρ g * is the intrinsic density of the grains (l, s) whereas ρ a * is the intrinsic density of the passive fluid. The pressure of the mixture is given by :

ρ = ρ l + ρ s + ρ a = Φ g ρ g * + Φ a ρ a * ,
p = p l + p s + p a = p g * + p a * .
(2.32)

The momentum equation (eq. 2.20) is available for the three components (l, s, a). The interaction forces respect the Newton's third law as β l + β s + β a = 0. As previously, assuming that the normal acceleration terms are negligible, the bulk momentum balance (obtained by summing (eq. 2.20) over all constituents l, s, a) is reduced to the lithostatic relation (eq. 2.21). The intrinsic fluid pore pressure has been chosen hydrostatic (eq. 2.33), that means that fluid and particles interact through interfacial pressure forces, but drag due to their relative motion is neglected :

∂ ∂z p a * = -ρ a * g cos ζ.
(2.33)

Consequently, the two key hypotheses of Gray and Thornton theory have been adjusted. Thornton et al. (2006) replaces the new pressure scaling (eq. 2.22) by :

p µ = f µ p g * + Φ µ p a * (µ = l, s), (2.34)
that means that the partial pressure in the grains consists of a share of the overburden pressure, plus a pressure due to the surrounding fluid. Likewise, the form of the mixture interaction force (eq. 2.26) that intervenes in the momentum balance of the granular constituents (eq. 2.20) is :

β µ = p a * ∇Φ µ + p g * ∇f µ -ρ µ c(u µ -u) (µ = l, s), (2.35)
where the additional term p a * ∇Φ µ is a reaction to the surface pressure forces induced by the fluid β a = p a * ∇Φ a , and which allows to satisfy the constraint

β l + β s + β a = 0.
The z-component of the momentum equation (eq. 2.20) for the granular constituents, combined with the equations (eq. 2.34) and (eq. 2.35) is written as :

∂ ∂t (ρ µ w µ ) + ρ µ w µ (∇ • u µ ) + u µ • ∇(ρ µ w µ ) = - ∂ ∂z p a * (Φ µ -f µ ) + -Φ µ ρ g * (g cos ζ + c(w µ -w)) + - ∂ ∂z p f µ (µ = l, s).
By neglecting the normal acceleration terms, knowing that the bulk pressure is lithostatic (eq. 2.21) and that the intrinsic fluid pore pressure is hydrostatic (eq. 2.33), and by using the definition of the functions f µ (eq. 2.25), the segregation velocity q ≡ (w l -w s ) respects :

w l -w = + q T GH φ s , (2.36a) w s -w = -q T GH φ l , (2.36b)
and is equal to :

q T GH = ρ b c g cos ζ, (2.37)
where ρ is the relative density difference as :

ρ = ρ g * -ρ a * ρ g * . (2.38)
According to Thornton, Gray and Hogg (TGH), the segregation velocity also depends on the relative density difference between the grains and the passive fluid.

KINEMATIC APPROACH OF SIZE-SEGREGATION

Physically, the addition of the interstitial fluid creates a buoyancy force on all the grains, which reduces the contact forces between them. In case of the fluid density is equal to the grain density, a neutrally buoyant suspension with ρ = 0 is created and there is no segregation due to kinetic sieving.

Diffusive remixing complement

Kinetic sieving models lead, at long times (or steady-state), to the development of concentration shocks that means to sharp gradient of concentration. In order to smooth the resulting profiles, and to take into account the dissipation due to the random motions of the particles as they collide and shear over one another, diffusive mixing has to be considered. This mass-transfer mechanism competes against segregation process. A first model has been proposed by [START_REF] Dolgunin | Segregation modeling of particle rapid gravity flow[END_REF] where a diffusion flux was introduced in an ad hoc manner in the continuity relation (eq. 2.8 and eq. 2.9) by analogy with diffusion in mixtures of dense gases (kinetic theory). Gray & Chugunov (2006) proposed an extension of the Gray and Thornton theory. Gray & Chugunov (2006) modify the formulation of the interaction force β µ (eq. 2.26) that is involved in the momentum balance (eq. 2.20) as :

β µ = p∇f µ -ρ µ c(u µ -u) -ρd∇φ µ (µ = l, s), (2.39)
where the additional term -ρd∇φ µ is a remixing force, with d the strength of the diffusive forces. Consequently, the large and small particle percolation velocities relative to the bulk (eq. 2.27) resulting of the z-component of the momentum balance (eq. 2.20) become :

w l -w = + q GT φ s -D GC ∂ ∂z (ln φ l ),
(2.40a)

w s -w = -q GT φ l -D GC ∂ ∂z (ln φ s ), (2.40b)
where the segregation velocity q and the diffusivity D are defined as :

q GT = b c gcosζ D GC = d c .
(2.41)

Therefore, the velocity (w l -w s ) is not only a segregation velocity q as previously, but corresponds to the combination of a segregation velocity and a diffusive term :

w l -w s = q GT + D GC ∂ ∂z ln φ 1 -φ ,
and so, the segregation flux j (Mass conservation, eq. 2.9) is equal to :

j = ρ q GT φ(1 -φ) + D GC ∂ ∂z φ .
(2.42)

According to Gray and Chugunov (GC), particle-size segregation, which drives an upward flux of large particles and a downward flux of fines, can compete against diffusive remixing, which drives fluxes of large and small particles towards regions of lower concentration. Dependent on their relative importance, these two masstransfer mechanisms can lead to a particle-size distribution either strongly or weakly reverse graded.

I.2

Diffusive remixing complement 19

Peclet number (Pe) is a dimensionless number which quantifies how large the segregation is compared to diffusive remixing. It is expressed as :

Pe = H q D , (2.43)
where the flow-depth H is the characteristic length, D is the diffusivity coefficient and q, the segregation velocity, characterized the advection velocity. For large Peclet number (Hq >> D), there is a rapid transition from small to large particle concentration which tends to a sharp concentration jump in case of pure segregation (Pe → ∞) with small and large particles in pure phases at the bottom and at the top of the flow respectively. Inversely, for small Peclet number (Hq << D), a smooth concentration gradient appears which tend to uniform distributions of the particles with a spatial concentration equal to the mean concentration in case of no segregation (Pe → 0).

II.3

Chapter 3

Material and Methods

Analysis of the elementary mechanisms involved in bed-load sediment transport permits to improve the understanding of the behavior of those flows. Since 1999, Irstea (ex-Cemagref)has been using an experimental inclined flume allowing for microstructural studies, i.e. to work at the particle scale. The channel is narrow (width of one particle) which makes it possible to observe two-dimensional flows of particles and to calculate the trajectories of each particle.

Previous studies

Several PhD studies were based on this experimental setup intended to idealize the bed-load transport in steep streams (case of gravel-bed rivers). Progressively, the degree of freedom of the experimental facility increased, with in a first time a single bead, then a set of beads of the same size, and finally a mixture of two bead sizes. The details of the setup will not be presented in this section, but the current device will be described in the next section (3.2).

Motion of a single particle in a water flow on a fixed bed -PhD thesis of Bigillon (2001) -

The main objective of Françoise Bigillon was to investigate the two-dimensional motion of a single particle in a supercritical water flow down a steep slope. The key hypothesis behind this study was that the behavior of one particle would be similar to the behavior of several particles, i.e. the collective motion of particles would occur as if each one was moving independently. She developed an experimental facility through which one spherical glass bead, submitted to a water stream, flows down a reclining channel with fixed rough bottom. The variable parameters were the mean flow, the slope and the bottom roughness characteristics. Thanks to a rapid visualization technique, she identified three regimes of movement : saltation [START_REF] Ancey | Saltating motion of a bead in a rapid water stream[END_REF]), rolling [START_REF] Ancey | Rolling motion of a bead in a rapid water stream[END_REF]) and rest, and she highlighted the predominance of the saltating motion. The channel bottom roughness and the interactions with the water free surface proved to have an important influence on the particle movement.
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Motion of a set of similar particles in a water flow on a mobile bed -PhD thesis of Böhm (2005) -

It is essential to study not only the interaction between a particle and the fluid but also the interaction between the particles among each other. The aim of Tobias Böhm was to investigate the erodible bed resulting form the exchange between the moving particles and the bed composed of resting particles, in a supercritical water flow on a steep slope. He focused on bed-load equilibrium flows, that is, neither erosion nor deposition of particles on average. He introduced two new variable parameters : the injection rate of beads which controls the solid discharge ; and the bed level thanks to the presence or not of an obstacle positioned at the downstream end of the channel. A striking result of his experiments, obtained thanks to image-processing algorithms, was that bead-load transport appeared as a very intermittent process over short time periods [START_REF] Böhm | Fluctuations of the solid discharge of gravity-driven particle flows in a turbulent stream[END_REF]). Over erodible bed, the transport characteristics appeared dependent on the bed structure, i.e. the arrangement of the resting beads resulting from the bottom roughness and from the obstacle height (as crystal lattices). He showed that regime transitions were important. The rolling motion was relevant, sometimes more substantial than saltation, particularly for steep slope and ordered particle bed [START_REF] Böhm | Twodimensional motion of a set of particles in a free surface flow with image processing[END_REF]).

Binary mixture of particles on a mobile bed -PhD thesis of Hergault (2011) -

The aim of Virginie Hergault was to investigate the effect of the polydispersity of particles and the resulting segregation phenomenon. She added smaller beads to the previous set of beads (Hergault et al. (2010)). This had the effect of reduce the validity of the two-dimensional assumption (possibility to have small beads in staggered rows). The smaller beads tended to block and consequently, the bedload equilibrium for the bi-disperse experiments required higher stream flow than for the ones with only larger beads. She observed a layer of small beads over a bed of resting large beads which coincided with the phenomenon of 'kinetic sieving' described in dry granular flows, and so which was not an experimental artifact linked with the width ratio between the channel and the small beads.

The current study is a follow up of the work of Virginie Hergault on the understanding of the segregation process. Experiments were executed jointly with Kristina Rorsman (2012).

Experimental facilities and measurements

Flume

Experiments were carried out in a tilted, narrow, glass-sided channel, 2 m in length and 20 cm in height. The figures (fig. 

Bead rate

In order to investigate the segregation phenomenon, black spherical glass beads of diameter 6 mm and transparent spherical glass beads of diameter 4 mm, both with the same density 2500kg/m 3 , were used.

Large beads supply

Large black beads were introduced one by one at the upstream entrance of the channel thanks to a notched wheel in rotation driven by a DC motor (fig. 3.4). The rotation speed could be regulated by a potentiometer as well by using pulleys of different diameters. A vibrating system was installed on the reservoir but it was not sufficient to avoid blockages. This device has been in operation for several years, and significant wear meant that blockage was more and more frequent. In order to prevent these blockages, I took care of the entire reconditioning of this distributor with the help of Frederic Ousset and Christian Eymond-Gris. Finally, a new wheel had been machined (see sketch Appendix A3) with smaller notches and a piece had been installed over it (see different proposals Appendix A2). The injection rate could varied in between 5 and 21 beads/s.

Small beads supply

Small transparent beads could be injected thanks to a weight distributor (Bulk Solids Pump, K-TRON SODER society) used during the PhD of V. Hergault but its maximal solid rate with an acceptable accuracy was 6 beads/s. Yet, to study segregation process, the dilute case was interesting, so the sediment rate of small beads had to be low. During these experiments, the small beads were input manually at 0.5 beads/s upstream of the field of view.

Water supply

Liquid flow rate was an adjustment parameter depending on the solid discharge which allowed to respect the bed-load equilibrium conditions 1 . To maintain balance, an increase of the bead rate between two experiments implied an increase of the liquid flow rate, that led to a rise of the water depth. As the flume was narrow, the hydraulic radius tended to the half width and not to the water depth. Consequently, the mean velocity of the fluid did not increase significantly with the liquid flow rate, the energy being dissipated in the walls [START_REF] Frey | Experimental study of bed-load on steep slopes[END_REF]). Water flowed in closed circuit. A pump placed at the channel outlet supplied a reservoir at an elevation of 3 m. Thanks to an overflow pipe, constant hydraulic head was maintained. The water ran successively trough a flow meter and a gate valve which controlled the liquid flow rate, and entered in the channel. The water discharge could be adjusted in the range 0.025 to 0.14 l/s.

The beads were collected at the channel outlet in a sieve. To control the constancy of the solid discharge between the input and the output, the large-bead rate could be measured online by counting. The reaped beads were then drained and sorted. Before putting back the beads in their respective reservoirs, the solid discharge could be measured by weighing offline.

Image and data processing

The experiments were filmed thanks to an high speed camera (Baumer) positioned in the downstream part of the channel, 0.8 m before the outlet. The dimensions of the observation window were 1280 px × 320 px, with a resolution of 0.21 mm/px 2 , which was sufficient to observe together the free surface and the flume base. The duration of the experiment recording was around 1 h (65 min when there were no problem of dispenser blockages) with an acquisition frequency of 130 f rames/s. High frequency acquisitions were useful for following the beads above the bed level in saltation, but implied a huge quantity of data to process. In practice, 2 f rames/s were sufficient for the study of the segregation phenomenon.

The images acquired permitted to measure the individual velocity of each grain (particle tracking). This Lagrangian method required two analysis steps : the detection of the particles (segmentation) and the determination of their trajectories.

The conversion mm/px, dependent on the distance camera-channel, was established thanks to a target. MATERIAL AND METHODS

To do that, algorithms embedded in a software -WIMA -developed by the Hubert Curien laboratory (St Etienne, France) was used.

Detection

Algorithms of detection permitted to locate the bead mass centers. Detection stage was realized in two times : one for large beads and one for small beads. Large black beads were detected on the images thanks to a correlation method with a ring-shape model of bead [START_REF] Böhm | Twodimensional motion of a set of particles in a free surface flow with image processing[END_REF]). Small transparent beads were more difficult to detect since their shape observed could be irregular due to the fact that they could slightly overlap. Starting from the fact that transparent beads presented a pixel gradient (clearer in the center), an operator (hconvex) was applied to identify the relevant local maxima in the region containing transparent beads (Hergault et al. (2010)). 'Particle Tracking Velocity' algorithm tried to track the beads along the sequence in order to reconstruct their trajectories. Positions obtained with the detection algorithm were compared from one image to the next. As the beads were similar, distinguishing one bead from an other thanks to its shape was impossible and track each bead was difficult. The algorithm defined a zone corresponding to the maximal displacement expected between two consecutive images based on a maximal velocity parameter. Then, the association with the minimal distance was chosen. The trajectories obtained were very sensitive to this parameter. Future II.3
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works will try to remove this source of uncertainty. The normal profiles of velocity were then deduced from these trajectories.

Future of the experiment : towards three beadsizes

The next objective of the experiments carried by this setup will be to investigate the effects of the addition of very fines beads into the previous mixing. Unlike the small beads which infiltrate the larges only in the dynamic region, the fines percolate spontaneously.

Preliminary experiments have been performed with the addition of beads of less than 1 mm. The development of a new dispenser of beads has been necessary. This dispenser consisted in a reservoir wherein a pipe in rotation drove the beads outside (fig. 3.7). The reservoir reposed on a reclining support. The solid rate depended on the reservoir slope. In order to optimize the utilization of the beads Figure 3.7: Fine beads dispenser after optimization (resizing of the reservoir).

inside the reservoir, its dimensions had been reconsidered (see Appendix B).

II.4

Chapter 4

Results and discussion

Two runs with a binary mixture (size-ratio 1.5) were performed in dilute case. The difference between these two experiments was the solid flux of the large beads (explanatory variable).

Flow and bed-load characteristics

The parameters of the experiments are presented in the table (tab. 4.1). In a first time, an erodible bed of large beads was established. To respect the bed-load equilibrium conditions, the liquid flow rate was adjusted in function of the large bead rate. In a second time, the small beads were introduced. As the case was dilute, this following addition did not modify the balance conditions. 

Run

Fr = U f √ gh (4.2)
where U f = q f /h is the fluid velocity, R H = eh/(2h + e) is hydraulic radius, h is the water depth (difference between the free surface and the bed height), e is the thickness of the flume, ν is the kinematic viscosity and g is the acceleration of gravity. As the flume is narrow with a water depth higher than its width, the walls have important dissipative effects which must be take into account. The effective liquid-flow-rate is in fact smaller than the real one. Thus, the characteristic Shields number is calculated with the hydraulic radius of the bottom (procedure of Vanoni and Brooks described in [START_REF] Frey | Experimental study of bed-load on steep slopes[END_REF]).

Sh = R Hbottom sin ζ (s -1)D l (4.3)
where sin ζ is the bed slope, s = ρ p /ρ w is the ratio between the density of the particles and the density of the water and D l the diameter of a large particle. Finally, in both experiments, the flow is turbulent (Re > 4000), supercritical (Fr > 1) and above the motion threshold. The case is considered dilute (η << 1).

Time evolution

Image series

Figures fig. 4.1 and fig. 4.2 show the establishment of a segregation layer with selected raw images throughout the run 'micro' and the run 'mega'. The small beads percolate downstream through the large beads. They stop falling before reaching the bottom. They have tendency to join and form clusters. Progressively, the clusters merge in a quasi-continuous layer of segregation.

Note that, the experiment 'mega' has been performed two times with different positions of the small-bead injection point. The assembly of these two experiments is equivalent to one experiment with a larger observation window. The first (respectively, second) experiment allows to observe the upstream (respectively, downstream) part of the flow. These two experiments were necessary to observe the segregation layer because the small beads infiltrate the large ones further than in the experiment 'micro'. fig. 4.3 and fig. 4.4 show the temporal evolution of the bead number averaged over the distance in function of the elevation. The penetration depth is clearly identifiable and remains constant after a certain duration. The small bead layer seems to thicken and the small-bead number to rise until a certain time ('micro' : 40 min ; 'mega' (downstream-flow observation) : 20 min). After this time, the experiment regime can be considered as established. The penetration depth appears deeper for the experiment 'mega' than for the experiment 'micro'. II.4
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Note that, on the first run 'mega' (which represents the upstream flow), the observation window only allows to observe the beginning of the segregation layer where the small-bead number is low and fluctuating. Consequently, the temporal evolution plot of the normal profile of small-bead number (fig. 4.4-top) is not relevant. Due to a blockage of the wheel, the second run 'mega' (which represents the downstream flow) is shortened.

Variation of the longitudinal profile over the time

Figures fig. 4.5 and fig. 4.6 show the temporal evolution of the bead number averaged over the elevation as the mean elevation of the layer in function of the distance. As expected, the bead number is higher at the end of the recording, and particularly on the downstream part of the images. Longitudinal displacements of the small bead layer are highlighted. Two longitudinal velocities seem to emerge : around 10 -4 m/s at the movement start and around 10 -5 m/s after. There is no correlation between the mean elevation of the layer and these velocities as we have expected since the beads at the surface move faster than the beads "inside" the bed. The 'stopping distance', i.e. the distance between introduction and formation of the continuous layer of small beads, appears to move back which corresponds to an elongation of the small beads layer. A question can be asked : is this distance characteristic or dependent on the duration of the experiment?

Quasi-steady period

The quasi-steady period has been defined the time the number of beads over the length was constant.

Figures fig. 4.7 and fig. 4.8 highlight a moving layer (blurring zone) and a static bed (beads well drawn). The dynamic layer corresponds to the bed-load transport layer. The small beads form a layer located at the top of the static bed and associated with the segregation process. Reverse grading, with the small particles beneath the large ones, is observed in the transport layer. The small beads are concentrated downstream, and particularly from the 'stopping distance'. The penetration depth is higher for the run 'mega' than for the run 'micro' (bed over 3 large-bead levels against 4 large-bead levels). In the first experiment of the run 'mega' (upstream flow, i.e. left part of the fig. 4.8), the moving layer seems to reach the bottom and to form layer-like collective motion. This collective motion appeared to be disrupted by the building of the small bead layer. Once small beads have percolated, the large beads below do not move anymore (they are "frozen").

Normal profiles of the number of beads (run 'micro' : fig. 4.9 ; second run 'mega' (downstream flow) : fig. 4.10) are calculated by averaging the number of beads by pixel over the length. The total number of beads is not equal to 1 because there are empty pores between the beads. Seven large-bead levels can be identified more or less clearly through the profile "ripples" due to the layered structures of the larger beads. Note that the total number of beads slightly increases at the elevation of the small-bead layer since a same space can be occupied by a greater number of small beads than of large beads. Bead number sharply decreases above the bed level since the most of the beads present are the ones in saltation ('gaseous' state). Measurement of velocity, obtained thanks to the tracking of the beads, is meaningful only if the number of beads is sufficient. When the bead number In both experiments, the normal-velocity norm of small beads was higher than the large ones. The normal velocities are overall negative, but note that the profile presents a singularity (positive value) just under the bed level, over the segregation layer. This effect seems coherent with the fall of the smalls (negative normal-velocity) and the climb of the larges (positive normalvelocity) on the segregation layer.

Conclusion

Both experiments 'micro' and 'mega' are agree on the phenomenology and present similar results : a layer of small beads at the bottom of the dynamic layer (bed-load layer) located downstream of the injection point witch characterizes the kinetic sieving process. The difference between them was the bead rate of the large particles which was higher in the run 'mega'. This difference has an impact on the 'penetration depth' and on the 'stopping distance'. In case of the experiment 'mega', small-beads infiltration was deeper, presumably because of higher shear stress, and the segregation layer starts more upstream. The meaning of the 'stopping distance' is less conclusive. Normal profiles of the small-bead number are not comparable between the experiments 'micro' and 'mega' since they depend on the observation window. Here, unlike to the experiment 'micro', all the image width is occupied by small beads and so the average the distance is higher.
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Modeling

III.5

Chapter 5

Application of the theory of Gray et al.

The theory of Gray and his coworkers, presented in section 2.3 of the biographical part (I), has been the subject of several investigations involving segregation processes in granular flows. Among them, mention may be made for example, of the works of May et al. (2010a) or of [START_REF] Wiederseiner | Experimental investigation into segregating granular flows down chutes[END_REF] presented hereafter. The objective of this chapter is to show the parallel connection between the experiments and the model, with the associated simplifications.

Continuum model of Gray et al.

The mass conservation law in a binary granular mixture has been formulated by Gray et al. such as :

∂ ∂t φ + ∂ ∂x (φu) + ∂ ∂y (φv) + ∂ ∂z (φw) = ∂ ∂z qφ(1 -φ) + D ∂ ∂z φ (5.1)
where φ was the small-particle concentration depending on space (x,y,z) and time (t) and (u,v,w) were the bulk velocities of the mixture (eq. 2.4, part I section 2.1).

The main parameters of this model were the segregation rate q, characterizing the mechanical transport known as kinetic sieving due to the gravitational acceleration g, and the diffusion coefficient D, characterizing the random motion of particle.

Shear-driven size segregation of granular materials : modeling and experiment (May et al. (2010b), May et al. (2010a))

Briefly, these works tried to evaluate the ability of the diffusionless model of Gray & Thornton (2005) to describe the observed segregation dynamics in an experiment conducted in an annular Couette cell (fig. 5.1). Experimental conditions led to consider the flow uniform in the x-direction (angular direction). The components of the bulk velocity v, w were supposed negligible, i.e. domination of the segregation effects and no motion across the flow. Horizontal velocity profile u(z) have been measured and fitted with an exponential (u = u 0 exp(-z/λ) + c). Interest was put on the unsteady solution of the theoretical model in order to make a comparison based on the temporal evolution of the height of the segregating system. Concentration of small particles was taken as a function of depth and time (φ(z, t)). The model (eq. 5.1) was reduced to :

∂ ∂t φ + ∂ ∂z (q(z)φ(1 -φ)) = 0 (5.2)
Initial condition was defined as the beginning experimental configuration of a layer of small particles above a layer of large particles (z 0 = 1/2) :

φ(z, t = 0) = 0 0 < z < z 0 1 z 0 < z < 1 (5.3)
Boundary conditions ensured that there was no flux of particles through the upper and the lower boundaries (closed system) :

φ(z = 0, t) = 1 φ(z = 1, t) = 0 (5.4)
The key assumption of this study was that the segregation velocity q should be proportional to the shear rate γ ≡ |∂u/∂z|. Shear rate was deduced from the horizontal velocity profile such as :

γ(z) = u 0 λ exp - z λ (5.5)
Consequently, the segregation rate q depended on the vertical variable z (nonconstant coefficient) such as : 

q(z) = q 0 exp - z λ (5.6)

Modeling of the experiment

The aim was to study size segregation process and remixing in dense granular flows down chutes through experimental investigation coupled with modeling. The non-linear advection diffusion equation developed by Gray & Chugunov (2006) to describe particle-size segregation and remixing in shallow gravity driven free-surface flows of binary mixtures was tested. The experiment consisted in dry binary granular mixtures made up of spherical glass beads (size ratio of 2) avalanching in a narrow flume (fig. 5.2). The flow was two-dimensional (x,z). Thanks to processing of high frequency images, the small-bead concentration and 2011)). On the top of the channel, the mixture was normally graded ; the large grains gradually rose to the surface while the small ones percolated down to the base ; at the end of the channel, the mixture was inversely graded. The duration of the experiment (avalanche) was around 1 min. the velocity profiles were estimated. The streamwise velocity u was supposed only dependent of z, and fitted by an exponential profile (dimensionless equation) :

u(z) ū = λ exp(λ) -1 exp(λz/h) (5.7)
Under steady flow condition, assuming that the normal bulk velocity w was negligible in front of the streamwise bulk velocity, the model (eq. 5.1) was reduced to :

u(z) ∂ ∂x φ = ∂ ∂z qφ(1 -φ) + D ∂ ∂z φ (5.8)
Concentration of small particles was taken as a function of distance and depth (φ(x, z)). It was solved with normally-graded inflow condition (eq. 5.9) and noflux boundary conditions (eq. 5.10).

φ(x = 0, z) = 0 0 < z < z 0 1 z 0 < z < h
(5.9) APPLICATION OF THE THEORY OF GRAY ET AL.

qφ(1 -φ) + D dφ dz = 0 z = 0 z = h (5.10)
The segregation rate q and the diffusion coefficient D were taken constant (spatially constant shear rate). The key assumption of this study was that q and D were deduced from the Peclet number Pe = qh/D (part I, section 2.4). Peclet ratio was obtained by fitting the experimental concentration profile at the end of the flume with the analytical formulation of the solution of the ODE (eq. 5.11) in case of steady uniform flow.

- d dz (qφ(1 -φ)) = d dz D dφ dz (5.11) φ outlet (z) ←→    φ unif orm (z) = 1 1+A exp( q D z) A = exp(-φPe)-exp(-Pe)
1-exp(-φPe))

(5.12) The numerical program used during my master thesis was based on the one developed in this article. Before modeling our experiment, the program has been validated by reproducing the results of [START_REF] Wiederseiner | Experimental investigation into segregating granular flows down chutes[END_REF] thanks to their data (fig. 5.4). This program solved the nonlinear advection diffusion equation using a Galerkin method (described by Skeel and Berzins (1990)) implemented in MATLAB through the build-in function pdepe1 (fig 5 .3). Note that in the case of Wiederseiner, the equation to solve was taken dimensionless. The input necessary to the functioning of the model were the streamwise velocity profile c, the parameters of segregation Sr and remixing Dr and the height z 0 of the limit between large and small particles in x = 0. 

Test of the numerical program

Modeling of our experiment

The aim of this study was to reproduce the results of our experiments 'micro' and 'mega' (part II) thanks to the continuum model of Gray et al.. Note that the model could not predict in advance the expected results since it needed input parameters stemming from the experiments such as the streamwise velocity profile. The interest of this work was to verify that the segregation process was well described by the model.

Model

Formulation

The flume was considered two-dimensional, i.e. the concentration of small beads was independent on y-direction. The transport of large particle (w l (1φ)) was supposed equal and opposite to the transport of small particle (w s φ), that implied that the bulk velocity component w be null. That was coherent with the fact that w was negligible in front of u. The streamwise velocity u was considered dependent only on the x-direction. The model of Gray & Chugunov (2006) outlined in the previous chapter (eq. 5.1) became :

∂ ∂t φ + u(z) ∂ ∂x (φ) = ∂ ∂z q(z)φ(1 -φ) + D(z) ∂ ∂z φ (6.1)
Note that the addition of a passive fluid did not change the formulation of the equation as shown part I, section 2.3.2 (from Thornton et al. (2006)). Assuming that there was no erosion or deposition at the surface and at the base of the flow (bed-load equilibrium), no-flux boundary conditions were chosen such as :

qφ(1 -φ) + D dφ dz = 0 z = 0 z = 1 (6.2)
In our experiment, small bead flux was added from the top to a dynamic bed of large bead. Inflow condition was supposed to be normally-graded (eq. 6.3) with the concentration discontinuity elevation z 0 evaluated thanks to the ratio of the large bead flow over the total bead flow (eq. 6.4) .

φ(x = 0, z) = 0 0 < z < z 0 1 z 0 < z < 1 (6.3) III.6 50 MODELING OF OUR EXPERIMENT z 0 = D 3 l ṅl D 3 s ṅs + D 3 l ṅl (6.4)
The segregation equation (eq. 6.1) could be solved with the program presented in the previous chapter (section 5.3.2) with steady condition in space (x,z) or with unsteady condition in space and time (x,t).

Model input : experimental data

Adjustment parameter

Originally, the problem was considered as a pure segregation process since there was a rapid transition from small to large particles (large Pe, see part I, section 2.4). Furthermore, as the material was granular (discrete elements), the continuous description of this transition is objectionable, and the observations point in this direction (intermittent clusters formation). So, the diffusion rate D was taken equal to 0 as in the model of Gray & Thornton (2005). Due to the nature of the solvable equations with the algorithm pdepe, the program could not resolve the nonlinear segregation equation which lost its parabolic character when D tended to 0 (numerical instabilities, and shock wave). Consequently, numerical diffusion was added. This parameter had to depend on z-direction as the segregation rate. It had to be chosen to take D as a function of the segregation through the Peclet number Pe.

Velocity profiles

Normal profiles of the streamwise velocity u (similar for small and large beads) were measured experimentally and fitted with an exponential profile (u(z) = a exp(b z)). The segregation rate q was dependent on the elevation (z-direction). How to define the segregation velocity q? By definition, in pure segregation problem, it was equal to the difference between the normal velocities of large and small beads (w l -w s ). Note that the velocity of small beads (-w s ) increased sharply compared to the segregation velocity (w l -w s ).

Comparison : experiments versus modeling

In order to compare the experiments to the model, the concentration of small particles, i.e. the volume fraction per unit mixture volume, was defined such as :

φ = N s V s N s V s + N l V l (6.5)
where N s and N l were the number of small or large beads and V s and V l the unit volume of a small or large bead. To be more significant and to be able to compare the experiments 'micro' and 'mega', the spatial data in the following section were represented in dimensionless form normalized by the large bead size.

Solutions in steady condition

The Peclet number Pe could not be deduced from an analytical solution like Wiederseiner et al. (2011) (eq. 5.11) since the parameters of segregation q and III.6 of remixing D were non-constant coefficients. Moreover, the diffusion term had not really a physical meaning in our experiments since it was mainly a numerical parameter. As there was no information concerning the Peclet number Pe, three orders of magnitude (1, 10, 100) were tested.

The simulation results are presented on figures fig. 6.2, fig. 6.4 with normal profiles of small bead concentration and on figures fig. 6.3, fig. 6.5 through image of the concentration in space (x,z). A striking observation on both experiments is the formation of a layer of small beads downstream in the model reproducing experimental observations. The single difference with the model used by [START_REF] Wiederseiner | Experimental investigation into segregating granular flows down chutes[END_REF] was the non-constancy of the coefficients q and D. The choice of exponential normal profiles was relevant since it allowed to distinguish the dynamic layer where kinetic sieving occurred from the static bed. In this sense, the process of segregation is well described by the model. Note that May et al. (2010a) had used too exponential normal profile to describe the shear rate and so the segregation velocity. To go further, it is necessary to judge the ability of the model to evaluate the 'penetration depth' and the 'stopping distance' defined in the part II, chapter 4.

The impact of the Peclet number Pe was predictable. Its increase led to a greater effect of the remixing mechanism compared to the segregation mechanism, and so to increase the gradient of small beads concentration. Otherwise note that, in the experiments (fig. 6.3 ; fig. 6.5), the longitudinal concentration gradient is higher than the normal one. This effect was more or less reproduced by the model. The 'penetration depth' and the 'stopping distance' fluctuate. In case of a low Peclet number Pe, the layer is deeper and the small bead concentration is more dilute. Simulations with Peclet number around 10 seemed to best reproduce experiments. Note that it varied between 10 and 20 in the experiments of [START_REF] Wiederseiner | Experimental investigation into segregating granular flows down chutes[END_REF]. 
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Sensitivity analysis of the model

The fits of the experimental velocity profiles were very dependent on the set of points chosen. Figures fig. 6.6a and fig. 6.6b present the experimental values of the velocities (-w s ) and (w l -w s ), with several exponential fits with different coefficients. The aim of this section is to evaluate the sensitivity of the model to these variations. Table 6.1 and table 6.2 (in appendix) show the different distributions of small bead concentration depending on the exponential coefficients of the fits. They present also the normal profile of the segregation velocity and the streamwise velocity. Indeed, in the process of segregation, the normal velocity of segregation W and the streamwise velocity U are in competition. The ratio of both allows to estimate the dominance of the one over the other.

W U = a W exp(b W z * ) a U exp(b U z * ) = a W a U exp((b W -b U )z * ) (6.6)
The parameter a U of the streamwise velocity was systematically greater than the parameter a W of the normal velocity of segregation, so their ratio tended to 0. The plots seem to highlight two distinct cases depending on the parameter b. When b W > b U , i.e. the resulting exponential rises, the streamwise velocity seems to be dominant, and inversely, when b W < b U , i.e. the resulting exponential decreases, the normal velocity of segregation seems to be dominant. Indeed, in the second case, the layer reaches the bottom very rapidly, whereas in the first case the layer reaches the bottom much further downstream or even does not reach it. Note that b W -b U has a strong affect on the 'penetration depth' but not really on the 'stopping distance'.
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were the normal profile of the streamwise velocity (u(z * )) and the segregation rate (q(z * )) corresponding to the normal profile of the normal velocities (w l (z * ) -w s (z * )) in case of pure segregation. These input data were deduced from the experiments. Velocities were fitted with an exponential (a exp(bz * )). The parameters of the exponential fits were fluctuant and dependent on the set of measured points chosen to be representative (the more bead number at a given elevation, the lower the uncertainties). Strong variability of the model was highlighted in function of these velocity profiles. Indeed, the layer of small beads could reach the bottom soon injection, or could establish downstream after a 'stopping distance' until a certain 'penetration depth'. The competition between the streamwise velocity and the normal one seemed to be responsible for these two situations.

To conclude, even if a reasonable agreement was found between experimental and modeled concentration profiles over certain conditions in this study, the difficulty to model discrete phenomenon with a continuous model seemed evident. Our experiments showed that the establishment of the segregation layer was an intermittent process which began by the formation of clusters of small beads which then merged.

The ad-hoc addition of diffusive remixing was unreliable and alleviated the validity of (w l (z * ) -w s (z * )) as segregation rate. To overcome the numerical problems, using more robust code to model the non-linear equation of segregation could be interesting.

The model sensitivity to the input parameters was problematic especially as there were significant uncertainties over the measured profiles of velocity. As a perspective, an image-analysis PhD thesis in collaboration with the Hubert Curien laboratory (University of St Etienne, France) should permit progress in better tracking the beads.

To go further, an other PhD thesis in collaboration with the University of British Columbia (Vancouver, Canada) will investigate together 'kinetic sieving' and 'spontaneous percolation' (bead ratio D s /D l sufficiently low to let small beads infiltrate spontaneously through the large ones) with the addition of fine beads (< 1 mm) into the experiment. All sources of information used and all author citations have been included following standard usage.

I am aware of the fact that failing to cite a source or failing to cite it fully and properly constitutes plagiarism, and that plagiarism is considered a serious offence within the university that can be sanctioned severely by law. 
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 1 Figure 1: Consequences of sediment transport out of equilibrium. (a) Destabilization of the Pont des Chaînes after a flood event (2003, Die, France) due to the bed incision. (b) Sedimentary deposit following the passage of a concentrated bed-load flow (1993, Brig, Switzerland).
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 2 Figure 2: Different modes of sediment transport (from Böhm (2005)).
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 1 Figure 1.3: Segregation caused by shearing γ : binary granular mixture flowing down an inclined chute.

Figure 1 . 4 :

 14 Figure 1.4: Examples of configuration of dense granular flows which can lead to segregation phenomena : inclined plane ; heap flow ; rotating drum (from MiDi (2004)).

Figure 2 . 1 :

 21 Figure 2.1: Mechanism of "kinetic sieving". A grain in a shear flow can be captured by a void space of size D v in the underlying layer if the distance between the centers of the neighboring grains is greater than D v + D.

  Figure 3.1: Photography of the experimental setup. (from Hergault (2011))

Figure 3 . 3 :

 33 Figure 3.3: Details of the rough bottom of the channel which generates disorder in the bed to reproduce 'natural' conditions of erosion. (image dimensions : 76 mm × 19 mm)

Figure 3

 3 Figure 3.4: Large black bead dispenser.

Figure 3 . 5 :

 35 Figure 3.5: Example of beads detected (on the left detection of large black beads, on the right detection of small transparent beads). Mass centers represented by a white cross on the beads.
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  Figures fig. 4.3 and fig. 4.4 show the temporal evolution of the bead number averaged over the distance in function of the elevation. The penetration depth is clearly identifiable and remains constant after a certain duration. The small bead layer seems to thicken and the small-bead number to rise until a certain time ('micro' : 40 min ; 'mega' (downstream-flow observation) : 20 min). After this time, the experiment regime can be considered as established. The penetration depth appears deeper for the experiment 'mega' than for the experiment 'micro'.

Figure 4 . 1 :Figure 4 . 2 :

 4142 Figure 4.1: Evolution of the stream bed through a time series of images of the run 1 'micro' (raw image taken all the 10 min). Flow direction from left to right.
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 444 Figure 4.3: Temporal evolution of the normal profile (average over the distance) of the small-bead number normalized by pixel during the experiment 'micro'. Notethat the bead number by image and by mean pixel can not be equal to 1, since at a given elevation, for each image, there are not only small beads but also large beads.
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 44 Figure 4.9: Normal profiles of the number of beads encountered by pixel by image (4.9a), of the streamwise velocity u(z * ) (4.9b) and of the normal velocity w(z * ) (4.9c) during the run 'micro'. The bed level (BL) is signalized at an elevation of 41.2 mm by a dash line (parameter intrinsic to the image). z * is defined as z-z BL D l .

Figure 5

 5 Figure 5.1: Sketch of the sheared dense binary granular mixture in the annular Couette cell. Observations were done in the same window at different time t. (from May et al. (2010a))

Figure 5

 5 Figure 5.2: Sketch of the binary granular mixture flowing down a chute (from Wiederseiner et al. (2011)). On the top of the channel, the mixture was normally graded ; the large grains gradually rose to the surface while the small ones percolated down to the base ; at the end of the channel, the mixture was inversely graded. The duration of the experiment (avalanche) was around 1 min.

Figure 5 . 3 :

 53 Figure 5.3: Block diagram of the program implemented in MATLAB to solve the PDE of segregation-remixing. Conditions of the article of Wiederseiner et al. (2011).

Figure 5 . 4 :

 54 Figure 5.4: Results of the modeling of the small-bead concentration using the Gray and Chugunov theory (2006). (i) Experimental observation (ii) Theoretical prediction (iii) Normal profiles of the small-bead concentration (theory -solid lines ; experiment -dots). On the left (a), results presented in the article ; on the right (b), results stemming from my own model thanks to their data. z r = 24/(24 + 9.5) ; H = 24 mm ; L = 0.7 m ; q = 1.99 mm/s D = 2.52 mm 2 /s, i.e. P e = 19 ; λ = 3.24
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 6 Figure6.1: Normal profiles of the segregation velocity (q = w l -w s ) resulting from the composition of the normal velocities w l and w s . z * corresponds to the dimensionless elevation (z -z bed level )/D l which allows to compared the two experiments.
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 6365 Figure6.2: Normal profiles of the small beads concentration at different xlocations for the experiment 'micro'. U = 0.0057exp(2.72z * ) q = 0.0013exp(4.02z * ) z 0 = 0.8285D
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 66 Figure 6.6: Normal profile of the segregation velocity q. Variability of the coefficients of the exponential fits.
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 B5 Figure B5: Calibration curve of the solid rate for fine beads (900 µm).

Figure B6 :

 B6 Figure B6: Conversion table of the solid rate (experimental tool to do the parallel between the different solid rates of the bead dispensers).
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  Importance of grain-grain interactions in bedload → granular phenomenon Frey & Church 2009, 2011  Polydisperse flow → grain size sorting or segregation  Segregation process : kinetic sieving + squeeze expulsion Savage & Lun 1988 o Experimental bedload sorting o Results: formation of a layer of fines at the bottom of the moving layer Domaine Universitaire, BP 76, 38402 Saint Martin d'Hères Cedex, France, coraline.bel@irstea.fr, philippe.frey@irstea.fr  Bed level (obstacle at outlet) : 40 mm  Liquid flow rate : 4.5 l/s/m  Small-bead flux : 0.5 beads/s  Large-bead flux : 5.9 beads/s Sum over steady period (last 25 min) : number of beads by image 𝜑 𝜇 : volume fraction per unit mixture volume 𝑁 𝜇 : coefficient associated with the overburden pressure factor 𝑐 : coefficient associated with the interaction drag above--cited report results from my personal work and that I have neither forged, falsified nor copied all or part of another persons work to present it as mine.
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Table 4

 4 

	'Micro' 'Mega'

.2: Dimensionless numbers characteristic of the two runs performed. (* estimation thanks to the hydraulic radius of the bottom)

1.2. Segregation process

The kinetic theory tries to describe granular gas flows by hydrodynamic equations based on the Boltzmann equation using the notion of 'granular temperature'.

The probability distribution which best represents the current state of knowledge is the one with largest information-theoretical entropy, that means the one which describes the most possible uncertainty associated with a random variable.

2.3. Kinetic sieving model

3.2. Experimental facilities and measurements

The function pdepe allows to solve initial-boundary value problems for parabolic-elliptic PDEs in 2D (t and x ; or x and z).
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Summary, conclusion and perspectives

Sediment transport is relevant in river natural hazards management, since it can have harmful consequences for the stability and the morphology of river channel causing loss of property and public infrastructure during extreme flows. Bed-load transport is the motion of sediments remaining in contact with the stream bed, by rolling, sliding or saltating. It can be considered as a granular phenomenon (Frey & Church (2011)) since it implies not only grain-fluid but also grain-grain interactions. The aim of this study was to investigate the size-segregation process which occurred in flows with different grain sizes leading to sorting. The mechanism implicated was 'kinetic sieving' (Savage & Lun (1988)) due to the shearing of a polydisperse mixture. It consists of smaller particles percolating downward through the pores opened dynamically by moving coarser particles.

A continuum model based on the mass conservation and on the binary mixture theory was used to capture the essence of this phenomenon. The key issue of this model reposed on the introduction of the segregation rate (homogeneous to a velocity) which depended on the shear rate, but also on the gravity. In this thesis, the ability of the model formulated by Gray & Chugunov (2006) to reproduce segregation in bed-load conditions was tested.

The experiment conducted by [START_REF] Hergault | Etude microstructurelle du transport par charriage de mélanges bidisperses à forte pente[END_REF], to perform a microstructural investigation of bed-load transport of binary mixture on steep slope (analogy of mountain streams), was used as a reference. The experimental setup was constituted of a narrow flume (2D) in steep slope (10%) wherein beads flowed down in bed-load equilibrium conditions. Small beads (4 mm) were added to a dynamic bed of large ones (6 mm). During my internship, two runs were performed in dilute conditions with different bead-rate ratio qs / ql (run 'micro' : 0.025 ; run 'mega' : 0.007) in collaboration with Kristina [START_REF] Rorsman | Etude du tri granulométrique bidisperse en charriage à forte pente[END_REF]. The experiments were recorded with a high speed camera. Thanks to image processing, the beads were detected and tracked to determine the normal profile of velocities (normal and streamwise) and the distribution of the concentration of small beads over space and time. Weaknesses in the tracking algorithm led to uncertainties over the velocity profiles.

These experiments permitted to observe the segregation phenomenon through the formation of a small-bead layer underneath the dynamic layer of bed-load and above the static bed ('reverse grading'). The sharp concentration gradient suggested that it was a pure segregation problem, i.e. that there was no diffusion due to remixing.

The hyperbolic relation of the segregation model was simplified with the experimental hypothesizes, and reduced to a steady two-dimensional problem (x,z). The equation was solved thanks to a program implemented in MATLAB based on the function pdepe. When the diffusion parameter tended to 0, numerical shocks occurred and no solution was founded. Consequently, diffusion has been added from an ad-hoc manner. To adjust the diffusion parameter, the Peclet dimensionless number Pe characterizing the effects of segregation over remixing, has been fixed. The input parameters required by the model Appendix A: Proposals against the wheel blockage of the large black bead dispenser.

In order to have a constant bead rate, all notches must be filled, and only one bead must pass. The static piece over the wheel ensures this role. 

Appendix B: Optimization of the fine-bead dispenser

The existing dispenser of fine beads was not optimal since an important part of the bead-volume was not usable by the experiment and stayed in the reservoir. Indeed, the beads under the pipe height could not flow. This reservoir was too large (L = 34.5 cm×l = 32.5 cm×h = 29 cm). The solution proposed was to reduce the base of the reservoir and to increase its height. In granular flows, the sediment rate is independent of the bead height (Beverloo (1961)) and so remain constant with the emptying of the reservoir provided a minimum height above the orifice is maintained. The width has been chosen in order to dispose the entry point of the beads in the pipe in the center of the box. Note that the surface of grains do not remain horizontal as the liquid but make an angle. The angle of repose for avalanche triggering depends on the material (22˚for a heap of glass beads, 30˚for a heap of sand).