Lake eutrophication and environmental change: A viability framework for resilience, vulnerability and adaptive capacity

Jean-Denis Mathias, Charlène Rougé, Guillaume Deffuant

To cite this version:
Jean-Denis Mathias, Charlène Rougé, Guillaume Deffuant. Lake eutrophication and environmental change: A viability framework for resilience, vulnerability and adaptive capacity. Annual meeting of the European Geosciences Union (EGU), Apr 2013, Vienna, Austria. 2013. hal-02598913

HAL Id: hal-02598913
https://hal.inrae.fr/hal-02598913
Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Lake eutrophication and environmental change: A viability framework for resilience, vulnerability and adaptive capacity

Jean-Denis Mathias1, Charles Rouge1, and Guillaume Defuant1
1 Laboratoire d’ingénierie pour les Systèmes Complexes (LISC), Irstea Clermont-Ferrand
24, avenue des Landais - BP 50 085, 63 172 Aubière Cedex 1 - France

Context & Problem:

Environmental change in a lake can be the result of a variety of phenomena and can happen under the form of extreme events and long-term changes, interacting with each other and natural variability. Yet, these changes can have lasting ecological and economic effects.

We propose a framework that describes these changes using the mathematics of viability theory and descriptive concepts such as resilience, vulnerability and adaptive capacity.

A viability framework for the lake eutrophication case

- Model: (all quantities dimensionless)

\[
\begin{align*}
&\dot{P}(t) = b_P(t) + \frac{1}{\alpha} (P(t) - L(t)) + r_P(t) + P(t(0)) - P(t) \\
&L(t) = \frac{1}{\beta} (L(t)) + w(t) \quad \text{where } w(t) \sim \mathcal{N}(0, \sigma) \\
&\dot{L}(t) = \frac{1}{\gamma} (L(t)) + u(t)
\end{align*}
\]

where:

a) \((L', P')\) is the state of the system; \(P\) is the phosphorus concentration, \(L\) the mean input, and \(L\) is the lost input
b) \(u\) is the control and represents the adaptive policies. Here we assume \(|u| \leq 0.5\).

- The goal of viability is to keep the system within constraints that represent its desirable properties. Here we have:

1) an ecological constraint: the lake is oligotrophic for \(P \leq P_{\text{min}} = 1\);
2) an economic constraint: farming is profitable for \(L \geq 2.7\)

- Stochastic viability kernel: the set of states such that there is a given minimal probability of respecting the constraints for \(T\) time steps.

\[\mathcal{V}_T(\beta, t) = \{x(t) : 3 \leq u < x, \mathbb{P}(\tau \in [0,T], x(t) \in \mathbb{E}) \geq \beta\}\]

Resilience and vulnerability to extreme events

- Extreme event: An extreme rainfall event can carry an important quantity of phosphorus from the soil into the lake, causing an abrupt increase in \(P\).

- Resilience: The concept refers to the ability of a system to retain or recover its properties and functions after a perturbation. We consider that the properties are recovered when they are safe from more ordinary events (i.e., inside the stochastic viability kernel, here \(\mathcal{V}(0.99,100)\)).

- Dynamic programming allows for the computation of the probability of entering \(\mathcal{V}(0.99,100)\) within a time horizon \(T\): this is the probability of resilience.

- Vulnerability: (PCC definition) The concept refers to the degrees to which a system is susceptible to and unable to cope with, adverse effects of climate change, including climate variability and extremes.

Vulnerability is a statistic on a cost distribution found by taking into account all possible trajectories for an optimal strategy:

1. Recovery time (a decreasing function of resilience)

\[\tau_{\text{fin}}(t) = \frac{t}{\alpha} \quad \text{and} \quad x(t) = \left\{ \begin{array}{ll}
0 & \text{if } t < t_{\text{fin}} \\
1 & \text{otherwise}
\end{array} \right.\]

2. Recovery cost, the distance from the desirable properties:

\[\text{Cost} = \sum_{t=1}^{T} \text{Cost}(t)\]

Here, \(\alpha = 0.2\).

Extension to environmental changes (change in model parameters)

- Example: reduction of the outflow by 25%

Assuming that the phosphorus sink \(-b_P\) is solely due to outflow, the lake becomes irreversible: the oligotrophic property \((P < 1)\) cannot be recovered after it is lost. The value of \(b\) decreases to 5/8.

Then vulnerability to this change is the difference in vulnerability before and after the change. Here for vulnerability as the time spent outside of \(K\), this is also a resilience loss.

Adaptive capacity

Adaptive capacity can be defined as the vulnerability reduction due to the introduction of new controls

Example: new technological developments or management practices lower the minimum economically acceptable phosphorus input to \(L^*<0.35\).

Before change, \(b=5/8\):

After change, \(b=5/8\):