

Development of q-PCR approaches to assess water quality: Effects of cadmium and pesticides on gene expression of diatoms

S. Kim Tiam, S. Moisset, A. Feurtet Mazel, Nicolas Mazzella, A. Arini, François Delmas, Soizic Morin, G. Daffe, P. Gonzalez

▶ To cite this version:

S. Kim Tiam, S. Moisset, A. Feurtet Mazel, Nicolas Mazzella, A. Arini, et al.. Development of q-PCR approaches to assess water quality: Effects of cadmium and pesticides on gene expression of diatoms. SETAC North America, Nov 2013, Nashville, United States. pp.1, 2013. hal-02599228

HAL Id: hal-02599228 https://hal.inrae.fr/hal-02599228

Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Development of q-PCR approaches to assess water quality: Effects of cadmium and pesticides on gene expression of diatoms.

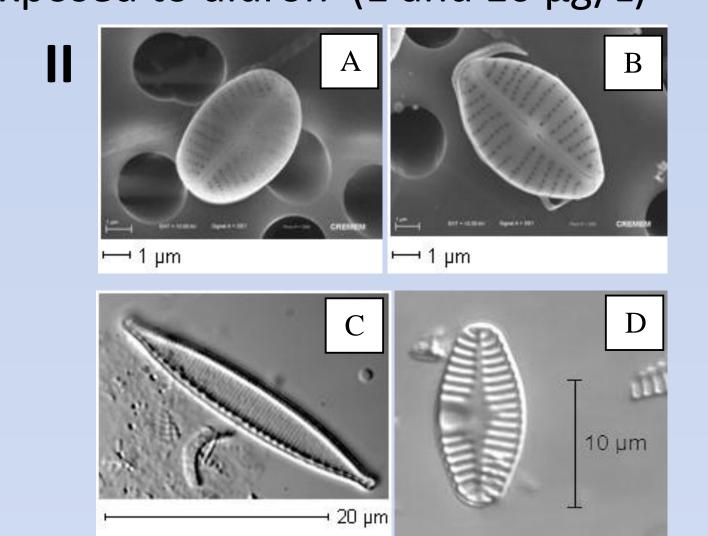
Kim Tiam S.^{1,2}, Moisset S.¹, Feurtet-Mazel A.¹, Mazzella N.², Arini A¹., Delmas F.², Morin S.², Daffe G.¹ and Gonzalez P.¹

¹ University of Bordeaux, EPOC, CNRS UMR 5805, Aquatic Ecotoxicology Team, Place du Dr Peyneau, 33120 Arcachon, France

² IRSTEA, UR REBX, Anthropic Contaminants and Responses of Aquatic Systems Team, 50 avenue de Verdun, F-33612 Cestas cedex, France

Functions

Genes


Objective of the study

Periphytic diatoms are valuable tools to determine freshwater rivers quality based on diatoms identifications and distribution and constitute key indices in international standards. Nevertheless, indices currently used for water quality assessment do not take in consideration the diverse nature of contaminants, are time consuming and require important taxonomic knowledge. In this context development of q-PCR approaches have been developed to enhance a better reactivity in the diagnosis of modifications due to pollution conditions and to understand the genetic impact in relation with diatoms species. Through different laboratory experiments (14 days exposure) concerning various contamination (metallic with Cd: 10 and 100 μ g/L) or pesticides with diuron: 1 and 10 μ g/L), several target genes involved in mitochondrial metabolism (*coxl*, *nad4*, 12S), oxidative stress response (*sod Mn*), detoxification (*cyp1A1*) and photosynthesis (*psaA*, *d1*) have been characterized and their expression levels have been determined.

Methodology

E. minima was exposed to Cd (10 and 100 μ g/L) and E. minima, G. parvulum, N. palea and P. lanceolatum were exposed to diuron (1 and 10 μ g/L)

Figure 1. Experimental units (I) and species studied (II), A: *Eolimna minima*; B: *Gomphonema parvulum*; C: *Nitzschia palea*; D: *Planothidium lanceolatum*).

Parameters:

- Growth (cellular enumerations)
- Photosynthetic efficiency (fluorimeter Phyto-PAM)
- Gene expression by real time qPCR

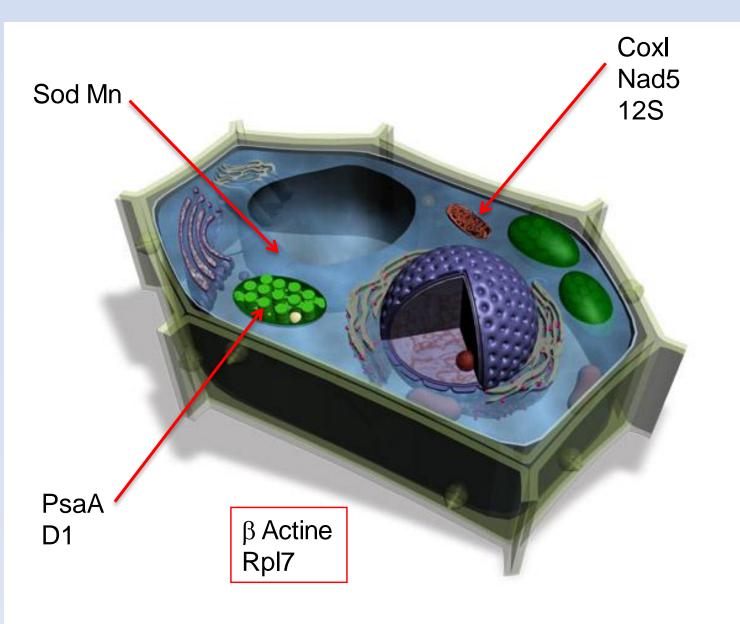
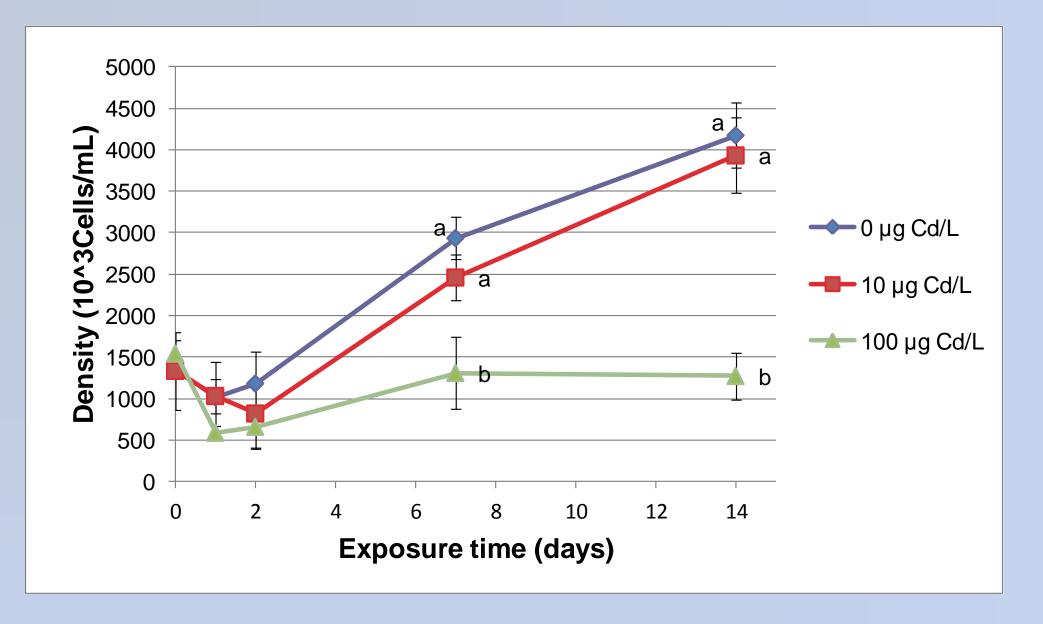



Figure 2. Target genes

Results

Cd exposure

Figure 3. *E. minima* growth during Cd exposure

Tableau 1. Differential expression observed after exposure of *E. minima* to Cd after 1, 2, 7 and 14 days.

Functions	Genes	Expos	ure con	ditions					
		C1 (10 µg/l)				C2 (100 µg/l)			
		D1	D2	D 7	D14	D1	D2	D7	D14
Mitochondrial	cox1								
metabolism		/	/	/	/	/	/	9.5	/
	nad5	/	/	/	2.5	/	/	/	9.5
	12s	/	/	/	/	/	/	15	/
Oxidative stress	sodMn	/	/	/	/	/	/	/	/
Photosynthesis	d1	/	/	/	2	/	/	5.5	24
•	psaA	/	/	/	2.5	/	/	7.5	48

Results are expressed as induction factors (>1) or repression factors (<1) compared to control *E.minima*. / : identical to control expression level.

-Slight significant difference between growth of C₀ and 10 µg/L

-Great significant difference between growth of C_0 and $100\mu g/L$ from day 7

-No population growth along the 14 days exposure

- Fv/Fm at C1 (1 μ g/L) \approx Fv/Fm for

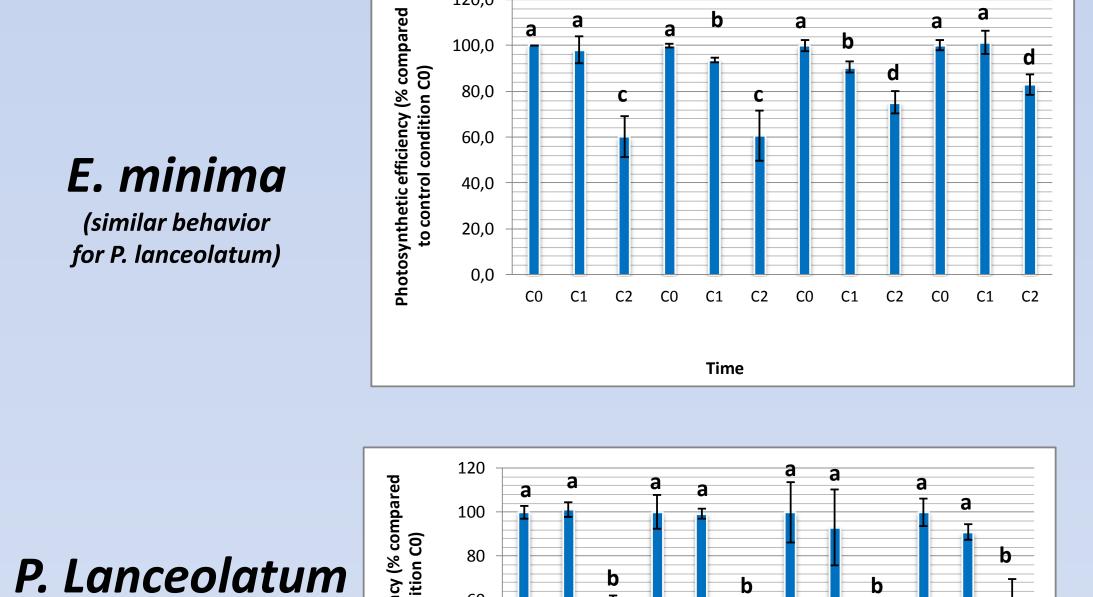
- Fv/Fm at C2 (10 μ g/L) > > Fv/Fm

-strong impacts on *P. Lanceolatum*

-Early response of *E. minima*

E. minima more resistant to

 C_0 (Controls)


for C₀ and C1

diuron

0.08

→ Tolerance of *E. minima* towards Cd

Diuron exposure

Tableau 2. Differential expression observed after exposure of E. minima and P. lanceolatum to diuron after 6h, 2, 7 and 14 days.

E. minima

		C1 (1µg/L)				C2 (10 µg/L)				
		6h	D2	D7	D14	6h	D2	D7	D14	
Photosynthesis	psaA	0.4	/	/	13.1	0.3	4.4	/	4.2	
	d1	0.1	/	0.3	16	/	3.8	/	8.1	
Mitochondrial metabolism	cox1	0.3	/	/	5.3	0.2	3.4	/	2.3	
	nad5	0.1	/	/	/	/	4.6	/	/	
	12s	0.5	/	0.4	2.3	0.4	4.6	/	/	
		P. Lanceolatum								
Functions	Genes				P. Land	ceolatu	m			
Functions	Genes		C1 (1μg/L)	P. Land	ceolatu		0 μg/L)		
Functions	Genes	6h	C1 (D2	1μg/L) D7	P. Lanc D14	ceolatu 6h		.0 μg/L) D7	D14	
	Genes psaA	6h 0.3					C2 (1			
Functions Photosynthesis			D2			6h	C2 (1 D2		D14	
Photosynthesis	psaA		D2 39.3		D14 /	6h 15.8	C2 (1 D2 22.4	D7	D14 0.1	
	psaA d1		D2 39.3 51.5		D14 /	6h 15.8 6.8	C2 (1 D2 22.4 42	D7	D14 0.1	

Results are expressed as induction factors (>1) or repression factors (<1) compared to control. / : identical to control expression level.

Conclusion

Results showed that both compounds impacted the mitochondrial and the photosynthetic metabolisms. The observed effects are closely related to the growth rate efficiency of the cultures used and the photosynthetic quantum yield but appear earlier. Thus, molecular biomarkers could be used to evidence early response and sensitiveness of diatoms during environmental pollutions (or xenobiotic exposures). These first innovative results constitute a first step towards the study of periphytic diatoms through molecular biology.

0.3

