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Abstract 

The reservoirs on the Seine River basin, upstream of Paris, are regulated with the objective of reducing 
floods and augmenting low flows. Their current management is empirical, reactive and decentralized, 
mainly based on filling curves, constructed from an analysis of historical floods and low flows. Therefore, 
the efficiency of this management strategy could be enhanced when inflows are significantly different from 
their seasonal average. Adaptation to climate change is also a challenge, for the possible modification of 
future hydrologic conditions.  
 
To improve such management strategy, the use of a centralized real-time controller is investigated. The 
control method used is Tree-Based Model Predictive Control (TB-MPC), a proactive method that uses all the 
information available in real-time, including ensemble weather forecasts. This information is used in the 
model predictive control framework, to optimize an objective function over a finite receding horizon, using 
a model to predict the evolution of the system in response to the forecasted inputs. 
 
The TB-MPC controller is implemented in combination with the model of the Seine river basin, including a 
semi-distributed hydrologic model of the watershed, a simplified hydraulic model of the river network and 
the four reservoirs models. The controller optimizes a global cost function that takes into account the costs 
associated to high and low flows, based on critical thresholds at some key downstream stations, and a 
penalty based on the final storages of the reservoirs, to guarantee a sustainable management in the long 
term. 
 
The reservoirs management is tested using different weather forecasting models: (i) a hypothetical perfect 
predictor that takes observations as forecasts; (ii) a real deterministic forecasting model; (iii) a stochastic 
model producing ensemble forecasts. The performance of MPC using perfect predictions is compared with 
the actual management, to assess the expected improvement by moving to a centralized and proactive 
controller. The performance of TB-MPC is compared with that of deterministic MPC, to evaluate the 
possible improvement due to the integration of the uncertainty of predictions.  
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Riassunto 

I serbatoi nel bacino idrografico della Senna, a monte di Parigi, sono gestiti con l'obiettivo di ridurre le piene 
e aumentare le basse portate. La loro gestione attuale è empirica, reattiva e decentralizzata, basata 
principalmente su curve di riempimento, costruite a partire da un'analisi statistica di piene e magre 
storiche. Pertanto, l'efficienza di questa strategia di gestione può essere migliorata quando gli afflussi sono 
significativamente diversi dalla loro media stagionale. 
 
Per migliorare tale strategia di gestione, si indaga l'uso del Tree-Based Model Predictive Control (TB-MPC), 
un metodo di controllo centralizzato e proattivo, che utilizza tutte le informazioni disponibili in tempo 
reale, tra cui le previsioni meteorologiche di ensemble. Questa informazione viene utilizzata nel quadro del 
controllo predittivo, per ottimizzare una funzione obiettivo su un orizzonte finito, usando un modello 
matematico per prevedere l'evoluzione del sistema in risposta agli ingressi previsti. 
 
Il controllore TB-MPC è implementato in combinazione con il modello del bacino della Senna, che integra 
un modello idrologico semi-distribuito, un modello idraulico semplificato della rete fluviale ed i modelli dei 
quattro serbatoi. Il controllore ottimizza una funzione di costo globale che tiene conto dei costi associati ad 
alte e basse portate, calcolati sulla base di soglie critiche definite per alcune stazioni a valle, e una penale 
basata sui volumi finali dei serbatoi, per garantire una gestione sostenibile nel lungo termine. 
 
La gestione dei serbatoi è simulata testando diversi modelli di previsione meteorologica: (i) un ipotetico 
previsore perfetto che usa osservazioni come previsioni; (ii) un vero modello di previsione deterministico; 
(iii) un modello stocastico che produce previsioni di ensemble. La performance del MPC deterministico 
usando previsioni perfette è confrontata con quella della gestione attuale, per valutare il miglioramento 
atteso dal passaggio a un controllore centralizzato e proattivo. La performance del TB-MPC è confrontata 
con quella del MPC deterministico, per valutare il possibile miglioramento dato dall'integrazione 
dell'incertezza delle previsioni. 
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1. Introduction 

The present work is a case study application of Climaware, an European project on the study of climate 
change impacts on water resources management. The Climaware project is funded by the Integrated Water 
Resources Management Network (IWRM-Net). The duration of the project is three years from September 
2010 to December 2013.  
 
The project has five partners: (i) the Department of Hydraulic Engineering and Water Resources 
Management, University of Kassel, Germany; (ii) the Center for Environmental Systems Research (CESR), 
University of Kassel, Germany; (iii) Irstea (ex Cemagref) at Antony and Montpellier in France; (iv) The Public 
Establishment of Territorial Basin (EPTB) and Seine Grand Lake (SGL), based in Paris, France; (v) Istituto 
Mediterraneo Agronomico di Bari, Bari, Italy. 

 
The Climaware project aims to study the effects of climate change on the hydro-morphological conditions 
as well as on the changes in river flows and their consequences (frequency of floods and droughts). Another 
of its goals is to examine the uncertainties of models and scenarios. Finally, it should help to define 
adaptation strategies for the programs within the framework of the IWRM-NET Funding Initiative, the 
management of dams and irrigation practices. 
 
Climaware includes three case studies used to investigate the impacts of climate change on water 
resources at a regional scale and to focus on different aspects: 

 The first case study focuses on the hydro-morphology; it is located in Germany on the Eder River 
watershed.  

 The second regards the dam management of the Seine lakes in France; it is the focus of this work.  

 The latter is about the agricultural use of water in Apulia region in southern Italy. 
Once these three studies are completed, the results can then be compared and it will be possible to see 
whether regional measures could be transferred on a larger scale, in an European perspective. This 
organizational perspective is represented in Figure 1.  
 

 

Figure 1. The organizational framework of the Climaware Project and its 3 case-studies. [ClimAware website 
- www.uni-kassel.de/fb14/wasserbau/CLIMAWARE/home/home.html]  
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The work presented in this thesis deals with case study 2, that is the multi-objective reservoirs 
management on the Seine River in France. This work has been conducted in partnership between Irstea - 
Montpellier (UMR G-Eau), TU - Delft (Water Resources Management group) and Politecnico di Milano 
(DEIB). 
 
In the Seine river basin (total size of 78,650 km²), located in northern France, four large dams with a total 
storage capacity of 800 hm3 are managed for low-flow augmentation and flood alleviation by the "Seine 
Grands Lacs" institution [www.seinegrandslacs.fr]. They were built after dramatic floods (in 1910 and 1924) 
and droughts (in the 1920s), which had major consequences on the Paris area [Ambroise-Rendu, 1997]. 
Currently, the 30% of the French population live on the Seine basin, including the capital city of Paris and its 
suburbs. The basin has a major economic role in France because it provides drinkable water to almost 20 
million persons, includes a lot of factories, and is a major agricultural and touristic region.  
For all these reasons, better knowing and anticipating the impacts of climate change on the Seine River 
basin becomes critical. Indeed, more frequent droughts or flood events would have major consequences 
given the already high pressure that local population and activities put on the available water resources, 
and the dense urbanization of the river banks in the Paris area. To further protect Paris, some experts 
recommend building a new reservoir lake, the Bassée to absorb a flood on the Yonne; the cost of this 
project is estimated to 500 million of euros, but the debate opened in 2001 is still open [Landrin, 2013].  
 
The objective of the case study is to provide the managers of the reservoirs in the Seine River basin an 
analysis framework to evaluate the possible consequences of climate change on the basin hydrological 
behavior and to assess possible adaptation strategies they could consider in the future, as more efficient 
management strategies. These adaptation strategies could be necessary to continue to fulfill the objectives 
of floods prevention and water supply in the future, and may represent a viable alternative to building new 
dams. 
 
The key phases of the work on this case-study are to: 
 

1. develop an integrated model of the basin (hydrologic and hydraulic), including the artificial 
influences of the dams; 

2. define climatic as well as socio‐economic changes over the basin by the mid‐century; 
3. evaluate the sustainability of current management rules of the reservoirs (filling curves and river 

flow thresholds); 
4. define adaptation strategies for a long term (adaptation of storage capacities), medium term 

(adaptation of management rules) and short term (management of the reservoirs in real-time) 
perspective. 
 

In particular the research presented here is related to the last phase of the work proposing the use of a 
Real-Time Controller (RTC) as approach to solve the issue of reservoirs management adaptation to changes 
in hydrological conditions due to climate change. Our goal is to overcome the limitations of the current 
management approach by implementing on the four reservoirs a centralized RTC using the Model 
Predictive Control (MPC) method and all data available, including ensemble weather forecasts. We will be 
able to simulate this kind of management on the past climate scenario with the observations available and 
on some future hypothetic scenarios derived by climate models. The results could help to investigate the 
effectiveness of a centralized RTC as mean to increase water resources efficiency and better tackle water 
stress due to climate change.  
 
The present thesis is organized as follows:  
 

 Chapter 2 briefly describes the Seine River basin case study, the current management rules of the 
reservoirs and the data used in this work;  
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 Chapter 3 presents the theory behind classic Model Predictive Control (MPC) and Tree-Based MPC 
(TB-MPC), the new method that will be used to face with forecasts uncertainties;  

 Chapter 4 is dedicated to the formulation of the control problem for the case study, for 
implementing the MPC and TB-MPC management methods; 

 Chapter 5 shows some results of the MPC and TB-MPC simulation experiments done and provides 
performance comparisons between MPC and current management and between TB-MPC and MPC;  

 Chapter 6 highlights some conclusions, and presents the on-going research and the possible future 
developments of the work.  
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2. Case study: reservoir’s management on 
the Seine River 

In this chapter the case study will be presented and contextualized. It regards the reservoirs management 
in the Seine river watershed upstream of Paris. Following the Participatory and Integrated Planning 
procedure (PIP, [Soncini-Sessa et al., 2007]), the first phase of the problem definition for water resources 
planning and management is the Reconnaissance phase. This is concentrated on defining the spatial and 
temporal boundaries of the system being considered, the data available and to be collected, the normative 
and planning context and the goal of the project. The reservoirs and their actual management rules will be 
presented, highlighting the limitations of the current management strategy faced in the past and the 
possible limitations that could be encountered in the future due to climate changes. The objective of this 
work will be introduced as to develop a possible adaptation strategy in order to respond to these 
limitations.  

2.1 The Seine river basin 

The system being considered in this study is the Seine river basin upstream of Paris, with outflow in Paris-
Austerlitz, including the sub-basins of the tributaries: Aube, Seine, Yonne, Marne and Blaise. This study area 
has a surface of 43 824 km2. The position of the case-study area in France is highlighted in the following 
Figure 2. 
 

 

Figure 2. Position of the case-study area of the Seine river basin in France. [Dorchies et al., 2013]  
 



5 
 

The Seine river basin represents important socio‐economic stakes in France, especially because of the Paris 
urban area along the Seine River. The presence of cities and industries is the cause of high water demand 
and vulnerability to floods. 
 
In order to limit flooding in Paris and supporting low flows, four lakes-reservoirs were constructed on the 
main tributaries: the Aube and Seine lakes (on the homonymous rivers), the Pannecière on the Yonne, and 
the Marne between the Marne and the Blaise. These four reservoirs have a total capacity of 810 hm3 and 
are managed by Seine Grand Lacs (SGL). Only one of these reservoirs, Pannecière, is directly on the river; 
the other three lakes have inlet derivations (one derivation for Aube and Seine, two derivations for Marne) 
and one outlet derivation. The reservoirs were built in different years between 1950 and 1990: Pannecière 
in 1958, Seine in 1965, Marne in 1973 and Aube in 1987. 
Figure 3 shows a map of the case-study catchment locating the four reservoirs and the 25 gauging stations 
spread over the main stream and its tributaries. A technical scheme for each lake is provided in Appendix A, 
reporting the capacity of each reservoir and its inlet/outlet channels. A list of the 25 gauging stations with 
the respective positions and areas of influence is reported in Appendix D. 

 

 

Figure 3. Case study area of the Seine river basin with the localization of the four reservoirs (triangles) and 
the 25 runoff gauging stations (square dots). 

 
The climate of the basin is the typical western European oceanic climate affected by the North Atlantic 
Current (Köppen climate classification: Cfb). The temperatures ranges are moderate, with cool summers 
(between 15 and 25 °C) and mild/cold winters (around 7° C). The precipitations occur all year with an 
annual average of 700 mm/y. The natural flow regime is characterized by low flows in summer and high 
flows in winter (see Figure 4). For an exhaustive description of the physical, meteorological and 
hydrological characteristics of the Seine river basin, the reader may refer to Ducharne et al. [2007]. 
 

https://en.wikipedia.org/wiki/North_Atlantic_Current
https://en.wikipedia.org/wiki/North_Atlantic_Current
https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification
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Figure 4. Monthly natural runoff on the Seine river at Paris Austerlitz station, for the period 1958-2010 (the 
25%, 50% and 75% percentiles are drawn). 

 
The water demand is high due to both city and industrial demands, and can be met in summer period 
thanks to the oceanic climate, the positive influence of aquifers and the management of reservoirs that 
sustain low flows. 

2.2 Data used and temporal boundaries of the study 

The temporal boundaries considered in this study depend on the time horizon considered in the previous 
part of the work for this case-study of Climaware and on data availability for the present work. In the 
Climaware project, for the simulation of the actual management rules over past and present scenarios, the 
horizon from 1961 to 2009 has been used, since climate and inflows measures were available over this 
period. Time-series of ensemble and deterministic weather forecasts were recovered for the period 2005 – 
2009. 

2.2.1 Data survey 

Hereafter we present the data used for the present research.  
 

- Data-base of naturalized flows series at a daily time-step (calculated removing the influence of the 
dams from the observed flows) provided by Seine Grands Lacs for the period 1900‐2009. 
 

- Meteorological observations at a daily time step on an 8x8 km grid over the past period 1958 - 
2009 from the SAFRAN database from Meteo‐France. They include: total precipitation (P), 
temperature (T) and potential evapotranspiration (ETP) calculated with the Penman‐Monteith 
formula. 
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- Hydrologic, topographical and morphological data related to the Seine basin (distances, areas, etc.) 
used before this work to calibrate and build the hydrologic and hydraulic models of the basin. 
 

- Seven different climatic scenarios at a daily time step, over the periods 1961-1991 and 2046-2065, 
produced by seven Global Circulation Models (GCM), forced by the moderate A1B green-house 
gases emissions scenario. These simulations were statistically downscaled at an 8 km x 8 km scale, 
using the DSCLIM downscaling method [Boè et al. , 2007]. 
 

- Data and information on the four reservoirs management: 
o current management rules, expressed as objective filling curves (see section 2.4.1);  
o thresholds for minimum authorized flows and reference flows (see section 2.4.2);  
o time-series of inlet/outlet flows and storages of the 4 reservoirs;  
o maximum and minimum volumes; 
o capacity of the inlet/outlet channels. 

 
- Thresholds values for the flows of the river system at different control stations used by SGL for the 

performance assessment of the management. 

2.2.1.1 Weather forecasts 

The weather forecasts of rainfall are extracted from the ECMWF data-base [www.ecmwf.int] of ensemble 
weather forecasts for the case study area. 

 
The ensemble forecasts data available are composed by 52 members (predictions):  

- The 1st - 50th members are the actual ensemble forecasts members; they come from the same 
model as the 51st   member but the initial conditions of the model are perturbed. 

- The 51st member is a deterministic forecast called “control” forecast; it's used for generating the 
ensemble members, i.e. forecast realized at the same resolution of the ensemble members, but not 
perturbed as the members 1st - 50th. 

- The 52nd member is an accurate deterministic forecast, i.e. forecast realized at a more detailed 
resolution. 
 

The temporal features of the EF are: 
- Forecast time step: 1 day; 
- Forecast horizon: 9 days;    
- Ensemble and deterministic forecasts available from 11/03/2005 to 01/10/2008. 

 
The spatial features of the EF are: 

- Spatial resolution: 0.5° x 0.5°; 
- One forecast for all the watershed. 

 
For the spatial resolution, the rainfall data in the semi-distributed hydrological model (GR4J) are aggregated 
at the BVI scale. The extension of these BVIs is between 200 km2 and a few thousand km2. So, the spatial 
resolution of the ensembles is not too far from our needs and in the future development of the research 
we could be able to downscale the data at the BVI scale. 

2.2.2 Scenarios 

Based on the data available, it was therefore possible to run simulations over different periods and 
scenarios. The following ones were defined: 
 

 “NAT” (Natural): observed climate over the period 1958-2009; 

http://www.ecmwf.int/
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 “NTP” (Natural Present Time): observed climate over the period 1961-1991, with all the lakes 
virtually in operation from the beginning of this period; 

 “TP” (Present Time) : GCMs scenarios over the period 1961-1991; 

 “TF” (Future Time) : GCMs scenarios over the period 2046-2065. 

2.3 Project goal definition 

Since the project goal depends on the interests being considered and on the expectations that one wants to 
fulfill, it is good to start the definition of the objectives for the case-study from the identification of the 
stakeholders and Decision Makers (DM) involved and their interests. 
 
The stakeholders are: 
 

 the urban areas, i.e. population of Paris and other cities in the basin and industries; 

 users and providers of navigation service on the Seine; 

 the hydroelectric production plants manager. 
 

The Decision Maker is: 
 

 EPTB «Seine Grands Lacs» (SGL, [www.seinegrandslacs.fr]), also named «Institution 
Interdépartementale des Barrages‐Réservoirs du Bassin de la Seine» (IIBRBS). SGL is a 40‐year old 
French public establishment gathering the city of Paris and three administrative departments 
(Hauts de Seine, Seine‐Saint Denis and Val de Marne). SGL is the public authority responsible for the 
coordination of the upper Seine basin management and the management of the four artificial 
reservoirs.  
  

The objective of the dams is to satisfy the interests of the stakeholders that can be summarized as: 
 

 protecting houses and industry against floods;  

 sustaining water demand for drinking water, industry, navigation and energy production. 
 

The purposes of sustaining the water demand and sustaining the navigation are not conflicting, so we can 
take into account them together. The hydroelectric production is a minor goal and hereafter it's not 
considered. 

2.4 Actual management of the lakes 

2.4.1 Objective Filling Curves (FC) and current management rules 

The actual management of the reservoirs is done empirically and decentralized following some Objective 
Filling Curves (FCs) constructed off-line for each reservoir and respecting some constraints downstream the 
connections of the lakes. The FCs are curves that plot the target volume of the lake in function of the day of 
the year, based on historical flood and low-flows statistics. They are constructed in order to store water for 
the low-flows season (from beginning of July to end of October) filling the reservoirs from autumn 
(November) to spring-summer (June). The target volume to reach at the end of the filling season is 
calculated in order to have enough water to satisfy a minimal flow threshold in the river for all the releasing 
season. The slopes of the curve in the filling period are calculated on the basis of the average inflows to the 
reservoirs. The releasing period can be prolonged if the river flow at the control stations immediately 
downstream the dams is under the second low-flow threshold (see section 2.5.1) until the 1st of January at 
most. In this condition of prolonged or delayed droughts the releasing period ends when the flows begin to 
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be higher than this threshold. For example, the filling curve of the lake Marne is shown in Figure 5. The 
filling curves of all the lakes and the maximum and minimum volumes are provided in Management Filling 
Curves of the lakes 

 

Figure 5. Filling Curve (FC) of the lake Marne (continuous blue line) and curve for prolonged releasing 
(dashed blue line).  

 
It should be noted that in the releasing season the actual behavior of the managers of SGL is emptying the 
lakes from the actual point of maximum filling and if this point does not coincide with the maximum point 
of the filling curves, the rule is trying to empty the lakes to get to the end-point of the filling curves at the 
end of the releasing season. In other words the manager replaces the descending branch of the FC with a 
straight line joining these two points. 
 
The filling trajectory is calculated taking into account the historical floods of the 20th century so that there 
is enough space (storing capacity) available for these floods control. The storing capacity available is given 
by the difference between the maximum capacity and the current volume. For example, Figure 6 reports 
the filling curve of lake Marne and the storing capacities necessary for controlling the historical floods of 
20th century. The storing capacity required for these floods is represented by the distance of the red points 
from the line of the maximum capacity of the lake. So this capacity is not available when a red point is 
below the FC, considering the volume of the lake equal to the target one. There were two flood events of 
the 20th century that with the actual management rules couldn't be controlled: those of June 1983 and 
August 1910. As shown in Figure 6, following the filling curve, in June and August the reservoir is full and 
there was not enough storing capacity to control these two floods. Besides the 1983 and 1910 events, there 
are some other critical events (1970, 1988, 1999 and 2001) in which the capacity available in the reservoir 
Marne is just enough to control the floods. 
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Figure 6. Filling Curve (FC) of the lake Marne and storing capacity necessary for controlling the historical 
floods of 20th century. The red dots represent the historical floods: the distance of these points from the 

line of maximum capacity of the lake is the required storing capacity for containing these floods. 
 

2.4.2 Constraints on river flows: reserved and reference flows 

In addition to following the filling curves, the actual management rules has to respect some legal 
constraints on the river flows, if possible. There are the following constraints: 
 

 Reserved flow: is a minimum flow to be left in the river in order to assure life, movement and 
reproduction of all species in the river. This discharge is a legal obligation (Article L432-5 of the 
French Environmental code); the reserved flow value changes from a season to another. In case of 
reservoirs with derivations this threshold defines the minimum flow to let in the river downstream 
the inlet channel, while for reservoirs directly on the river, as Pannecière, it indicates the minimum 
flow to be discharged.  

 

 Reference flow (or Retention flood level): is the threshold which indicates the occurrence of a flood 
on the sub-basin downstream the dam. In the current reservoirs management, if downstream the 
inlet and outlet channels the flow overcomes this value, the excess flow is stored in the reservoir, 
over-filling it respect to the Filling Curve volume.  The value of the retention flood level depends on 
the season, because the flood areas depend on agricultural use of the adjacent territory.  

 
The values of reserved and reference flows taken into account in our work are reported in Appendix A. 
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2.5 Efficiency criteria for reservoirs management 

2.5.1 Low and high flows thresholds 

For assessing the management of the reservoirs, the manager SGL monitors the flow in the river at several 
strategic stations downstream the four lakes. At each of these gauging stations, some flow thresholds have 
been defined for critical low and high flows.  
 
For low-flows, the thresholds are defined at 9 downstream gauging stations, from regulatory thresholds 
corresponding to restrictions on the water withdrawals:  
 

 Vigilance threshold: at this first threshold any restriction of uses is defined but the river is 
extremely sensitive to pollutions; 

 Alert threshold: at which 30% restriction of uses; 

 Reinforced alert threshold: 50 % restriction of uses; 

 Crisis threshold: all uses are prohibited except a minimum use for drinking water. 
 
The first vigilance threshold can be used to derive the filling curves, calculating the volume to reach at the 
end of the filling season in order to be able to satisfy this flow in the river throughout the releasing season, 
discharging a constant flow from the reservoirs. 
 
For high flows, the same control stations as the ones used for low flows are used for convenience. The 
thresholds are close to the ones used by forecast prediction services for alerting population in case of flood. 
The thresholds correspond to three critical levels, respectively: limit of flooding, flooding in regular area, 
exceptional flooding.  
 
The monitoring stations and their thresholds are presented in the following table. 
 

Monitoring stations Low flows (m
3
/s) High flows (m
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24 Arcis-sur-Aube Aube Aube (A) 6,3 5,0 4,0 3,5 110 260 400 

22 Méry-sur-Seine Seine Seine (S) 7,3 5,0 4,0 3,5 140 170 400 

13 Nogent-sur-Seine Seine A+S 25,0 20,0 17,0 16,0 180 280 420 

02 Gurgy Yonne Pannecière (P) 14,0 12,5 11,0 9,2 220 340 400 

23 Courlon-sur-Yonne Yonne Pannecière (P) 23,0 16,0 13,0 11,0 550 700 900 

16 Alfortville Seine A+S+P 64,0 48,0 41,0 36,0 850 1 200 1 400 

21 Châlons-sur-Marne Marne Marne (M) 12,0 11,0 9,0 8,0 330 520 700 

17 Noisiel Marne Marne (M) 32,0 23,0 20,0 17,0 350 500 650 

05 Paris Seine A+S+P+M 81,0 60,0 51,0 45,0 950 1 600 2 000 

Table 1. Monitoring stations downstream the reservoirs and corresponding flow thresholds for low-flows 
and high-flows. 
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2.5.2 Historical critical low and high flows events 

For high-flows, the overcoming of the first threshold is a frequent event that does not imply damages; in 
fact the first high flows threshold is only a vigilance threshold that represents a warning for possible future 
critical events. Instead the second threshold is a critical threshold, that was rarely overcome in the past. 
This can be seen in Figure 7 that shows the river flow at the downstream station of Paris with the current 
management simulation from 1961 to 1991 over the "NTP" scenario (considering all the dams operational 
from 1961). It can be noticed that from 1961 to 1991 there's only one flood event over the second 
threshold (in 1982, with a flow peak of about 100 m3/s above the threshold), while the first vigilance 
threshold is largely overcome many times.  
 

 

Figure 7. Simulated river flow at Paris from 1961 to 1991 with current management over NTP scenario. The 
thresholds for floods are the dashed horizontal lines. 

 
As for the drought events, there were some critical events. For example, one of the most critical events is in 
1976 with flows below all the critical thresholds, for a long drought during all the spring and summer. 
 
The RTC that we implement in our work will be tested on these critical events of the past, flood of 1982 and 
drought of 1976, using the observations as forecasts ("perfect predictions"). 

2.6 Expectations of improvement by using a centralized Real-
Time Controller 

It can be noticed that the current management of the lakes proves inadequate when inflows are out of 
seasonal averages, as highlighted in Figure 6. This is due to a management strategy based on filling curves 
calculated off-line and based on the average meteo-hydrological conditions over the year, without using 
real-time measurements and forecasts of meteo-hydrological variables, which may be very different from 
their seasonal averages. Moreover the current management is designed under historical climate conditions 
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and socio-economic environment, so it might prove inadequate in the future, under the evolution of 
hydrologic conditions due to climate change and the environment evolution.  
 
The possible benefits of a centralized real-time controller (or Model Predictive Controller, MPC) derive from 
the use of the information available in real-time. This information includes: 
 

 The predicted inflows generated from weather forecasts:  
- the inflows upstream the reservoirs; 
- the intermediate inflows between the reservoir and the downstream control points. 
 

 The actual storing capacity of each reservoir for reaching an objective at a downstream point 
concerned by several reservoirs. 
 

 The current river flows downstream the reservoirs. 
 
 
The possible improvements that derive from the use of this information can be summarized in the following 
points: 
 

 The use of forecasts, including ensemble weather forecasts, makes the controller proactive, acting 
in advance to prevent a forecasted flood event. 

 
 A centralized controller may coordinate the contributions of all the lakes to the achievement of the 

objectives, using the information of the actual storages and available storing capacities of all the 
lakes. 
 

 The direct use of the current river flows at the monitoring downstream stations introduces a 
feedback in the control, because the decisions are calculated taking directly into account the 
effects at downstream. 
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3. Model Predictive Control (MPC) and 
Tree-Based MPC (TB-MPC) 

In this chapter we will present the theory about the two Real-Time Control (RTC) methods used in this 
study: the deterministic Model Predictive Control (MPC) and the stochastic Tree-based Model Predictive 
Control (TB-MPC). In the first part of the chapter, the MPC method is introduced and in the second part the 
MPC framework is enlarged to exploit the information in the ensemble forecasts in the TB-MPC method. In 
section 3.1, we will explain the receding horizon strategy which is the basis of the MPC and TB-MPC 
methods and we will briefly describe the essential components of the predictive control; in section 3.1.2 
the formalization of the deterministic MPC problem is introduced; then we highlight some remarks about 
the control and prediction horizon (section 3.1.3) and the advantages of MPC respect to the off-line 
approach (section 3.1.4). In section 3.2, the TB-MPC method is presented, introducing the ensembles and 
trees as uncertainty models and briefly explaining the tree-generation methods; in section 3.2.3 the TB-
MPC control problem is formally defined.  

3.1 MPC and Receding Horizon Strategy 

Model Predictive Control is a form of control in which the current control decisions are obtained by solving 
on-line, at each sampling instant, a finite horizon open-loop optimal control problem. MPC uses a model of 
the system being controlled to predict its behavior in response to the control actions over a finite future 
horizon, called prediction horizon. The model takes as inputs the current measured state of the system, as 
the initial state, and the deterministic forecasts of the disturbances that act on the system. The idea is to 
select the control trajectory that promises the best predicted behavior in the future prediction horizon 
[Maciejowski, 1999]. Thanks to the use of forecasts the management becomes proactive, acting in advance 
to deal with expected problems caused by the disturbances. For example if an high inflow is predicted 
within the prediction horizon, before its expected realization, the controller will set the system to a state 
optimal to accommodate it, for example by lowering the water level in the reservoirs. Since MPC takes into 
account the current state of the system, it provides implicitly a feedback control law. For this reason MPC is 
also called Naïve Feedback Control (NFC). This implicit formulation represents an advantage since it allows 
obtaining a closed-loop control law at the price of an open-loop control problem, that has a lower 
computational cost.  
Once the future control trajectory has been chosen at time step t, only the first element of that trajectory is 
applied as input to the system: the control at time t. Then the whole cycle of outputs (states) 
measurement, prediction, and control trajectory determination is repeated one sampling interval later, t+1. 
Since the prediction horizon remains of the same length than before, but slides along by one sampling 
interval at each step, this way of controlling a system is called receding horizon strategy [Maciejowski, 
1999]. This strategy is represented in the following two figures. 
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Figure 8. Receding Horizon Strategy (1): RTC operation scheme at time step t. 
 
In the figure above there’s the scheme of Real-Time Control operation at time step t for control of water 
systems, as our case. A control sequence over the prediction horizon [t, t+h) is calculated at each time step 
t, using all the exogenous information It available at time t. The information vector It contains uncontrolled 
exogenous variables, like, for example, measures of temperature, that are used as input to a weather 
forecasting model to produce the rainfall forecasts. The forecasts are used by a simulation model and an 
optimizer to find the optimal controls ut, …, ut+h . Only the first control, ut, is applied to the system, and the 
system evolves from time-step t to t+1. Then the same problem is solved at time step t+1, as represented in 
the next figure. 
 

 
 

Figure 9. Receding Horizon Strategy (2): RTC operation scheme at time step t+1. 
 

MPC is a deterministic algorithm, because the disturbance description is deterministic. At each time step of 
application of MPC the optimization yields an optimal control sequence, which is found by means of 
optimization (mathematical programming or heuristic methods). The drawback of a deterministic 
formulation is that it does not take into account the uncertainties of forecasts and models. However, this 
problem is alleviated by the on line approach based on the receding horizon principle. In fact the use of on-
line information available in real-time (new states measures and disturbances forecasts) solves the 
uncertainties of forecasts and model, realigning the states of the system with the reality at each time-step. 
So the result is that there’s no increase of the deviation between forecasted and real behaviors of the 
system in the long period, due to these uncertainties. 

3.1.1 Components of MPC 

The essential components of MPC are: 
1. The internal model that is used to predict the future trajectories of the controlled variables (states and 

outputs of the model) over the prediction horizon as a result of the forecasted disturbances, the initial 
conditions of the system (i.e.: inputs of MPC) and the controls (i.e.: outputs of MPC). The model is then 
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used in the optimization process. For this reason it is important to use a reduced model of the system, 
simplified to a considerable extent. 

2. The objective function that formalizes the goals that the controller has to try to achieve. It can be 
calculated after simulating the future trajectories of the system, using the internal model. 

3. The constraints that must be respected by the controlled system. The constraints can be regarded in 
two different ways: as "hard" boundaries that can never be crossed or as "soft" boundaries that can be 
crossed occasionally, but only if really necessary. There's an important distinction between input and 
output constraints. In general input constraints can't really be exceeded and so they are "hard" 
constraints and there is no way in which they can be softened. The reason is that they represent the 
most of the time physical limitations for the control actions. Instead output constraints are usually 
"soft" constraints [Maciejowski, 1999]. 

4. The optimizer that is used by the controller to find the optimal solution that minimizes (or maximizes) 
the objective function, respecting the constraints. Since the MPC problem must be solved in real-time 
at each time step, it's very important to limit the calculation time. For this reason efficient algorithms 
must be used. 

3.1.2 Formalization of deterministic MPC problem  

At each decision time step t, the optimal controls can be determined by solving on line the following open-
loop problem: 
 

   
            

                           

     

   

 

subject to: 
                                        
                                                   
                                                                   given 
                                                                              given 
any other constraint                             

 
where: 

- All the variables written in bold are vectors. 
- h  is the length of the prediction horizon that recedes at every time step. 

-    is the state vector of the system at time ; the initial state    can be measured or calculated 
since we solve the problem on line and so the solution implicitly depends on the actual state 
(implicit control-law). 

-    is the controls vector, that contains all the decisions to be applied at time . 
-      is the disturbances vector, that contains all the stochastic disturbances affecting the system 

during the time interval [. 
-    is the state transition function. 
-            is a constraint that defines the feasible controls as a function of the state vector. 
-                is the disturbances trajectory that is assumed to be deterministic and is derived 
from a forecasting model; the time subscripts denote the time instant when the disturbance value 
is deterministically known. 

-    is the step indicator or step cost function at time  that expresses the aggregate cost associated 

to the transition from time  to time +1 (from    to     ); the arguments of the step-cost function 
are all variables related to the time interval [t, t+1) and in general it depends on the state, the 

control, and the disturbance at time . The word "cost" must be considered in a wide sense of 
measure of performance and not necessarily as an expense. 
-            is the penalty cost on the final state, that expresses the cost paid for the fact of being 
at the end of the horizon in the state   . This penalty tries to compensate for the limited horizon, in 
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order to get to the end of the horizon in a desirable state to allow to achieve good performances 
later. 

 
In a centralized MPC, as the one we consider in our study, the vector of controls is expressible as a function 
m of the vector of the states. This function m is not determined mathematically but is contained implicitly 
in the MPC procedure to determine the optimal controls. For example assuming that the controls to be 
determined are four, in a centralized controller, they will eventually be a function of all the n states that 
affect the performance of the controlled system, as: 

  

  
 

  
 

  
 

  
 

    

 

  
 

 

 

  
 

  
 

 
 
 
  

 

 

 

 

  
 

 

  

3.1.3 Prediction and control horizon 

The prediction and control horizon are two essential parameters to be determined for the formulation of 
the management problem. The prediction horizon is limited by the prediction ability, i.e. the horizon of 
available forecasts. Inside the prediction horizon the control decisions are taken at discrete time-steps. The 
control horizon is the time lapse between two consequent decisions. The real control horizon depends on 
physical constraints of the system and management characteristics (operational costs). In the formulation 
of the problem the control horizon can be assumed of constant or variable length. The control horizons can 
coincide with the real ones or be enlarged in order to have less decisions to calculate and lower calculation 
time. 
As for the prediction horizon, one might wonder why the controller bothers to optimize over h = P future 
sampling periods and calculate M future controls when it discards all but the first control in each cycle. 
Indeed, the horizon lengths have an important impact. Some illustrative examples (taken from [Bemporad 
et al., 2012]) follow: 
 

- Constraints management  
Given sufficiently long horizons, the controller can “see” a potential constraint and avoid it, or at 
least minimize its adverse effects. For example, it's useful to consider the situation depicted below 
in Figure 10, in which one controller objective is to keep the output y of the system below an upper 
bound ymax. The current sampling instant is k, and the model predicts the upward trend yk+i. If the 
controller were looking P1 steps ahead, it wouldn’t be concerned by the constraint until more time 
had elapsed. If the prediction horizon were P2, it would begin to take corrective action immediately. 
This example is very appropriate in our case-study, in which water level thresholds are to be 
respected. 

 

 

Figure 10. Example of the impact of the prediction horizon on constraints management. [Bemporad et al., 
2012]. 
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- System delays  
Suppose that the controlled system includes a pure time delay equivalent to D sampling instants. In 
other words, the controller’s current move, uk, has no effect until yk+D+1. In this situation it is 
essential that h > D and M< h −D, as this forces the controller to consider the full effect of each 
decision. This situation is typical for water systems problems as our case study. 

3.1.4 Advantages of MPC respect to the off-line approach 

Where MPC differs from the other feedback controllers is that it solves the optimal control problem on-
line, for the current state of the system, rather than calculating off-line a feedback policy (that provides the 
optimal control for all states). Determining the feedback solution off-line would require the solution of 
Stochastic Dynamic Programming (SDP), a vastly more difficult task from a mathematical point of view. This 
approach requires to solve the recursive Bellman equation [Bertsekas, 1995] and in theory provides the 
exact, theoretical solution of the optimal control problem, but in practice its resolution is limited by a dual 
curse [Castelletti et al., 2010]:  
i) The computing time increases exponentially with the dimensions of the state, decision and 

disturbance vectors: curse of dimensionality [Bellman, 1957];  for this reason, with the 
computational capacity available today, the maximum number of states that SDP can take into 
account with reasonable calculation time is about 3-4.  

ii) A model of each component of the water system is required to anticipate the effects of the system 
transition: curse of modeling [Bertsekas and Tsitsiklis, 1996];  so using exogenous information (as 
precipitation or evaporation measurements) requires a dynamical model for each included 
information, thus adding to the curse of dimensionality. 
 

For this reason, it can be recognized that the raison d'être for model predictive control is its ability to 
handle control problems where off-line computation of a control law is difficult or impossible [Mayne et al., 
2000]. The difference between using dynamic programming and MPC is of implementation. In MPC a 
receding horizon control law is employed rather than an infinite horizon control law. This difference makes 
MPC more suitable to be used in detailed problems, where the large number of states makes the problem 
unsolvable by using SDP or it would require an over-simplification of the model.  

3.2 Tree-Based Model Predictive Control 

Since MPC includes the information of the disturbances forecast (weather forecast) in the control strategy 
the management becomes proactive. However, weather is difficult to forecast and meteorological models 
are affected by uncertainty. For this reason the control is vulnerable to forecasts uncertainty, especially 
when using only one deterministic trajectory of forecasts. If there's a predicted event that will not occur, 
the controller runs the risk of taking an action to counteract it and to reach a not desirable state. For 
example if an high inflow is predicted, before its expected realization the controller could lower the water 
level in the reservoirs in vain losing water stored for the drought season. This problem can be faced using 
Ensemble Forecasting that recognizes this uncertainty producing a large number of possible future 
trajectories, that are members of an ensemble. Ensemble Forecasts (EF) can be used for control by setting 
up stochastic programming. This makes the control less vulnerable to the forecast uncertainty. 
 
Ensembles have been already used in stochastic optimal control in recent applications as Multiple Model 
Predictive Control (M-MPC) for open water systems [Van Overloop et al., 2008]. This method searches the 
control series optimal on average for all the trajectories of the ensemble. Even if this method seems to be 
more robust than a deterministic optimization, it overestimates the uncertainty because it is considered 
the same along the entire forecasting horizon. M-MPC takes conservative decisions considering all the 
entire ensemble and all the predicted events as possible scenarios to deal with. 
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In reality, uncertainty differs in time and its possible future reduction can be taken into account in the 
optimal control problems. In fact, as time passes the new measures could provide useful information to 
know which member of the ensemble is the most likely to occur and which ones can be excluded. For this 
reason the proper problem formulation using EFs is multistage stochastic programming (MSP): a framework 
for modeling optimization problems that involve uncertainty in recursive decision making. The level of 
uncertainty can be estimated by some information (e.g. probability distributions) that can be updated at 
each stage in which the optimization problem is solved and so uncertainty can be reduced. In this 
perspective we propose the use of a new control method based on the framework of Model Predictive 
Control, called Tree-Based MPC (TB-MPC). TB-MPC reduces the sensitivity to wrong forecasts, enhancing 
the control performance [Raso et al., 2013]. In TB-MPC the ensemble is transformed into a tree, that serves 
the scope of embedding ensemble data in MSP, specifying the moments when some uncertainties are 
resolved. At these moments control strategies can be changed to consider the feedback mechanism of the 
receding horizon approach.  
The tree structure generation and the optimal control problem are two separate and consequent problems, 
as it is schematized in the following figure. 
 

 

Figure 11. Flow scheme of the two stages of TB-MPC application: tree structure generation and optimal 
control problem. 

 
The tree generation is the first step for setting the TB-MPC problem and it is both difficult and of a critical 
importance, as discussed in Stive [2011]. The tree generation can be done by bundling ensemble members 
at their initial stages, until the point where they are similar to each other, using the methodology proposed 
in Raso et al. [2012] that will be presented in section 3.2.2. The tree so defined is made up of different 
branches. This structure is used in the TB-MPC algorithm to find a different optimal control strategy for 
each branch, as it will be explained in section 3.2.3. 

3.2.1 Ensemble forecasts and trees as uncertainty models 

3.2.1.1 Ensemble Forecasts 

Ensemble Forecasts (EFs) are a set of representative future trajectories of outputs of a dynamical system, 
as meteorological or hydrological models. EFs typically refer to weather predictions as in our case. Today 
ensemble predictions are commonly made at most of the major weather prediction centers worldwide, 
including the European Centre for Medium-Range Weather Forecasts (ECMWF), the National Centers for 
Environmental Prediction (US) etc. 
 
EFs are uncertainty models that present both a deterministic and a stochastic component assuming 
uncertainty among the members, but determinism within each member. Each trajectory is produced by a 
deterministic physically based model. It can include different variables, as temperature, precipitation, etc. 

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/European_Centre_for_Medium-Range_Weather_Forecasts
http://en.wikipedia.org/wiki/National_Centers_for_Environmental_Prediction
http://en.wikipedia.org/wiki/National_Centers_for_Environmental_Prediction
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In most cases, EFs are produced running the same meteorological model many times by slightly perturbing 
the initial conditions. The members of the EFs so obtained are usually close to each other at the early 
stages of the forecasting horizon and then spread out in time. This is due to the fact that the 
meteorological models are chaotic systems, owing to the chaotic nature of the fluid dynamics equations 
involved. 
The ensemble trajectories are dt|x, where: t is the time instant, with t ϵ T : {1, 2, …, H}, H being the length of 
the forecast horizon; x is an index representing the ensemble member, i.e. outcome of a random variable; 
its sample space Ω is composed of N values, where N is the number of ensemble members, generally a 
number between 5 and 100. So the ensemble member is: 
 

              
 

Each ensemble member x has a probability p(x)>0, such that          
    Generally all the members are 

equiprobable, in this case the distribution of x is discrete uniform.  
 
An example of weather Ensemble Forecast is represented in the following Figure 12. 
 

 

Figure 12. Ensemble Forecast of the air temperature in London (UK) produced by ECMWF for 10 days ahead 
the 26th of June of 1995. (Roberto Buizza, ECMWF) 

 

The ensemble members in the figure above (red lines) are given by 33 different forecasts started from very 
similar initial conditions for the 26th of June of 1995. It can be noticed that all the ensemble members stay 
close together at the initial time steps and then gradually diverge. The control trajectory (light blue) is the 
unperturbed forecast using the same model than for the ensemble members. The analysis trajectory (blue) 
represents the observations. 

3.2.1.2 Trees 

A tree is a model of uncertainty derived from an ensemble, locating uncertainty resolution at specific time-
steps along the forecasting horizon. A tree respect to an ensemble contains more information about when 
the members branch out from each other, specifying the so called branching points. At each branching 
point the sample space of the ensemble members splits in two subsets that are mutually exclusive, only 
one of them will occur. So the branching point is the instant when the uncertainty about which subset will 
occur is resolved.  

http://en.wikipedia.org/wiki/Chaos_theory
http://en.wikipedia.org/wiki/Fluid_dynamics
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A tree can be defined in different ways. Raso et al. [2012] define it in the most compact way by assigning to 
each ensemble member x a parent      and a branching point     : 
 

                
 
The parent      indicates the member from which the member x branches out and so it is a function 
defined from   to    the branching point      represents the time instant when the out-branching of x 
happens and so it is a function defined from   to T. One ensemble member is assumed to be the one from 
which all the others branch out, the so called 'root'. For convention the root's parent is the root and its 
branching point is the first time-step. 
In alternative to the definition of parental relations and branching points, another way to represent a tree 
structure is by use of the scenario tree nodal partition matrix M [Dupacova et al., 2003]. M can be derived 
from the latter formulation and viceversa. Parental relations and branching points can be easily identified 
in the matrix. For different members z and P(z), before a branching point M gives the same label number; 
when the member z branches out, its label number becomes different from the one of its parent. 
The matrix M has dimension      : each element in position (i,j) in this matrix contains the label number of 
the tree branch for time-step i and the member j. So the maximum value of the matrix M corresponds to 
the number of distinct branches of the tree. M provides the necessary labeling scheme to set up the MSP 
problem pointing at the 'right position' in the matrix of controls tree, as it will be presented more in detail 
in section 3.2.3. 

3.2.2 Tree generation from ensemble 

There are different methods to build up a tree starting from an ensemble. In the present work we use the 
"information based" method by Raso et al. [2012] that takes into account the available information along 
the forecasting horizon. This method implies the explicit definition of the observations available in the 
future for the controller and their degree of uncertainty. 
The first step before the proper tree generation process is the scenario reduction. With a large number of 
scenarios the calculation time needed for the optimization process will be large as well. To decrease the 
calculation time, the number of scenarios needs to be reduced. The optimal control action at the first time 
step based on this reduced ensemble should be close to the one obtained with the complete (non-reduced) 
ensemble. This problem is solved by heuristic algorithms [Growe-Kuska et al., 2003]: the backward 
reduction algorithm and the scenario tree construction algorithm, which together form the scenario 
reduction algorithm. The backward reduction algorithm reduces the original ensemble to a reduced 
ensemble with a predefined number of scenarios (Nred), by aggregating the most similar members of the 
original ensemble. Which scenarios are aggregated is based upon the difference between scenarios and 
their probabilities as described in Stive [2011]. The method is based on the minimal mass transportation 
problem, minimizing the probability mass of the scenarios deleted and the distance from these scenarios 
and the remaining ones. It's important to remark that at the end of the scenario reduction the new 
members of the reduced ensemble have different probabilities resulting from the sum of the probabilities 
of the aggregated scenarios.  
The second step is to create a tree of scenarios from this reduced ensemble. In this step only parts of the 
scenarios (and not complete trajectories) are aggregated until the moment they diverge. The aggregation 
only occurs if the difference is smaller than a predefined threshold. The key idea is to identify the moment 
  when a specific ensemble member   can be considered certain to happen with a confidence level   , 
chosen sufficiently large (say equal to 0.95). At this moment a branching point      is placed, i.e. the 
ensemble member   branches out from its parent     : 
 

                 
 
This information is important for the control problem, because from the moment   a decision strategy 
optimal for the member   can be applied. 
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The ensemble member's probability        changes in time, when new information is available. Information 
at time t is composed of observations available at that instant    and their likelihood of coming from an 
ensemble member         

  . This function is the observational uncertainty, i.e. the probability distribution 

of the observations that depends on  , i.e. the variance of the observations. The probability       at time t 
increases if the collected observations    are more likely to have been produced by this member, decreases 
otherwise. Bayes' theorem describes how new information changes the conditional probability of an event.  
The knowledge of the probability dynamics of each ensemble member   can be used to determine the 
instant in which the member   is expected to be distinguishable from another. Information on these 
instants for all the members pairs is contained in the distinguishability matrix D. The procedure to build up 
the matrix   is described in Raso et al. [2012]. Here it's important to remark that the matrix D        is a 
function of the confidence level    and the variance of the observational uncertainty  : 

 A larger value of    requires more evidence from the observations, shifting ahead in time the 
instant when two members are distinguishable, delaying the branching point. 

 The better we can observe (little value of  ) the sooner we can distinguish a member from another 
and change the control strategy, anticipating the branching point. 

 
A tree can be then generated from the distinguishability matrix D as described in Raso et al. [2012]. 

3.2.3 Formalization of TB-MPC problem 

The key idea of TB-MPC is to consider a different control strategy for each ensemble member (or set of 
them) to be applied from the moment in which this ensemble member (or set) branches out [Raso et al., 
2013]. This is expressed in the following equation in which for different ensemble members, i and j, up to 
their branching points, the controls must be the same: 
 

  
    

 
         

      
      

              

 
The equation above translates the non-anticipativity condition, saying that controls should not depend on 
the outcome of stochastic variables that have not been extracted yet [Birge and Louveaux, 1997]. 
Having introduced M (see section 3.2.1), the problem of optimal control for TB-MPC at each decision time 
step t can now be defined as: 
 

   
     

                                            

     

   

 

 

   

 

  
subject to: 

                                                                                 

                                                                                              
                                                      given  

                                                                   given 
                             any other constraints                                       

 
where: 
-    is the control space, a matrix of dimension max(M) x Nu where Nu is the control dimension, i.e. for 
each separate branch of the tree of controls we calculate all the Nu control variables; 
-      is the probability of the member z; 
- the trajectory                    is the forecasts trajectory given by the member z of the ensemble; 

-      is the state vector of the system at time  derived applying to the system the disturbances trajectory 

of the member z. 
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Matrix M provides the "position" in    (i.e. the row in the vector) given by       . Before a branching 
point, for different members z, M gives the same address, thus the same control value, respecting the non-
anticipativity condition. Considering for example a member z and its parent     , for t<     , when it is not 
known which member will happen, the same control must find an optimal compromise between the effects 

of z and     , weighted by their probability,      and        . After the branching point, matrix M returns 

different addresses for different members, thus different control values. 
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4. Formulation of MPC problem for the 
case study 

In this chapter we will formalize the problem to be solved, based on the case-study system's information 
and data available, already presented in Chapter 2. The first element that will be presented is a scheme of 
the overall information flow of the work, focusing on the inputs and outputs for the optimizer. Following 
this scheme we will present all the components necessary to build our real-time controller, in the order: 
the model that is used to predict future trajectories of the controlled variables, then the objective function 
and the constraints of the problem, and at last the optimizer. A key element for the formalization of the 
MPC problem is the definition of the cost function to be used in the optimization. Since the lakes have 
different goals, already identified in the Reconnaissance phase (in Chapter 2), it’s possible to define 
different criteria and objective-functions (sub-objectives) to express them formally. For this reason, the 
problem is a multi-objective one. A spontaneous way to solve this kind of problem is to use a global cost 
function that is the sum of the different components, using the so-called weighting method. In the 
exposition we will follow the chronological order of decisions taken in the work, starting defining the sub-
objectives in the most spontaneous way and then analyzing how to normalize and weight them in order to 
be used within the weighting method. After defining the cost function, we will discuss about the horizons 
used in our MPC problem: optimization, forecast and control horizons. Then we will enter into the heart of 
the optimization problem, presenting the algorithm used, Nelder-Mead [Nelder and Mead, 1965], and 
some modifications operated to this algorithm to make it more efficient for the case study, as the 
normalization of the variables to be optimized and the expert-based initialization of the decisions. In 
section 4.8 we will present the extensions in the formulation of the MPC problem to be made in order to 
use the rainfall ensemble forecasts instead of a deterministic trajectory. In the end we will briefly describe 
the code architecture for the model predictive control simulation.  

4.1 Information flow of the problem: inputs and outputs 

The information flow of the present work can be summarized by the following scheme, in Figure 13, in 
which there’s the representation of the main conceptual blocks to be built and used and their interactions. 
The perspective of this flow chart is the open loop simulation performed over the optimization horizon. 
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Figure 13. Flowchart of the information flow for the MPC problem. 
 

The first element of the scheme is the climate model that provides the meteorological forecasts, producing 
time-series of rainfall and evapotranspiration as outputs, that are used as forecasts over the prediction 
horizon at each time-step of MPC application. We will test different climate models in our work, belonging 
to the two following classes: 
 

 The so-called “perfect predictor", that assumes that the forecasted value of rainfall at each time-
step of the prediction horizon is equal to the observed value (assuming a variance of the forecasts 
error equal to zero). As for the evapotranspiration we take the values calculated by the Penman 
equation using the observations for the weather inputs (temperature). The perfect predictor is a 
fake model that in theory can be applied only for the past, using historical time series of weather 
observations. In practice it can be used also for the future, assuming to know a hypothetical reality 
(for example assuming the simulations of GCM models as the future realizations). For our case-
study we can use the past period 1958-2009 of data availability for the observations. The goal of 
using this perfect predictor is to evaluate the upper bound of the prediction ability and the relative 
performance of the real-time controller. 

 A real predictor, represented for the rainfall forecasting model by the ECMWF (European Centre for 
Medium-Range Weather Forecasts) meteorological models [www.ecmwf.int] with two cases:  

 deterministic model; 
 stochastic model, that produces Ensemble Forecasts;  

The output trajectories of this models are available over the period 2005-2009. 
For the evapotranspiration we take as forecasts the pluri-annual average of the 'observed' values 
(calculated by Penman equation using weather observations). 
 

The second element is the hydrological model that takes in input the rainfall and ETP information and gives 
in output the inflows to the river network. The hydrological model used (GR4J) is presented in section 4.2.1. 
It’s important to note that the hydrological model is not affected by the decisions operated on the four 
dams and so it can be put out of the model directly used by the controller. For this reason and since the 
rainfall forecasts are already available for all the period of application of MPC, we can generate all the 
inflow forecast scenarios off-line (before starting the optimization process) for all the time-steps of the 
period of application of MPC (and TB-MPC). So we give in input to the GR model the rainfall forecasts (one 
trajectory for MPC / ensemble of trajectories for TB-MPC) to obtain the correspondent inflows forecasts.  
 
These inflows forecasts are inputs of the internal model of MPC that is composed by: 

http://www.ecmwf.int/
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 hydraulic model "LR", presented in section 4.2.2; 

 reservoir model, presented in section 4.2.3. 
 

These two models make up the internal model of MPC that interacts with the optimizer. The optimizer 
seeks an optimal sequence of controls over the forecast horizon, minimizing an objective function, 
expressed in terms of costs, not to be interpreted as economic costs but in a wider sense. These costs are 
function of the simulated river flows, but also of the reservoirs volumes, as discussed in detail in section 
4.4. 

4.1.1 Classification of inputs/outputs of the models and MPC 

For convenience of the exposition, here below we define all the variables involved in the formulation of the 
MPC problem and their symbols. 

4.1.1.1 Notation of the variables 

 h = length of the optimization horizon (days);  
 Ti = first time-step of application of MPC; 
 Te = last time-step of application of MPC;  
 u(t) = vector of decisions for all the lakes, i.e. inlet/outlet flows over the period [t, t+1) (m3/s); there are 

8 decisions to be calculated at each time step: two decisions for Aube and Seine lakes; three for Marne 
lake; one for Pannecière lake; 

 P(t+1) = rainfall observations over the time period [t, t+1) (mm); 
 Pf(t+1) = rainfall forecasts over the period [t, t+1) (mm);  
 E(t+1) = evapotranspiration over the period [t, t+1) (mm); 
 s(t) = state of the production reservoir (soil moisture) in the hydrological model (GR) at time t (mm); 
 r(t) = state of the routing reservoir in the hydrological model (GR) at time t (mm);   
 I(f)(t+1) = inflows (forecast) over the period [t, t+1), calculated by the hydrologic model, using 

observations Pt+1 (or forecast Pf
t+1) (m3/s); note: I is also called Qlateral.  

 Qriver (up/downstream)(t+1) = average flows of the river (upstream/downstream the BVIs) at the gauging 
stations over the period [t, t+1) (m3/s); 

 Vlakes(t)=vector of lakes volumes at time t (Mm3); 
 g(t)=g(ut,Qt,It+1)=step-cost at time t depending on: control ut, disturbance It+1, state of the system Qt. 
 

4.1.1.2 Proprieties of the variables 

 Frequency: time step of 1 day for all the climatic, hydrological and hydraulic variables; 

 Spatial distribution: climatic and hydrological data for each intermediary basin (BVI); uniform conditions 
on each BVI; 

 Position:  
- upstream stations for the inflows i to each BVI;  
- connection stations for the derived flows Qconnect.. 

 
It's important to do a classification of the variables involved as inputs/outputs of the model and of the MPC 
optimizer. Here below this classification is reported, considering all the variables necessary for the 
simulation of the model and the application of MPC at time t. 
Note: The notation (ti; te) indicates all the time-steps between ti and te.  E.g.: P(ti; te) is the serie: P(ti); P(ti 
+1); … ; P(te). 

4.1.1.3 Inputs of the models 

 Initial conditions for:  
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- the hydrological model GR: two main initial states soil moisture s(t)  and routing reservoir 
r(t); some hidden states are also present and for this reason the GR model is called for a 
period of warming up before t, to realign all the states;  

- the hydraulic model LR: delayed flow for each upstream sub-catchment Qriver
up.i (t-

i : t), for 
a period back in time long as the maximum delay of each BVI;  

- the reservoirs models: initial volumes of the reservoirs Vlakes(t); 

 Deterministic forecast/ensemble forecasts of precipitation, Pf (t+1; t+h), over the optimization horizon 
h, where Pf(t+1) is the rainfall occurring over the time interval [t, t+1); 

 Potential evapotranspiration ETP (average ETP on each intermediary basin); 

 Decisions u(t; t+h-1) for all the reservoir connections and time steps of the forecast horizon h. 

4.1.1.4 Inputs of the MPC optimizer 

 Arguments of the cost-functions:  
- flows Qriver, i.e. states of the LR model, at the control stations for each simulation step of 

the optimization horizon (t; t+h);  
- final volumes of the reservoirs at the end of the optimization horizon Vlakes(t+h), i.e. output 

of the reservoirs models. 

 Arguments of the constraints: 
- flows in the reservoirs connections Qconnect. for the horizon (t; t+h-1); 
- volumes of the reservoirs during the optimization horizon Vlakes(t; t+h); 
- flows Qriver(t; t+h) downstream the reservoirs connections. 

4.1.1.5 Outputs of the MPC optimizer 

 Optimal decisions u*  for the four dams (inlet and outlet flows) for the optimization horizon (t; t+h-1); 

 Objective value J*, that is function of the optimal decisions.  

4.1.2 Flow chart of the variables in operational perspective 

In order to describe the cause-effect relationships among the variables of interest for the MPC problem, we 
can analyze the flow process of inputs and outputs with a flow chart more detailed than the one in Figure 
13. Moreover here we want to represent the closed-loop simulation, emulating the presence of the real 
controlled system by using a model more accurate than the one used in the MPC optimization loop. The 
implementation of this accurate system is planned to be done within the Climaware project, but it's not 
presented in this thesis. 
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Figure 14. Flowchart of the MPC problem at each decision time step t in a closed loop simulation from Ti to 
Te. The standpoint of this scheme is the operational perspective, emulating the application of MPC to the 

real system by using an accurate model. 
 

The flowchart in Figure 14 represents the schematization of the simulation of an operational use of the 
MPC controller at time-step t. At each instant of decision t, the MPC problem involves the information flow 
regarding the countered box on the left side of the diagram. 
The on-line optimization problem uses a reduced model of the controlled system, with a small number of 
states of the model that allows to keep low the calculation time. In the real world application of MPC, at 
each time step the real physical systems evolves under the optimal controls calculated for the current step. 
Then observations are then used to realign the states of the reduced model. For simulating a operational 
perspective, instead of playing with the real dams, we can use a more accurate model for trying to 
reproduce the complexity of the real world. Since in the receding horizon strategy only the first optimal 
decision must be applied to the real system, in the operational perspective the first control of the sequence 
calculated over the optimization horizon is used as input by the accurate model for only one time-step 
simulation. This accurate model allows to realign the states of the reduced model at the next time-step of 
simulation of MPC, using rainfall observations in input and by means of a more accurate description of the 
real system. The accurate model simulation shown on the right side of the diagram in Figure 14 is going to 
be integrated after the end of this work in SIC [J.P. Baume et al., 2005]. For the moment, in the 
implementation used for obtaining the results of this thesis, the accurate model is substituted by the same 
reduced model (TGR) used as internal model in the MPC optimization.  
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4.1.3 Uncertainty sources 

The MPC optimization is based on the use of the meteorological forecasts and a reduced model, so its 
solution is affected by the uncertainty of these two sources. Since the same reduced model is used so far 
for both on-line optimization and closed-loop simulation, as explained in the previous section (4.1.2), the 
realignment of the states (of the hydraulic and reservoirs models) is due only to the elimination of the 
uncertainty of the forecasts and not that of the model. Using the internal model of MPC as reality emulates 
a perfect knowledge of the rainfall-runoff process, thus considering to have a perfect model and 
underestimating uncertainty. 
In this study, our goal is to evaluate the possible performance improvement by using ensemble instead of 
deterministic forecasts. So, we will focus only on the impact of the uncertainty of the meteorological 
forecasts, thanks to the comparisons between MPC with perfect predictions (MPC-PP), with real 
deterministic forecasts (MPC-RF) and with ensemble forecasts (TB-MPC). 
For all the three methods (MPC-PP, MPC-RF and TB-MPC), at each time-step of the closed-loop simulation, 
the MPC solution is used for simulating the system using the rainfall observations instead of the forecasts. 
Here it must be noticed that even the rainfall observations are affected by the uncertainty of the 
measurement process, that we will not take into account in this study. 

4.2 The model of the system (TGR) 

In order to model the Seine watershed we used the TGR model (fr.: modèle de Transfert couplé au modèle 
du Génie Rural), a semi-distributed conceptual model developed in Munier [2009]. The TGR model couples 
a hydrological lumped rainfall-runoff model with a simplified hydraulic model. Since TGR is a conceptual 
model, its states do not correspond to physical properties of the system.  
In TGR calculations are made at the scale of the intermediate river basin (BVI = fr.: "Bassin Versant 
Intermédiaire") that is the sub-basin obtained removing the upstream sub-basins [Dehay, 2012]. Using a 
semi-distributed approach, it’s possible to take into account the heterogeneity of the basin. For each sub-
basin a module of TGR is identified, with its own parameters. This structure is schematized in Figure 15. 
Each module calculates the downstream flow of the BVI starting from climate data (E and P). The rainfall is 
transformed by the hydrological component into run-off. For all the sub-basins, except the very upstream 
ones, this runoff is then taken by the hydraulic component with the flows of the upstream BVIs. 
 

 

Figure 15. TGR model structure: an intermediate river basin and its relative TGR module.  
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The two sub-models used in TGR are: 

 the GR (fr.: Génie Rural) model for the hydrological part, described in section 4.2.1; 

 the LR (fr.: Lag and Route) model for the hydraulic part, described in section 4.2.2. 
 

The watershed of the Seine is divided into 25 intermediate river basins (BVIs), having as outlets the 25 
gauging stations for river flows upstream of Paris. A map of these BVIs and stations is provided in Appendix 
C. The TGR module schematized in Figure 15 is applied to the 25 BVIs in a proper order. For performing this 
operation a network of the intermediate river basins configuration is identified (see Appendix E). TGR is 
first applied to the upstream BVIs, before being applied to the downstream BVIs. Flows from upstream BVIs 
are considered as punctual upstream inflows. For example, a networking scheme of the BVIs and TGR 
modules is reported in the figure below. 

 

Figure 16. Networking scheme of BVIs and TGR modules. 
 
The TGR model was calibrated for the case study using daily average observed flows, called “naturalized” 
because the influence of the lakes is removed. The calibration was performed minimizing the sum of the 
squares of the deviations between simulated and observed flows, using the optimizer Nelder-Mead (see 
section 4.7.2.1). 
The observed data used for calibration are the historical time-series of daily river flows over the period 
1958-2009. It can be remarked that in this period the big floods of 1910 and 1924 are not included, so the 
model it’s supposed to reproduce better normal conditions or high-flows and floods of moderate level, as 
the flood of 1982, than the exceptional conditions of a 100 year return-period flood as the case of 1910. It’s 
important to remember this issue about calibration representativeness when using the same model for 
future climate scenarios. The daily time-scale of the calibration data is good for our use of the model that 
will be operated at the same scale. 
The calibration was done sequentially from upstream to downstream. For the sub-basins located at the 
upstream ends (i.e. no other sub-basin is located upstream), the calibration of the sub-basin parameters 
only consists in calibrating the four GR4J parameters. For the other sub-basins (i.e. the sub-basins that 
route flows from upstream sub-basins), there are two hydraulic parameters plus one extra parameter for 
the routing of each upstream flow. This extra parameter is used for defining the relative routing distances 
between the sub-basin outlet and each connected upstream sub-basin outlet. 
The TGR model was first used to simulate natural flows. Then the four reservoirs were explicitly included in 
the TGR model structure to account for their influence in order to respond to the objectives of Climaware. 
This modification is made taking into account the reservoirs to define new sub-catchments, starting from 
the 25 original ones, as described in section 4.2.2.1, and then adding a model for the reservoirs. This 
modified model uses the same calibration as for natural flows. 
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4.2.1 The hydrologic model GR4J 

The GR4J (Fr.: "Génie Rural à 4 paramètres Journaliers") model is a non linear rainfall-runoff model used to 
calculate the net rainfall production and the exchanges with the aquifer [Perrin et al., 2003]. It takes in 
input the climate data, rainfall and ETP, and gives in output the run-off for each BVI. The model depends on 
four parameters: the capacity of the production reservoir (S), the gains or losses from exchanges with the 
aquifer (IGF), the capacity of the routing reservoir (R), and a time constant of the unit hydrograph (T). In 
this project, we assume that all the sub-basins have the same hydrological behavior, so the same model is 
used for all of them, with different parameters, obtained by the calibration at the BVI scale. In addition, 
rainfall and ETP are uniform throughout the BVI, as with any global hydrological model. The output of the 
GR4J is then considered as distributed lateral inflow to the hydraulic river system of the BVI and it is added 
at downstream.  

 

 

Figure 17. Scheme of the GR4J rainfall-runoff model. [Perrin et al., 2003]  
 

States of the hydrologic model GR and warming up 

The main states of the system for each BVI are the production reservoir S and the routing reservoir R. These 
two reservoirs represent the "long" memory of the system GR. However, there are other internal states in 
this model, corresponding to the rainfall waiting in the unitary hydrographs. Since in the implementation of 
the model available (at the moment) only the two external states are saved as outputs, it’s necessary to pay 
attention to have the good initial conditions. If we take as initial conditions for our problem only the 
reservoirs states (S and R) we make the implicit assumption that there is no rain waiting in the unit 
hydrographs. But if this is not the case, it will cause errors. As the unit hydrographs have a short memory if 
we run the model for a period of warming up long enough (some weeks) before the target period of 
simulation, using the observations as inputs, the impact of not good initial conditions in the hydrographs is 
annulled. In this way we need only the initial conditions of S and R. So we decided to run the simulation of 
the hydrologic model GR for a period of warming up of 2 months before the real period of interest, because 
we found that in this way the errors are negligible (1E-5 m3/s).  
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4.2.2 The hydraulic model LR 

 

It allows the calculation of the downstream flow qX depending on the upstream flow q0, the punctual lateral 
inflow qp and the diffuse lateral inflow qd. Each of these three contributions to downstream flow is 
calculated independently by a transfer function of first order, with a delay representing the attenuation 
phenomena and a delay typical of streams propagation. These transfer functions are calculated using two 
different parameters for the different inputs: a time constant τ and a delay K. Since these inputs regard the 
same river branch, it's natural to imagine that there's a relationship between these two parameters and the 
physic features of the BVI. These relationships were studied in Munier [2009]. Using the surface of each BVI 
and the distance between upstream/downstream stations, it's possible to calculate the two parameters τ0 
and K0. 

 

Figure 18. LR hydraulic model scheme and general equations. 
 

The scheme and equations in Figure 18 show that the propagation of the flow rate q0 from upstream to 
downstream occurs through rigid modules (plug flow). Moreover in the LR model the BVI have also a 
detention capacity (not shown in the figure). For this reason the states of the hydraulic system are all the 
flows in the river network that are going to be transferred towards the downstream outflow of the 
watershed. For our case study a simplification on the LR model was made by considering all the lateral 
inflows as punctual inflows added at the outflow of each river branch. 

4.2.2.1 Introduction of the reservoirs in the model 

The work of introduction of the reservoirs in the TGR model is done in Dehay [2012] where all the data of 
the lakes that must be taken into account in our model are summarized. These data include: the maximum 
and minimum volumes of the lakes and the capacities of the channels, the distances between the upstream 
and downstream stations and the connections, the reference and reserved flows in the river downstream 
the inlet/outlet channels, the eventual presence of withdrawal channels, etc. These data are reported in 
the schemes in Appendix A. 
 
Adding the dams, the intermediate river basins are split at the connection points of the channels 
(intersections of inlet and outlet of the lakes with the river). Each connection of the lake cuts an existing BVI 
in two new BVIs with outflow in the connection point for the upstream BVI (see next figure). For this 
reason, after adding the dams in the model the number of BVIs increases from 25 to 32, because there are 7 
connections (3 for Marne, 2 for Aube and 2 for Seine). 
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Figure 19. General scheme for lake's connections with one inlet and outlet and subdivision into new BVIs . 
[Dehay, 2012] 

 
The scheme in the figure above represents the situation of a lake with one inlet and one outlet. In 
particular each lake has a different configuration, as summarized in Figure 20. 
 

 

Figure 20. Summary scheme of lakes connections configurations. Scheme taken from Dehay [2012] and 
corrected for Marne lake. 

 

Only the lake Aube has exactly the configuration with two connection channels (one inlet and one outlet) 
on the Aube river. For the lake Seine, there's an inlet connection, while there are two outlet connections 
with two branches of the Seine river. However for one of these the flow in unknown since there's no 
upstream station for one of the two river branches. Moreover, this restitution is very distant (41.8 km) from 
the downstream station of the model (Mery-Sur-Seine). So it was considered that all the outlet flow is 
restituted to the Seine in only one connection. The lake Marne configuration is the more complex, with two 
connections for the inlet and two for the outlet, one on the Blaise and one on the Marne. The restitution on 
the Blaise, being very inferior to that on Marne, can be considered as a complement. Moreover, the Blaise 
and the restitution connection with the Marne rejoin 450 m before arrive in the Marne. For this reason the 
two connections can be reduced to one. The Pannecière is directly on the Yonne, without derivations. 
Moreover, the station of Chaumard, used in the model, is located in the lake and so has not physical 
meaning. It can be considered as the intake and restitution connection at the same time. 

4.2.2.2 Equations of the hydraulic model 

The implementation of the hydraulic model has been modified in the framework of this work in order to 
manage to work with the receding horizon strategy of MPC. In fact, the implementation already available 
for the case study carried out the calculation of the model over the whole simulation horizon (many years) 
starting from a random initialization. Since the influence of the initialization is lost after a few days, a good 
initialization was not important compared to the length of the simulation horizon of many years used to 
simulate the current management of the lakes. On the contrary, in the case of our MPC the influence of 
initialization is important and so it’s necessary to make the initialization as accurate as possible at each time 
step of application of MPC. In order to understand how to initialize the model, we must analyze in detail 
the equations. From the equations we can identify the states of the model and then the initialization will be 
done at each time step saving the initial states of the next time-step. 
The hydraulic model propagates the flows in the river network BVI by BVI. The calculation order of the BVIs 
is reported in Appendix E. The equations for each BVI can be seen as linear combinations of the different 
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components involved: propagation of upstream BVI flows, attenuation of the previous delayed flow of the 
same BVI, withdrawal by the reservoirs, addition of lateral inflows and restitutions from the reservoirs.  
 
The explanation of the LR model provided above shows us which are the states of the system. Calling       

the floor value of the real parameter     , delay for the BVI j, at each time-step it’s necessary to have the 

previous (       ) flows for each BVI j so that the LR model can take them in input to forecast the future 

dynamic of the whole system. In fact for calculating the downstream flow             of BVI j we need 

the upstream flows                and                   coming from each upstream BVI i and the 

previous downstream flow          . So in total, considering all the 32 BVI and the corresponding 

parameters   , we have 51 states.  
 
We can better visualize these states and their role in the equations provided here below. For clearness in 
the exposition, the equations will be summarized in different classes, considering all the possible positions 
for a BVI j in the river network. Referring to the BVI numeration reported in the scheme in Appendix E, we 
have the following cases: 
 

 BVI j upstream the rest of the system and without channels of derivation (case of BVI number 1, 3, 6, 
12, 13, 15, 17, 21, 23, 29 and 31): 

               
  

  
                             

 

 BVI j with nup upstream BVIs and an inlet channel to a reservoir (case of BVI number 2, 7, 24 and 25):   

            
  

  
                      

                           
     

   

   

     
  

  
            

                       

 
 Note: the component of propagation of upstream flows, i.e. part between square brackets, is absent for 
BVI 25 where nup is zero. 
 

 BVI j with nup upstream BVIs and an outlet channel (case of BVI number 4, 8, 11, 27 and 28):  

            
  

  
                      

                           
     

   

   

     
  

  
            

                       

 
Note: for BVI 11 the part between square brackets is absent, since nup is zero; moreover, all the inflow 
from t to t+1,                , feeds the reservoir, whose outlet should be considered downstream the 

same BVI. So the downstream flow of BVI 11 is equal to the outlet from Pannecière lake. 
 

 BVI j with nup upstream BVIs and without channels (case of BVI number 5, 9, 10, 14, 16, 18, 19, 20, 22, 
26, 30, 32 and 33):  

            
  

  
                      

                           
     

   

   

     
  

  
            

                 

 
Where, in the equations: 

             is the average river flow downstream the BVI j [m3/s] over the horizon [t, t+1); 

          is the river flow of the upstream BVI i [m3/s] over the horizon [t-1, t); 
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                 is the lateral inflow of the BVI j [m3/s] over the horizon [t, t+1), that is the output 

of the hydrological model depending on rainfall over the horizon [t, t+1) and initial conditions at 
time  t; 

      is the decision at time t, that is the flow of the channel located in BVI j over the horizon [t, t+1) 

[m3/s] ; the connection of the channel is considered to be downstream the BVI j; 

        
  is the real delay parameter (real number) of the upstream BVI i [hours]; 

        
 is the integer part of the delay parameter       

 
 [days] (       

 =floor(       
    )) 

             
   is the decimal part of the delay parameter        

 
 [-]; 

   
 
 is the attenuation coefficient for the BVI j [hours] that is zero for almost all the BVIs;  

    is the simulation time-step [hours] (assumed equal to 24 hours). 
 
The initial states of the hydraulic model for the first time-step of the simulation horizon with MPC 
management are set equal to the values obtained by simulation of the current management on the same 
scenario (NTP/NAT/TP/FUT) at the first day of the simulation horizon. After that, at each time-step of MPC 
simulation, we save the simulated river flows that appear as inputs of the equations above for the next 
time-step simulation, to be used as initial conditions. 

4.2.3 Reservoirs models 

 

The four reservoirs can be described by a simple linear equation, derived from the mass conservation 
equation: 
 

                                              

 
where: 

       = volume of the reservoir k [Mm3] at the end of the time-step t (=[t, t+1]); ift=1day the 
convention assumed is to consider       the volume at the end of the day t;       is the state of the 
model for the lake k; 

             = flow(s) of the inlet channel(s) of the lake k, over the horizon [t, t+1) [m3/s]; 

              = flow of the outlet channel over the horizon [t, t+1) [m3/s]; 

    = conversion factor from m3/s to Mm3 (3600*24*10-6). 
 

The inlets and outlets channels are configured differently for the four lakes as already shown in Figure 20 
and summarized below: 
 
1. Aube: 1 inlet and 1 outlet channel; 
2. Seine: 1 inlet and 1 outlet channel; 
3. Pannèciere: no inlet channel (dam directly on the river) and 1 outlet channel; 
4. Marne: 2 inlet channels and 1 outlet channel. 

 
The reservoirs equation for each lake k takes in input a different number of inputs          and           . In 

total there are 8 decisions to be applied at each time step for the four dams: two decisions for Aube and 
Seine; three for Marne; one for Pannecière.   
 
For a scheme of the position of the dams and the derivation channels in the river network the reader may 
refer to Appendix E. 
The initial state of the reservoirs model at the beginning of the simulation period is set equal to the storage 
value obtained by simulation of the actual management rules on the same scenario at the beginning of the 
first day of the simulation horizon. 
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4.3 Definition of criteria and indicators 

An evaluation criterion is an attribute, or a factor, with which the Decision Maker (DM) or a Stakeholder 
judges the performance of an alternative from the viewpoint of one of his/her interest [Soncini-Sessa et al., 
2007]. 

A quantitative indicator i is a function of the trajectories   
    

     and   
  of the states, of the controls and 

of the disturbances that act on the system in a time horizon H=[0, ... , h], termed design horizon. 
When it is not possible to associate an indicator to a criterion a proxy indicator should be used i.e. a 
variable in a logical relationship with the criterion and related to the effects of the alternatives. 
 
Following the Participatory and Integrated Planning procedure (PIP, [Soncini-Sessa et al., 2007]), in order to 
formalize the objective, first, it's good to define the ideal criteria and the indicators, expressed in words, 
corresponding to the sector of interests identified in section 2.3. Following these criteria we will be able to 
build an objective function in the next section. The definition of these criteria and cost-functions presents 
some arbitrary aspects that will be highlighted for clearness. All the sub-objectives will be defined as costs 
to be minimized. 
 

1. Floods: the criterion can be the total damage produced by floods; a possible proxy indicator is the 
difference between the actual river flow/level and a warning maximum threshold flow/level. 

2. Water demand: the criterion can be the satisfaction of the demand; a possible indicator is the supply 
deficit or the difference between the actual river flow and a minimum threshold flow; 

 
As we have already discussed in section 2.5.1, warning thresholds for the river flows are defined at some 
downstream control stations and are actually used by the manager to assess the performance of his 
management strategy. The current information about the thresholds was already reported in Table 1. They 
were defined in two groups, maximum thresholds for floods and minimum thresholds for low-flows. So it's 
natural to think to use these thresholds for expressing our indicators.  
Moreover, we know that reference flow thresholds, defined at other stations immediately downstream the 
reservoirs, are used by the manager as a constraint to change his decisions respect to the filling curves. In 
fact, overcoming these reference flows corresponds to floods in the sub-basins just downstream the dams. 
For this reason we must take into account also these reference thresholds for the flood indicator.  
At this point it becomes possible to define in a formal way the indicators for high and low flows. 

4.4 Step-costs on system transitions and penalty-costs on 
final states 

4.4.1 High flows step-costs 

As for floods, we can express the effects at time t with a proxy indicator defined as a linear combination of 
the differences between the current flows at time t and the thresholds flows of the river at the control 
stations, when this difference is positive. Since there are three thresholds that we want to be respected in 
order of priority (1st of vigilance, 2nd of regular flooded areas and 3rd of exceptional flooded areas) it's 
natural to think to use a piecewise linear cost function for the cost at each station, with increasing slopes for 
increasing flows. The first threshold is the less important since it doesn't correspond already to floods 
occurrence, but anyway it's dangerous to overpass it. So, at the beginning of this work we supposed the 
cost being zero until the first threshold flow and linearly increasing after. However, after some simulation 
experiments we've found that having a cost already increasing from the first threshold led to the result that 
the reservoirs were filled too early in a flood event, consuming their capacity too soon. 
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For this reason, we have then redefined the first threshold where to start to increase the step-costs, as the 
first vigilance threshold plus a percentage p of the interval between the first and the second thresholds (e.g. 
p=0.9). Then the slope increases more and more in correspondence to the second and the third thresholds.  
 
The thresholds where the slopes of the step-costs change can be so defined: 
 

 
 
 

 
 

 

       
                 

                     
                  

            

       
                

         

       
                

         

  

 
where: 

         
 

           ,         
 

           and        
           are the thresholds for high flows at the control station j, whose values 

are reported in Table 1; 

   is a parameter between 0 and 1 (e.g.       ) defining the level where the step-cost begins to 

increase, in the interval         
                   

           . 

 
The control stations, that are to be taken into account for evaluating the performance of the controlled 
system, are placed at strategic points in the river network. For example, among the nine control stations, 
there are: 
 

 Paris : extreme downstream of the model; 

 Arcis-sur-Aube : downstream of Aube Lake before the confluence with Seine river; 

 Courlon-sur-Yonne : downstream of Pannecière Lake just before the confluence with Seine river; 

 Chalons-sur-Marne : downstream of Marne Lake; 

 Méry-sur-Seine : downstream of Seine Lake before the confluence with Aube river. 
 

For the detailed information about the thresholds at all the monitoring stations the reader should refer to 
section 2.5.1. 
 
We can define the floods indicator for the whole system as a weighted sum of the costs associated to all 
the control stations. For each station j the total cost for high-flows on the optimization horizon h can be 

expressed as the sum of h functions   
 
, called step costs. We assume that each step cost is a function   

 
    

that depends linearly on the state of the system in correspondence with the station j, that is the current 

flow   
 
 at that point. Thus, the step-cost is expressed so far in units of measurement of flow rate [m3/s]; 

however, this cost will be then normalized and expressed in dimensionless units (see section 4.6.1). 
So, the step-cost function can be expressed in the way described by the following piecewise function: 
 

  
      

 

 
 
 

 
 

 

                                                                                                                                
 
         

           

      
 
        

                                                                                            
            

 
         

        

      
 
        

                      
                

                                                  
           

 
        

        

        
 
        

                    
                

                     
                

                     
 
         

        

     

where:  

   
 
 is the river flow at time t at the reference point j (state of the model); 

        
                

         and        
         are the high-flows thresholds defined above; 

       are the slopes of the piecewise linear cost, steeper as flows   
 
 increase. 
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It should be noted that these choices are arbitrary. We know that the cost must increase with the river 
flow, but we could have chosen another class of function, such as a quadratic one. However the linear form 
is the most simple and implies a steep growth of the cost already in proximity of the thresholds. Also the 
choice of the slopes values is arbitrary and depends on the preferences of the decision maker. We will 
explain how the slopes are defined in section 4.6.2.2, in order to balance the high-flows step-costs with the 
penalty cost on the final storages. 
 

4.4.2 Low flows step-costs 

For low flows, in order to evaluate the satisfaction of the demand for drinking water and the other water 
uses of the river, the thresholds of low flows can be used as we have done for high flows. The thresholds 
taken into account for low flows are three: vigilance, alert and crisis; their values are reported in Table 1. 
We adopt the following notation for the thresholds values: 
 

 
 
 

 
 

 

       
                 

           

       
                

         

       
                  

          

       
                

         

  

 

where         
 

          ,         
         ,          

           and        
         are the thresholds for low flows at the reference station j. 

 
So, at each reference station j, we define the low-flows step-cost as a piecewise linear cost function with a 
changing slope in correspondence of the different thresholds. We assume to start with a cost of zero for 

flow at       
       . So, the step cost   

 
   , at the station j and time-step t, linearly depends on the flow at the 

station j, in the way described by the following function: 
 

  
    

 

 
 
 

 
 

 

                                                                                                                            
 
         

        

           
           

 
                                                                                    

          
 
         

        

         
          

 
           

             
                                                     

          
 
      

       

          
          

 
           

              
                  

             
                      

 
        

       

    

 
where:  

   
 
 is the river flow at time t at the reference point j (state of the model); 

       are the slopes of the piecewise linear cost, steeper as flows   
 
 decrease. 

 
The same observations done in the previous section, about the arbitrary choices made for the high-flows 
step-costs definition, are valid for the low-flows step-costs. As for the slopes, we will explain how they are 
defined in section 4.6.2.1, in order to balance the low-flows step-costs with the penalty cost on the final 
storages. 
 

4.4.3 Reference flows step-costs 

Overcoming these reference flows corresponds to occurring floods in the sub-basins just downstream the 
dams. For this reason we must take into account also the reference flows at each time step of the 

simulation. We can define the step-cost   
 
    for reference flow, at the station j and time-step t, that 

linearly depends on the flow at the station j, in the way described by the following piecewise function: 
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where:  

   
 
 is the river flow at time t at the reference point j (state of the model); 

         
 

          ,         
          and        

         are the thresholds for low flows at the reference station j; 

     are the slopes of the piecewise linear cost, steeper as flows   
 
 increase. 

4.4.4 Total step-costs 

The total step cost at time t   
   , for both floods and low flows, is the weighted sum of the step costs at all 

the reference stations: 
 

  
        

      
  

        
   

        
  

          
   

    
   

      
  

      

 
where: 

 N is the number of control stations for high/low flows (see Table 1) plus the number of control 
stations for reference flow (see Appendix A); 

   
      

 ,   
        

 ,   
    

are the weights of the reference station j for floods, low flows, and 

reference flows used to balance these components of the total step-cost. 

4.4.5 Penalty-cost on the final storages of the lakes 

Since the optimization horizon is finite, in the MPC approach it's usually necessary to take into account a 
penalty-cost on the final state of the system that must assure that the choice of the controller is not 
influenced only by the short time horizon and that instead the management is sustainable in the long term. 
In our case study, this sustainability requirement can be formalized as trying to stay as close as possible to 
the Filling Curves of the lakes. This is an arbitrary but natural choice derived from the meaning of the FC. 
Therefore the desire of a sustainable policy can be implemented adding a cost on the final state of the 
reservoirs that penalizes the decisions that cause large deviations of the volumes of the lakes from the 
filling curves at the end of the optimization horizon. So we can define the penalty on the final storage 

  
       

   as the sum of the squares of the differences between the volumes of the lakes at time t=h and 
the objective filling curves at the same time-step. In this way minimizing this penalty-cost we will assure 
that the state    of the reservoirs, which would result from the application of the sequence of optimal 
decisions, will be as nearest as possible to the state defined by the objective filling curves. 
 

  
       

                 
            

     
         

 
where: 

   
   is the volume of the i-th reservoir at time h simulated applying the controls proposed by MPC; 

         
   is the volume of the filling objective curve of the i-th reservoir at time h. 

 

It should be noted that the quadratic form of the penalty-cost   
        has been chosen to penalize in the 

same way positive and negative values of the difference   
            

  . Moreover the quadratic form 

penalizes more large deviations than small ones. 
 
In order to counterbalance correctly the step-costs and the penalty on the final storages, we found the 
necessity to develop the penalty function definition in a more refined way, using: 
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 two different functions for the cases of being over or under the FC (as it will be explained in section 
4.6); 

 a piece-wise quadratic function for each of the two cases (over/under the FC). 

4.4.6 Penalty-cost on by-passing the river  

Since for the controlled reservoirs, except for Pannecière, there are both inlet and outlet channels to derive 
water into/from the lakes, there are countless equivalent solutions taking and discharging water at the 
same time. This management behavior implies by-passing the river without changing effectively the effects 
downstream the lakes. The solutions opening inlet and outlet derivations at the same time are not good for 
the manager that would have to take care of two flows (opening two gates) instead of one. For this reason, 
to help the optimizer to discern between these equivalent decisions, we defined a penalty cost to avoid to 

take and discharge at the same time   
       

.  

One might wonder why the controller bothers to calculate two decisions, inlet and outlet, for each 
reservoir when the effects depend on the difference between these two values. The reason is that there 
are some constraints downstream the inlet derivations (legal constraints as reserved flows) that we must 
take into account as we will see in the next section.  

4.5 Constraints  

After having defined our objective function we need also to define the constraints that the solution has to 
respect. There are some general constraints regarding the whole system (all the lakes/channels/river 
stations) that are essential and some special constraints that concern only specific points of the system. The 
latter ones in a first implementation could be neglected without jeopardizing too much the correctness of 
the implementation. So we will implement only the general constraints. 

General constraints: 

 Maximum capacity of intake and discharge channels: it is the physical capacity of the channels; 
this constraint can be mathematically formulated as boundaries on the decisions domain (hard 
constraint). 

 Maximum and minimum volumes of the lakes: there’s no sense to overcome this range of 
admissibility, over the maximum we can’t fill more/below the minimum we can’t empty more the 
lakes; this constraint can be mathematically formulated in two ways:  

o Hard constraint on the volumes; since volumes are linearly dependent from decisions as 
seen in section 4.2.3; this formulation is equivalent to linear constraints on decisions; 

o Soft constraint on the volumes. 
 Minimal reserved flow in the river: it is the minimum flow for assuring life to the aquatic species, 

that is a legal environmental obligation (Article L432-5 of the French Environmental code);  this 
constraint can be mathematically formulated in two ways: 

o Soft constraints on the river flows (controlled system states) or on inlet decisions (to limit 
the inlet flow rate depending on the upstream flow).  

Additional special constraints: 

 Maximum allowable flow for the Seine inlet: since the Seine inlet connection has no gates at the 
derivation, differently from other lakes, the derivable flow rate depends on the upstream level in 
the river; however at the moment the exact formula it's not available, so this constraint will not be 
implemented. In the future it could be added as: 

o upper bound on inlet decision, to limit the inlet flow rate depending on the upstream flow; 
it’s a physical relation (hard constraint). 

 Maximum daily variation of flow rate for the discharge from Pannacière lake: it can’t be more 
than 2 m3/s for 24 hours. This constraint can be mathematically formulated as: 
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o as soft constraint on the sequence of decisions for Pannacière. 

4.5.1 Soft-constraints 

4.5.1.1 Reserved flow  

We have seen in section 2.4.2 that the reserved flow is a legal constraint for the manager of the lakes that 
defines the minimum flow to be left in the river. The flow in the river downstream an inlet derivation or the 
dam (for Pannecière that is directly on the river) must be greater than the reserved flow, when it's possible. 
In other words, the inlet flows to the reservoirs must let always this minimum reserved flow or more, if it's 
possible; moreover the inlet flow must be equal to zero if the river flow upstream the inlet channel is 
already less than the reserved flow. In our problem formulation we chose to implement this constraint as a 
soft constraint, since it is not a physical constraint and it's better to use soft constraints in this case. The 
soft constraint formulation can be translated in the sentence: "when it's possible, the reserved flow must be 
ensured in priority respect to the other objectives". So we can define a penalty       

       as the sum of the 

squares of the differences between the current flow of the river and the reserved flow, multiplied by a very 
high weight         . Moreover it’s natural to think to use a security factor   , as for prudence we want the 

controller to respect the limits with a security margin. 
 

 For each river station i downstream an inlet derivation, when       
    : 

 

 
     

             
                                                                          

       
     

     
            

               
       

                
             

       
  

 

 For the whole system (for the 5 stations downstream an inlet derivation): 
 

   
        

   
        

       
   

 

   

 

where: 
 

          is a security factor, to respect the limit with a margin; 

         is the weight, that must higher than the other cost-components weights; 

 
The reserved flows values for each lake are reported in the schemes in Appendix A. 

4.5.1.2 Limits for the volumes of the lakes 

The reservoirs have a fixed capacity and so a maximum volume is defined. Moreover, a minimum volume is 
also defined for a correct reservoir's operation. These constraints are a priori hard constraints, but for 
easiness of implementation and to reduce hard-constraints for MPC, they can be implemented as soft-
constraints, associating a very high penalty cost to the eventual overcoming of these volume thresholds. 
We can define the soft-constraint cost    

       as the sum of the squares of the differences between the 
current volume of the lakes and the minimal or maximal volume, multiplied by a very high weight      . 
Moreover it’s natural to think to use a security factor    , since, for prudence, we want the controller to 
respect the limits with a security margin. 
 

 For each lake i: 
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 For the whole system: 

   
              

        

 

   

 

where:  
 

   
   ,     

   and     
   are respectively the current, minimum and maximum volumes of the lake i; 

     security factor (e.g. it can be defined as one thousandth of the range [Vmin; Vmax]); 

     
 is the weight, that must higher than the other cost-components weights and also higher than 

        . 

 
The maximum and minimum volumes of all the lakes are reported in the schemes in Appendix A. 

4.5.2 Hard-constraints 

Limits for the inlet/outlet flows 

The capacities of the channels are implemented as hard constraints on the decisions, since they represent 
physical constraints that the system is not allowed to overpass. So, the equation that describes these 
limitations can be written as: 
 

                                                
 

where    is the control decisions vector at time   and      is the vector containing the capacities of the 
channels. 
The capacities for all the lakes connections are reported in the schemes in Appendix A. 

4.6 Sub-objectives normalization and weighting 

4.6.1 Normalization of the sub-objectives 

Since there are many sub-objectives and each one contains different components that are added up, a 
good approach is to normalize each cost-component using the maximum value that it may assume (making 
the ratio between the original cost and maximum value). In this way each component has dimensionless 
units of measurement and can be summed and compared with the others. 
A sensible procedure of normalization is performed using the Maximum Allowed Value Estimate (MAVE) 
that is an estimate of how much the state we want to control may vary [Van Overloop, 2006]. 
Each sub-objective is normalized on its maximum range of variation. Since the objective functions are 
defined in a piecewise form, we have ranges within which the objective function is the same and therefore 
its value is normalized in each range on its amplitude. 
As for the step-costs for floods and low-flows, the normalization is carried out on the basis of the 
differences between the thresholds, for each band of the piece-wise linear function.  
As for the penalty on the final storages of the reservoirs, the normalization is done on the differences 
between different filling curves, defined to provide a support for counter-balancing the different sub-
objectives weights as it will be explained in the next section. These new curves are calculated as reference 
storages, under the FC, for supplying water for each low-flow threshold and, above the FC, for letting a 
fixed storage capacity to avoid exceeding the higher flood thresholds (see next section 4.6.2).  

4.6.2 Weighting the sub-objectives 

Since we have different sub-objectives in the cost function and some of them are conflicting, one might 
formalize the problem in a multi-objective framework and be interested in finding a representative set of 
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the Pareto optimal solutions. However, this is not our goal, since we need to find a single decision to be 
applied for the first day of the horizon. Our target is not to quantify the trade-offs in satisfying the different 
objectives. Moreover, in our case-study the conflict among the objectives is of a particular kind: it is a 
conflict between the same objectives but seen in different time perspectives (in the finite horizon and in 
the long term). The step-costs considered in the finite horizon for floods and droughts are not in contrast 
between them, since floods and droughts are not simultaneous events in space and time. Instead the step-
costs are in contrast with the penalty on the final storage of the reservoirs. In other words the prevention 
of floods and droughts in the short term is in contrast with trying to stay as close as possible to the 
objective filling curves of the lakes. In fact the step-costs for low-flows lead the controller to release water 
from the reservoirs in case of necessity and this can cause the volumes of the reservoirs to go under the 
filling curves. Viceversa, the step-costs for high-flows lead the controller to store water into the reservoirs 
in case of necessity and this can cause the volumes of the reservoirs to be over the filling curves. The 
solution to this conflict can be achieved defining a compromise to counterbalance: 

- what one should do in the immediate horizon, filling/emptying the reservoirs, to face 
floods/droughts; 

- what one should save for later leaving the capacity to fill/empty the reservoirs to be perpetuated in 
time after the immediate horizon.  
 

This compromise involves a political choice but can be framed in a precise and explicit formalization that 
could help the decision-maker to express his preferences. We developed a new framework to solve this 
conflict given the specificities of the case-study. The core idea is defining correctly the preferences between 
what to do now and what to save for later, using the concept of filling curves. In fact we know that the FCs 
are constructed in order to have enough water to ensure a minimal flow threshold in the river for all the 
releasing season taking care that there is always enough space available for floods control. We assumed 

that the minimal flow threshold that the FCs can ensure is the vigilance low-flow threshold         
           at the 

extreme downstream station of Paris. 
So starting from the FCs we can define some reference levels above or below the original curves that are 
less desirable than the FCs level. These levels are defined by new filling curves whose scale of priority is 
directly deducible by the neighborhood to the original curve. After that it’s necessary to understand in 
which cases the manager of the lakes can allow to get to these levels, defining the magnitude of the 
flood/drought events whose immediate avoidance in the optimization horizon is more important than 
remaining at those levels. Once this trade-off is established the weights to counterbalance step-costs for 
floods/droughts and penalty on final storage are consequently determined. This approach will be followed 
in the next two sections for both flood/drought events calculating a set of weights for balancing the step-
costs and the penalty on the final state. It should be noted that defining this scale of priorities is a political 
choice that involves the preferences of the DM. However it's easy to see the importance of applying this 
procedure even defining an arbitrary scale of priorities, because it's natural to accept some costs in the 
present to be sure that in the future we won't pay an enormous cost. These considerations will be better 
explained in the following paragraphs. 

4.6.2.1 Balancing low-flows step-costs and penalty to be under the FC 

The importance of weighting low-flows step-costs and penalty on the final storages can be seen analyzing 
the results of the MPC optimization using a formulation with a very little weight on the penalty-cost respect 
to the low-flows step-costs. These results show that the water resource available in the reservoirs is used as 
soon as necessary in the short optimization horizon (some days). In a long run of MPC (at least some 
months) the effect of this policy is that the lakes are emptied too much time before the end of the releasing 
season or even at the beginning. For example, this behavior can be seen in the results reported in the 
following plot showing the volume of lake Marne simulated with MPC over a simulation horizon of one 
year. 
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Figure 21. Volume of Marne lake [Mm3] simulated with MPC management from 01/08/1963 to 
01/08/1964. Example of the behavior of MPC management with a smaller weight on the penalty-cost 

respect to the low-flows step-costs. 
 
In Figure 21 the volume of lake Marne simulated with the MPC management drops down in the filling 
period because of the small weight on the penalty cost for the filling curve respect to low-flows step-costs. 
The period of the simulation (1963/1964) is not one of the most characterized by droughts, presenting only 
a few events under the first or second thresholds at some stations. However, the lake is completely 
emptied already at the beginning of the releasing season, in July, after having faced some low-flow events, 
that not being critical, would not deserve this priority. This kind of solution is unacceptable, because it 
means that we do not care of the costs in the future in order to pay a lower cost for low-flows in the short 
term. By acting like this, the costs for droughts in the long term are enormous. To avoid this behavior of the 
MPC management we have to balance appropriately the low-flows step-costs and the penalty-cost to be 
under the FC. This problem is complicated since it consists in a comparison between a penalty on the 
storages calculated after an horizon of a few days and the costs of drought events that may last a few 
months. Here we propose an original solution for this problem trying to design an MPC controller that 
adapts its hedging policy to the states of the reservoirs, taking into account the remaining capacity to 
satisfy the different thresholds. In other words we want to try to reduce the costs in the short term as 
much as possible without compromising the future adaptive capacity of the system. 
 
Our solution is based on the presence of different levels for the objective of sustaining low-flows, i.e. 
different low-flows thresholds. So, it's important to remind here the meaning of the low-flows thresholds 

that from the 1st (        
          ) to the 4th (       

         ) correspond respectively to less or more important restrictions 

of water uses, as explained in section 2.5.1. Therefore, given these different levels of low-flows severity, to 
design our policy we must answer to the following questions:  
"Do we allow the flows in the river to go sometimes under the 2nd or 3rd low-flows threshold because it's 
more important to respect the 4th (most critical) threshold (and so we want to save more water for later)? 
Or do we prefer to stay above the 2nd or 3rd threshold the most of the time and to risk to pass under the 
4th one later, since we have not kept enough water in the reservoirs?".  
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Evidently these questions concern policy decisions. However, we can make the two following logical 
assumptions:  

A. we associate the biggest costs to the lowest thresholds (4th), in reason of the most important 
impacts on water uses;  

B. we assume the temporal equivalence of the costs over a season.  
Therefore, from assumptions A and B we derive the following response to the questions above:  
"Yes, sometimes we may allow the flows in the river to go under the 1st, 2nd or 3rd low-flows threshold 
because it's more important to be able to satisfy the 4th (most critical) threshold and so to keep water in the 
reservoirs for this objective for later." 
In other words, from A+B we derive the following point:  

C. we accept to release water from the lakes to sustain short-term low-flows of a certain level   only 
until a certain target volume    , below which we could not be able to face low-flows events in the 
future of a level more critical than  .  
 

From this choice we derive a new framework to counterbalance low-flows step-costs and penalty to be 
under the FC. 
To define the levels of low-flows severity   we can use the distance of the current flows from the different 
thresholds. 
To define the target levels for the volume,    , we developed some new FCs analogously to the original FC. 
We started assuming that the FC is statistically constructed in order to sustain low-flows ensuring that the 

1st vigilance threshold for low-flows         
           at Paris can be satisfied for all the releasing season. This 

assumption is realistic and based on the philosophy of the statistical method developed in Bader [1992]. 
Since we have other three low-flows thresholds, we can derive other three different Filling Curves (FC2, FC3 
and FC4) that can statistically ensure respectively the 2nd/3rd/4th thresholds (as the original FC ensures the 
1st threshold).  
To calculate these curves in a simplified way, we decided to follow the following procedure:  

1. Integrate the differences in flows between the different low-flows thresholds at the extreme 
downstream station of Paris all over the releasing season. So we obtain the differences in 
volumes to be stored to ensure statistically the different thresholds for all the releasing season. 

2. Allocate the volumes obtained at point 1 to the four lakes in function of their capacities 
(following the strategy of centralization of the controller) respect to the total capacity. 

3. Subtract these volumes to the maximum volume of the original FC (FC1) of each lake obtaining 
the new maximum points of the curves FC2, FC3, FC4. 

4. Transform FC1 in the new filling curves FC2, FC3, FC4, following the same structure of the 
original filling curve that is composed of 3 parts: releasing season, prolonged releasing period 
and filling season. For each part, to obtain the new curves we proceed as follows: 

a) For the releasing season, from July to November: we apply a constant contraction 
factor to the original FC equal to the ratio between the maximum point of the original 
FC and the maximum points of the new FCs calculated at point 3: max(FC1)/max(FCi), 
with i=2,3,4.  

b) For the prolonged releasing period, between November and January: FC4 is equal to 
the minimum exceptional volume of the reservoir. The other curves are obtained 
prolonging the volume at the end of the releasing season with an horizontal line until it 
meets the straight line that interpolates the point of the FC at the 1st of November and 
the point of FC4 at the 1st of January. 

c) For the filling season, between the end of the releasing season and July: we connect 
the points at the end of the prolonged releasing season, found in the point 4.b, with 
the maximum volume points of the FCs obtained at point 3. 

 
The result of this procedure for the Marne lake is reported in the following figure, while for all the lakes it is 
reported in Appendix F.  
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Figure 22. Filling curves defined for balancing low-flows step-costs and penalty to be under the FC for 
Marne lake. 

 
At this point it's possible to use these new curves as reference levels to counter-balance the step-costs for 
low-flows with the penalty-cost on the final storage under the FC. To define the relative weight of these 
two costs we decided to follow the following assumptions: 
 

1. The cost to be under the FC increases with a piece-wise quadratic form starting from zero at FC1. 
Each sub-function of the piece-wise function is defined for an interval of volume of the reservoir i 
between two close curves     with j=1,2,3,4 and     . 

 

 
                 

       
               

     
          

     
                      

     
         

    

             
       

               
     

          
     

                  
     

         
  

      

 
where the coefficients of the quadratic function,            

, change in each range [j, j+1] with 

j=1,2,3. Moreover:            
            

            
            

. 

 
2. As initial weight for pondering all the others, we set an arbitrary value for the sum of low-flows 

step-costs for being at        
         at all the stations for one time-step (                   

). We remember 

that the low-flows step-costs are zero at        
        , so, having fixed the value of   

    
        

          the first 

slope α of the step-cost function is determined. 
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3. We assume that the penalty cost associated to having the final storages of all the lakes at     level 

is equal to the cost of having low-flows at level             (with j=1,2,3,4) at all the stations s for all the 

horizon h (that is the maximum cost due to a drought of level            ).  

 

     
           

        
         

         

   

    
 

       

   

    
               

       
   

 
This assumption translates the fact that between the penalty for having all the final storages under 
    and the step-costs for low-flows between             and                  our priority is the penalty on the 

final storages under     (that leads to bigger costs). This is because we do not accept to go under 

     and be anymore able to satisfy the j-th low-flow threshold in the future, just to satisfy it in the 

short forecast horizon (as stated in point C in this section). Moreover, it can be noticed that the fact 
of balancing the step-costs at all the stations with the penalty-costs at all the lakes is coherent with 
the centralization of the controller. 
So, by using the equations of point 3, after defining the penalty cost function on the final storage 
under the FC (i.e. the values of            

               ), the slopes of the low-flows  step-costs 

function are consequently determined. 
 

4.6.2.2 Balancing high-flows step-costs and penalty to be over the FC 

At first glance, one could just give complete priority to floods step-costs because reservoirs are built to 
control floods. So we could weight more the step-costs for floods respect to the penalty-cost to have final 
storages over the FC. But how to define how ‘weighting more’ the step-costs? We might be tempted to 
take an extreme decision, setting the cost for a flood of level equal to the first threshold used to calculate 

the step-costs (       
        ) to be larger than the maximum cost to be over the FC (i.e. C(V=Vmax) ) for all the 

lakes. This attempt is based on the same philosophy than the experiment done for low-flows with a very 
little weight on the penalty-cost respect to the low-flows step-costs. In fact it produces similar results 
satisfying the objective represented by the step-costs in the short horizon, but reaching a point from which 
this objective can’t be anymore achieved in the future. For high-flows, this bad result means that the 
storing capacity of the lakes is already consumed after exceeding for some days the first less important 

threshold        
        . So, when high-flows last more than a few days over        

         and increase to        
         or        

        , 

there’s not anymore the adequate capacity to store the excess flow in the reservoirs. This policy is clearly 
not sustainable. 
 
To overcome this problem, we can adopt a similar solution to the one developed for low-flows in the 
previous section, defining some reference levels above the FC at which counter-balance the step-costs for 
floods at the different thresholds. For example, since the first threshold does not correspond to real floods 
but it’s a vigilance threshold, we can limit the cost associated to overcoming this threshold with respect to 
the cost for being over the FC. In other words we want that the cost to be over the FC from a certain level   
over the FC is bigger than the cost for high-flows over the 1st vigilance threshold. Even for the other 
thresholds we can counterbalance the maximum cost associated to flows in a band between two flood 
thresholds with the cost to be at a certain level over the FC.  
Following this strategy, we chose to set the cost for having the flows at all the control stations equal to the 

second threshold        
         for a period equal to the statistical average length of this event equal to the cost of 

being over the FC of a certain percentage   of the free capacity. This equivalence is formalized in the 
following equation: 
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where: 

    
          is the current volume of the reservoir i at time h; 

    
      is the volume of the objective filling curve of lake i at time h; 

        is the maximum volume of the lake i; 

         is the percentage of the capacity at which the cost to be over the FC for all the lakes is equal 

to the cost of having all stations with flow at        
         for the average length       of this event. 

 
Similarly we can write the same kind of equations for the other thresholds. Then, by using these equations, 
after defining the penalty cost function on the final storage over the FC and the values of the parameters 
       , with k=1,2,3, the slopes of the flood step-costs function are consequently determined. The values of 

the parameters         can be determined by sensitivity analysis. The values of the parameters used in the 

procedure described above (       ,        ) are reported in Table 3. 

 

In this way, the flood step-costs associated to flows in all the bands defined by the thresholds        
                

         

and        
         are balanced with the penalty to be over the FC. 

4.7 Optimization problem 

4.7.1 Optimization horizon and control horizon  

The optimization horizon (h) is the horizon for which the control problem is solved.  
As for calculating the optimization horizon it’s necessary to take into account: 

 The information-control horizon (Tic), defined as the time span from the actual moment until the 
moment from which information (e.g. forecasted precipitation amount) does not influence the 
control actions anymore; it can be defined empirically (see Stive [2011]).  

 The forecast horizon of the available predictions (equal to 9 days in our case), that is an upper 
bound for the effective usable optimization horizon. 
 

In reservoirs management problems, from the stand-point of flood control the ideal optimization horizon 
can be defined as the time needed to create the storing capacity before the flood occurs. However, an 
indication on the effects of enlarging the horizon’s length h can be derived by sensitivity analysis 
considering the perfect predictor, that can be simulated over historical periods for any length of the 
prediction horizon [Pianosi and Soncini-Sessa, 2009]. We remind to section 5.2.1 for the results of this 
sensitivity analysis. 
 
The control horizon is the horizon for which a control decision is applied before changing it, i.e. the time 
span between two consequent decision-making steps. The control horizons can be taken time-varying along 
the optimization horizon, as it will be explained in section 4.7.1.3. 
 
As for deciding the control horizon we have to take into account 

 The simulation time-step, that is the time resolution used in the model of the controlled system 
(equal to 1 day in TGR model). 

 The forecasts time-step, that limits how often we update the disturbances that affect the system 
(equal to 1 day in the forecasts available). 
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4.7.1.1 Remarks on optimization and control horizon for floods control 

Optimization horizon: the ideal one for floods is the time needed before a flood to empty the reservoirs 
and create the storing capacity that will contain the flood [Pianosi and Soncini-Sessa, 2009]. For our case-
study it is in the order of some days, about 5 days, because it is estimated to be the time needed to empty 
the reservoirs of a volume equal to the biggest historical floods of the period of data availability. The 
influence of the length of the optimization horizon h on the results will be tested performing a sensitivity 
analysis on the results with different h values (see section 5.2.1). For MPC with perfect predictor (using 
observations as forecasts) we can choose h as long as we want (since we have not the limit of the forecast 
horizon); for MPC with real forecasts and for TB-MPC we could overcome the limit of the forecast horizon 
available by using a “no-precipitation” scenario after the prediction horizon or other weather statistics.  
 

Control horizon: a fine control horizon is useful for floods control, for the high-variance of inflows in 
periods of floods and the consequent need of a quick variation of the control. So our initial idea was to use 
a daily control horizon all along the optimization horizon. Then we have modified this choice, enlarging the 
control horizons, to reduce the number of variables to be optimized in order to deal with optimization 
problems, as it will be explained in sections 4.7.1.3 and 4.7.3.1. 

4.7.1.2 Remarks on optimization and control horizon for low-flows control 

Optimization horizon: the ideal horizon is the time needed to store enough water in the lakes to prevent 
low-flows (months) and satisfy the demand at downstream. This ideal horizon is more than the length of 
forecast horizon of ECMWF ensembles. We would need to have seasonal weather forecasts and demand 
forecasts. To take into account the water supply objective on a longer horizon than the forecast horizon, for 
the moment we use the penalty based on the final storages and FCs. The advantage of MPC can be to 
evaluate the convenience of a centralized hedging policy within the optimization horizon. In the future, to 
extend the decision horizon for low-flows, we could use “zero-precipitation” after the forecast horizon (e.g. 
30 days) or statistic scenarios. In this case to reduce the number of decisions and the calculation time we 
could enlarge the control horizons (for example one decision every 10 days). 
 
Control horizon: since the variance of rainfall and inflows in low-flows periods is lower than in high-flows 
periods, there’s no need of a quick variation of the control within the optimization horizon. So we can use 
larger control horizons in case of low-flows conditions, taking one or two decisions along the optimization 
horizon, using the framework of the control horizon grids (see next section 4.7.1.3). 

4.7.1.3 Control horizons grids 

At the beginning of this study we opted to work with constant daily control horizons, calculating a different 
decision for every day. The first results that we obtained show us that a large number of decisions to take is 
not sustainable for the optimization problems encountered: the optimal solution improves decreasing the 
number of decisions. There's a trade-off between taking some accurate decisions and a lot of rough 
decisions. For this reason we decided to use a limited number of decisions enlarging the control horizons. 
Firstly, it must be noticed that each control decision along the prediction horizon could have a different 
horizon of application. So we can define the temporal distribution of the decisions over the prediction 
horizon using a control horizon grid (CHG).   
To define a CHG, we define and use the following notation:  
 

                 
 

s.t.   
    
    

  

 
where the time-steps    indicated in the square brackets represent the time-steps along the optimization 
horizon when the decisions are changed. 
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For example, using a grid equal to [1 2 3 5] means that: a daily decision is calculated for the first two time-
steps (days); after that, the decision of the third step is repeated also for the fourth and from the fifth day 
to the end of the optimization horizon the same decision is applied every day. A schematization of the 
control horizon grid [1 2 3 5] is represented in the following figure, showing the distinct decisions calculated 
over the optimization horizon of 9 days. 
 

 
 

Figure 23. Schematization of the temporal distribution of the decision using a control horizon grid equal to 
[1 2 3 5] and applied over an optimization horizon of h=9 days. 

 
Since the decision for the first time step of the prediction horizon is the only one that is effectively applied 
to the system, it's necessary to calculate it accurately and using a daily length for this first decision is 
preferable (i.e. fixing     ). After that, since the system has a delay, the decisions for the first part of the 
optimization horizon are more important than the last ones, more distant in time. For this reason it’s good 
to use a variable control horizon that expands going towards the end of the optimization horizon. Thanks to 
this idea, it's possible to reduce the number of decisions, in order to improve the convergence of the 
optimization and consequently reduce the computation time. The loss of performance of the optimal 
controls is limited because we are neglecting a detailed description of the control variations in the last part 
of the optimization horizon, that in part would have the most of the effects after the forecasts horizon for 
the presence of the delay in the hydraulic model. The use of a finer control horizon grid at the beginning of 
the prediction horizon allows to have more flexibility in changing decisions, that is very useful above all in 
case of floods control. So the problem is to find a compromise between these different necessities: a fine 
grid for flexibility in taking decisions and a large one for reducing the number of decisions (improving the 
convergence to the optimal solution). In case of low-flows, we can use a large grid all along the 
optimization horizon, since the inflows have a low variance in this case; for example we can take a distinct 
decision only for the first day and then the same decision for the rest of the horizon (CHG=[1 2]). 
A sensitivity analysis was performed with different control horizon grids for high and low flows conditions 
and the results for high flows are provided in section 5.2.2. 

4.7.2 Optimization algorithm  

Since the model of the controlled system is not linear, the problem can't be directly solved in a linear-
quadratic framework. If one would like to be able to apply this framework it would be necessary to use 
some stratagems to treat the conditions that make the model non-linear, in order to build the matrices of a 
linear model. Moreover, the constraints and objectives that we have just defined present a linear or 
quadratic piecewise form, conditioned to some thresholds, so they are not directly usable in the linear-
quadratic framework, because the piecewise form and the presence of thresholds would require some 
tricks to manage it. We therefore excluded to follow the path of quadratic programming for these reasons. 
Moreover, at the beginning of this work there was at our disposal the code (programmed in Scilab)  for the 
model of the watershed and for the simulation of the current management of the dams (see section 4.9.1). 
So direct-search optimization methods were also preferable in terms of time required for implementation 
of the MPC controller, thanks to the possibility of using this code for the simulation of the system in the 
evaluation of the objective function. Among these methods, we decided to use the Nelder-Mead algorithm 
because it was well known as an efficient derivative-free method for nonlinear optimization [Nelder and 
Mead, 1965]. Moreover, Scilab provides different variants of this algorithm including a constrained version, 
called Box Complex Method [Box, 1965].  
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4.7.2.1 Nelder-Mead (N-M) algorithm and the Box Complex method 

N-M is a direct search algorithm that: 
– uses only objective-function values (no gradient needed); 
– does not approximate the gradient. 
 
The N-M algorithm is also known as simplex method because it uses a simplex that is a set of n+1 vertices, in 
n dimensions space. For this reason it should not be confused with Dantzig's simplex method for linear 
optimization. The simplex evolves in the search space subjected to geometric transformations of reflection, 
expansion, contraction and shrinkage. These operations are defined by the coefficients ρ (reflection), χ 
(expansion), γ (contraction), and σ (shrinkage). 
The N-M algorithm follows the following steps [Baudin and Couvert, 2011]: 
 
1. Sort the vertices by function value. Order the vertices: f (1) ≤ … ≤ f (n) ≤ f (n+1) 
2. Calculate the centroid of the simplex. B = (v (1) +...+v (n))/n 
3. Reflection. Compute R = (1+ρ)B − ρv(n+1) and evaluate f(R). 
4. Expansion. If f(R)<f(1), compute E=(1+ρχ)B − ρχv(n+1) and evaluate f(E). If f(E)<f(R), accept E and go to 1, 
else accept R and go to 5. 
5. Accept the new vertex R. If f(1) ≤ f(R) < f(n), accept R and go to 1. 
6. Outside Contraction. If f(n)≤f(R)<f(n+1), compute Co=(1+ργ)B − ργv(n+1) and evaluate f(Co). If f(Co)<f(R), 
then accept Co and go to 1 else, go to 8. 
7. Inside Contraction. If f(n+1)≤f(R), compute Ci=(1-γ)B +γv(n+1) and evaluate f(Ci). If f(Ci)<f(n+1), then 
accept Ci and go to 1 else, go to 8. 
8. Shrink. Compute the points v(i)=v(1)+σ(v(i)-v(1)) and evaluate f(i)=f(x(i)), for i=2,3,...,n+1. Go to 1. 
 
This algorithm is known to be a robust method to manage "noisy" functions, i.e. situations where the cost 
function is the sum of a general nonlinear function and a low magnitude function. This property to be less 
influenced by local optima could be helpful in our case study due to the complex form of the global 
objective function. The drawback of the choice of this algorithm is that it is known to be efficient for small 
problems, i.e. 30 variables at most, (see Baudin and Couvert, 2011) while the problem size of our case study 
is in general larger. In fact we have 8 variables for each decision-making day in the optimization horizon, so, 
for example, setting 4 decision-making steps in the optimization horizon, we have 32 variables for 
deterministic MPC and more for TB-MPC (a value function of the tree structure, see section 4.8). 
 
The N-M component in Scilab provides three simplex-based algorithms for unconstrained and non-linearly 
constrained optimization problems.  
We used the standard Box Complex algorithm [Box, 1965], i.e. a constrained version of the N-M method. 
This algorithm is based on a variable shape simplex, called complex, made of an arbitrary k number of 
vertices (k=2n is recommended by Box) that moves and evolves in the search space. The method requires 
that an initial point in the search space is given, that is assumed to be the first vertex.  
Then, a set of k-1 vertices around the initial solution can be generated using different methods:  

- the standard method suggested by Box that generates the other points using a random number and 
the bounds on the variables,  

- the Spendley method that generates a regular simplex with a fixed length of the edges,  
- the Pfeffer method that computes the simplex heuristically in the neighborhood of the initial guess.  

 
Among these points, the worst solution is replaced by another point generated by the geometric 
transformations of the classic N-M algorithm. Firstly the algorithm performs a reflection and expansion of 
the worst point far from the centroid of the remaining points. Eventually a contraction into this centroid if 
the reflection with expansion is not successful, that is if the new trial point is worst or if it does not satisfy 
some constraints. The above procedure is repeated, as long as the simplex has not collapsed into the 
centroid, overcoming a tolerance on the simplex size, or as long as the function values in the simplex are 
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more different between them than a tolerance value or until the algorithm reaches a predetermined 
maximum number of iterations or function evaluations.  

4.7.2.2 Main features of the algorithm used for the case study 

Initialization of the decisions 

The initialization of the decisions has a great influence on the optimization results. Since the convergence 
of the algorithm is resulted very slow, the farther the initial solution is from the optimal solution, the more 
difficult is to have a good final solution after the optimization process. So, it’s better to start from an initial 
good solution to generate the initial simplex.  
The choice we have made to initialize accurately the decisions is as follows  Calling     the vector of initial 
decisions for all the lakes at time t (i.e. inlet/outlet flows over the optimization horizon),    is assumed to 
be equal to the last solution,        found by the optimizer at time step (t-1) and receded of one time-step 

ahead over the receding horizon (repeating twice the decision of the last day). This is a good initial solution 
since the weather conditions over the receding horizon change smoothly from a time-step to another and 
consequently the decisions should gradually change from a day to another. 
For the very first time step of the MPC simulation horizon, Ti , a good initialization for the decisions can be 
made taking the decisions of the actual management simulation. 

Start and stop criteria 

Optimization is run only if the initial value of the cost function is bigger than a tolerance value (Tf0=10-4). We 
added this start condition to speed up the algorithm. 
During the optimization there are different stop criteria that are sequentially checked; there are some 
criteria activated by the default setting of the algorithm, others that we chose to activate. 
 
We have activated the following criteria:  

1. The maximum number of iterations (activated by default); 
2. The maximum number of function evaluations (activated by default); 
3. The maximum number of restarts (activated by default); 
4. The absolute and relative difference in the optimal decisions of two following iterations; 
5. The tolerance on the difference between the simplex size at the current and the first iteration; 
6. Impossible improvement for reaching a minimum value (activated by default); 
7. Box termination option: the absolute tolerance on difference of objective function values in the 

simplex between the best and worst vertices. If the maximum difference among the vertices is less 
than a tolerance value defined by the parameter BTf for a certain number of consecutive iterations 
BNm the algorithm is stopped. The value of BTf is essential for a good compromise between 
convergence and calculation time. To increase the speed of the algorithm we used the following 
expression for BTf that increases the value of BTf respect to the default value (10-5) in function of 
the initial value of the objective   : 

                               
    

        
 

where there are two check conditions to verify that the tolerance value is at least equal to      and 

at most equal to    
    

      (where    
    

 has an order of magnitude of    ). 

Automatic default restarts of NM 

The usual method for checking that the global rather than a local minimum has been found is to restart the 
algorithm from different points, and infer that if they all converge to the same solution then a global 
optimum has been found. In several dimensions, for a problem for which the feasible region of parameter 
space is small, the discovery of an alternative permissible initial point can present considerable difficulty. 
With the Complex method, there is no difficulty in using the same initial point with different pseudo-
random number initiators to perform such a rough check as to whether the optimum is indeed global. 
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4.7.3 Improvements of NM algorithm for the case study 

The application of the NM Box algorithm to the case study has encountered some problems due to a slow 
rate of convergence. The algorithm works minimizing the costs, but since the convergence is slow it is 
usually terminated by reaching the maximum number of iterations or restarts and so it doesn't provide the 
optimal solution but a sub-optimal one. Different experiments were performed to see if the solution could 
improve increasing the maximum number of iterations, but it seemed to us that the improvement was too 
little respect to the increase in computation time. The termination criteria reached the most of the time 
was still the maximum number of iterations, even when this parameter of the algorithm was set to a very 
high number (3000-5000 iterations) leading to high calculation time.  
So, to improve the convergence of the algorithm, we developed some strategies that we present hereafter. 

4.7.3.1 Reduction of the number of decisions 

It was already noted that Nelder-Mead manages to explore better low-dimensional than high-dimensional 
search spaces: the efficiency of the algorithm is jeopardized with problems involving more than 30-40 
variables (see section 4.7.2.1). The reason is that the simplex-method could be not efficient dealing with a 
high-number of possible directions of exploration. So we hypothesized that the poor performance of the 
algorithm for our case-study could be due to the large number of variables to be optimized. In fact we have 
8 variables for each decision-making day of the horizon h; so, for example, taking h=9 days and constant 
daily control horizons, there are 72 variables. For this reason, we developed two strategies to improve the 
convergence of the algorithm for the case study, reducing the number of decisions. These strategies consist 
in enlarging the control horizons, since the number of decisions is inversely proportional to the control 
horizons lengths.  
The first strategy is to use a control horizon grid as explicated in section 4.7.1.3 and choosing this grid so 
that the number of decisions is limited, for example 40 variables at most. This condition means that the 
decision-making days should be 4 or 5 at most in the optimization horizon for deterministic MPC (and less 
for TB-MPC).  
The second strategy consists in performing a loop of optimizations reducing iteratively the number of 
variables. We called this iterative procedure “clever restart”. The iterative reduction of the number of 
decisions is done by progressively enlarging the control horizons when the first control horizon grid doesn’t 
provide an optimal solution. When an optimal solution is found using an enlarged control horizon grid, this 
solution is used to restart the algorithm with the initial finer control horizon grid. In this way a better initial 
condition for the finer grid is provided and the final optimal solution is improved. The clever restart can be 
seen as a restart of the NM algorithm changing control horizon grids, starting from the last solution found 
with the previous control horizon grid readapted to the new one. When the control horizons are enlarged 
the average of the decisions of the finer control horizon grid is taken, while passing from a larger to a finer 
grid the same decision is repeated for different decision time-steps. If the algorithm reaches the best 
solution in one of the middle iterations, and not in the last one with the finest grid, then this solution is 
saved and taken as the best solution. Thanks to this procedure the results were improved: the termination 
criteria that indicates the convergence of the algorithm, as the size of the simplex, were encountered more 
times than before, indicating that the simplex was shrinking towards the global minimum of the function 
more easily. However, after the implementation of other strategies (in particular, the restart of the 
algorithm after expert-based initialization, see section 4.7.3.3) the improvement deriving by this procedure 
became negligible in the end. So, in the current implementation, used for obtaining the results of this 
thesis, this procedure is not used anymore, but we presented it because it is an original procedure that 
could be useful again for future applications of this work or for other similar problems. 

4.7.3.2 Normalization of the decision variables  

Since the problem includes decision variables of very different scales (different capacities of the discharge 
channels), we decided to normalize the variables to be optimized to their domain, to have the same 
amplitude for all decisions. By operating this normalization, the search space can be better explored by the 
optimizer in all the directions to the same extent. 
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The normalization operated for the component k of the decision vector is given by the equation: 
 

  
      

    
      

 

      
        

  

 
Where: 

     
  = current decisions vector component k at time t to be normalized; 

     
  = initialization of the decisions vector component  k  at time 0, around which     

  is normalized; 

       
  = maximum value for the decisions vector component k; 

       
  = minimum value for the decisions vector component k. 

 
In this way the new domain is of unitary dimension for all the decisions built around the initial solution. 
After normalization, the initial solution components correspond to zero values, while the minimum and 
maximum values of each decision correspond respectively to a negative value α and a positive value β, 
being the distance        unitary. 
 
Analyzing the results of the optimization it was proved an improvement of the convergence and efficiency 
of the algorithm using the normalization option. For a comparison of the results with and without 
normalization we remind to section 5.2.3 

4.7.3.3 Restart of the algorithm after expert-based initialization of the 
decisions 

When the optimizer finds a sub-optimal solution, the solution found by the NM algorithm is compared with 
a solution proposed on the basis of expert-based rules. These rules are based on the conditions 
downstream the lakes to control flood and drought events and on the storages of the lakes to follow the 
filling curves in normal conditions. For example: 
 

 For low and high flows control: if critical low or high flows are forecasted at the downstream 
stations, the decisions are calculated in order to release/store water from/into the reservoirs so 
that the thresholds are respected if possible. 

 For following the filling curves: in normal conditions (when no critical events are forecasted), the 
expert-based solution proposes to reach the filling curves at the first day of the optimization 
horizon, if this is possible. This solution is proposed to overcome the problem that the MPC does 
not follow exactly the filling curves in the closed-loop simulation, using the penalty cost on the 
storages at the end of the optimization horizon. This happens because the MPC does not have to 
reach the filling curves the first day when the optimal decisions are effectively taken but only at the 
end of the horizon.  

 
The expert-based proposed solution is then combined with the current "optimal" solution proposed by the 
NM algorithm. The combinations so obtained (in order of 102 combinations) are tested and compared 
among them. The best solution among these combinations is then taken as initial solution to restart the 
optimization algorithm. 

4.8 Use of ensemble forecasts in TB-MPC problem 

In this section we present the extensions in the formulation of the MPC problem presented so far in order 
to use the rainfall ensemble forecasts instead of a deterministic trajectory. What changes between the 
formulation of MPC and TB-MPC is the use of different trajectories for the disturbances and the structure 
of the decisions to be optimized, that is more complex in case of the TB-MPC. 
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4.8.1 Scenario reduction and tree generation from original EFs 

It could be possible to generate the trees using the ensembles of rainfall forecasts or inflows forecasts, that 
can be obtained running the hydrological model using as inputs the scenarios of the ensembles for the 
rainfall. At this point the question arises whether it would be better to perform the tree generation on the 
rainfall or inflows predictions. Our answer is that it is better to generate the trees starting from the rainfall 
predictions, since the hydrological model would attenuate the differences among the scenarios at the first 
time-steps of the prediction horizon because of the delay of the rainfall-runoff process and the dependence 
on the same initial condition. 
The scenario reduction algorithm reduces the number of scenarios in the ensemble to a predefined 
number. Stive [2011] provides useful information about the right amount of reduced scenarios, showing 
that using more than 8 scenarios does not yield any better performance, but only increases calculation 
time. On this basis, we chose a number of scenarios of 6, to reduce calculation time for our optimization 
problem, in which a big number of decisions is involved already using only a deterministic scenario. The 
marginal information loss of the scenario reduction from 8 to 6 was judged negligible.  
 
An example of reduced ensemble obtained from the original one is reported in the following figure. 
 

Figure 24.  Example of reduced ensemble of 6 scenarios generated starting from the original ensemble of 
50 scenarios for the day 04/4/2005. 

 
In order to generate the tree structure starting from the reduced ensemble we must fix a value for  , i.e. 
the standard deviation of the observational uncertainty. The parameter   is used to determine whether 
two ensemble members are really distinguishable or their difference could be due to the uncertainty in the 
observational process. For the physical meaning of this parameter, a first idea tested was to take it equal to 
the standard deviation of the ensemble at the first day of forecasts. However, this solution showed some 
problems, for example when the variance of the ensemble at the first day was too little (no precipitation 
condition). So, we decided to take another value for   taking into account the correlation between variance 
and average of rainfall forecasts and the variability of the forecasts along the horizon. The variance of the 
rainfall forecasts is correlated with the average value of forecasted rainfall and in particular it increases as 
the rainfall increases, as it is shown in the following graph in Figure 25.  
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Figure 25. Correlation between observational uncertainty [mm] and average forecasted rainfall [mm] at the 
first day of the forecasting horizon. 

 
The linear interpolation function shown in the figure above is used to calculate  , at each time step of 
application of TB-MPC, in function of the average of the rainfall forecasts values all over the prediction 
horizon. This formulation provides also a minimum threshold for   (equal to 0,0967) that is useful in order 
to avoid taking a more little value for this parameter. A too little value, close to zero, would lead to 
determine branching points even for branches with negligible difference, that instead should be bundled 
together. 
A second parameter for the tree generation that must be fixed is the confidence level   , for which we took 
a value of 0,95. 
The tree generated from the reduced ensemble shown in Figure 24 is reported in the following figure.  
 

 

Figure 26. Example of tree of forecasts generated starting from the original ensemble for the day 
04/4/2005. 

 
It must be noticed that this tree of rainfall forecasts is not used directly in the TB-MPC problem, as the 
rainfall forecasts trajectories used are those of the reduced ensemble. The output of the tree structure 
generation that will be directly used in the TB-MPC problem is the scenario tree nodal partition matrix M, 
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that will say which branches of the tree of controls are associated to each member of the reduced 
ensemble (see section 3.2.3). The controls tree is assumed to have the same structure than the forecasts 
tree, as for example the one in the figure above. 

4.8.2 Branching points adaptation to control horizon grids 

The branching points definition must take into account the period of observation as discussed in Raso et al. 
[2012]. The decisions can be taken only with a time period multiple of the observation period, because we 
can re-solve the problem only when the new observations are available. In our case study, we have a time 
resolution of one day for the observations, so we can have a branching point at each day of the forecasting 
horizon. However, we structured the decisions along the prediction horizon using a control horizon grid, 
made up of variable control periods (see section 4.7.1.3). For this reason the branching points, that 
correspond to the instants where decisions can be changed must coincide with the time-steps where a 
decision can be effectively calculated by our optimizer, according to the control horizon grids. This is an 
original aspect emerged in the application of TB-MPC for our case-study, that was never treated before. 
There are different solutions that could be taken to solve this question. Following the idea in Raso et al. 
[2012] used for adapting the branching points to the observation period, we constructed the tree using all 
the forecasts with the initial fine resolution (constant time step of 1 day) and then we moved the branching 
points to the next closest time-step of the prediction horizon that belongs to the control horizon grid.  

4.8.3 Hydrological model use 

As we have already remarked in section 4.1, the hydrological model is not affected by the decisions 
operated on the four dams and so we can generate all the inflow forecast scenarios off-line (before starting 
the optimization process) for all the time-steps of the period of application of TB-MPC. For TB-MPC, we give 
in input to the hydrological model the members of the reduced ensemble of rainfall forecasts to obtain the 
correspondent inflows forecasts. This information flow is shown in the following flow chart in Figure 27. 
The rainfall and the inflows forecasts (Pf and If) can be represented by two hyper-matrixes that have as 
dimensions: the prediction horizon (h=9 days), the number of intermediate basins (NBVI=32) and the 
number of members of the reduced ensemble (n=6). The initial conditions used by the hydrological model 
at each time-step t, s(t) and r(t), are calculated by calling the same model with past observations of rainfall 
and ETP (calculated by Penman equation using weather observations) available at time t.  
 

 

Figure 27. Scheme of the use of the rainfall forecasts ensemble in the control problem at time t. 
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4.8.4 Tree-Based optimal control problem 

In the TB-MPC formulation the same cost-function than in the deterministic one is used in a loop to 
calculate the weighted sum of the costs for all the rainfall trajectories of the reduced ensemble. The tree 
structure defined in the scenario nodal partition matrix M is used to structure the controls tree as 
explicated in section 3.2.3. For the different ensemble members, different trajectories of the decisions are 
calculated after the branching points. The number of decisions to calculate is so influenced by:  

 the number of scenarios of the reduced ensemble; 

 the number of distinct branches, equal to max(M);  

 the control horizon grid. 

4.9 Code architecture  

4.9.1 Notes on TGR model and current rules simulation code 

At the beginning of this work the code of the TGR model was already available and that for the simulation 
of the current rules was being developed for the work presented in Dorchies et al. [2013]. This package of 
code was developed in Scilab for the most part and in C for some functions.  
Scilab is a free and open source software for numerical computation providing a high-level, numerically 
oriented programming language. It is an interpreted programming environment, operating with matrices as 
the main data type using a syntax similar to Matlab. Scilab is an open-source alternative to Matlab released 
under the CeCILL license [www.scilab.org]. The C functions are interfaced with the Scilab platform thanks to 
a C compiler for Scilab (Mingw Compiler).  The user stays in the environment of Scilab without using the C 
language. It's only necessary to define the interface for Scilab of each C function in C code. The reason of 
using C language for some functions is that it allows a drastic diminution of computation time, especially 
when using variables that require a large memory, storing long time-series. The Scilab version used is Scilab 
5.3.3. The Mingw compiler version is Gcc 4.5.0-32. 
 
The implementation of the TGR model (GR+LR) is organized in the following main scripts and functions:  
 

- Loader.sce: loading environment for TGR model 
- ReadData.sce: loading the data necessary for the simulation of the system: weather data, measures 

of river flows, all the parameters of the system (constraints); 
- TGRM.sci, TGR.sce, implementing the call of the hydrologic and hydraulic models for the case 

study; 
- c_GR4J.c, c_GRK.c, implementing the hydrologic models GR4J/GRK; 
- c_LR.c, implementing the hydraulic model LR. 

 
The implementation of the simulation of actual rules is organized in the following different scripts and 
functions:  
 

- c_barrageP.c that calculates the inlet connections flows with the actual management rules and 
updates also the volume of the reservoir; 

- c_barrageR.c that calculates the outlet connections flows; 
- c_barragePR.c that calculates inflow and outflow of Pannecière lake 

 

http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Programming_language
http://www.scilab.org/en/scilab/license
http://www.scilab.org/
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4.9.2 Code for MPC and TB-MPC management simulation 

4.9.2.1 Organization of the code 

The main interface for MPC functioning is represented by the following scripts: 
- Loader_user.sce: loading personal setting for the simulation to be performed (possibility of 

choosing the period of application of MPC, the scenario and changing the MPC setting); 
- Config_MPC.sce: definition of the setting for MPC; 
- Simulation.sce: script to be called to run MPC management simulation;  
- Benchmark_costfunction.sce: run some simulations with different values of some parameters for 

sensitivity analysis. 
 

The implementation of the MPC simulation is organized in the following scripts and functions: 
- CalcQGR4J4MPC.sci: calculates the inflows by calling the GR4J model (c_GR4J); to use GR4J model 

for MPC it’s necessary to use a warming up period to realign some hidden states of the model; it 
was found that one year of warming up period it’s sufficient (with a residual error in the inflows 
less than 10-4); the warming up period is removed in this function; 

- c_LR_MPC.c: it’s the hydraulic model modified to be used in the MPC method; the modifications 
respect to c_LR were necessary to use the model with a receding horizon; the interface of this C 
function with Scilab is defined in c_intTGRM.c; 

- reservoir_model.sci: performs the simulation of the four reservoirs models; 
- sim_MPC.sci: performs the simulation of the whole system calling the hydraulic model and the 

reservoirs model; 
- base_MPC: calculation of inflows series off-line by calling the GR4J model (with observed rainfall); 

definition of optimization setting; initialization of the MPC environment (volumes of the lakes, river 
flows and decisions); 

- Deterministic_MPC.sci: performs the deterministic MPC optimization and simulation for the whole 
period of application; 

- NM_optimization.sci: defines optimization setting for NM method and performs optimization; 
- costfunction.sci: calculates the global cost-function value, calling all the sub-objective functions; 
- stepcosts.sci: includes the different sub-objectives functions: stepcosts, softconstraints and penalty; 
- reinitialize_u0.sci: 

 
The implementation of the TB-MPC simulation is based on the code architecture of the MPC simulation 
using some additional functions and scripts: 

 
- AdaptTreesToCsPatterns.sci:  this function adapts the tree structure to the control horizon grid, so 

that all the branching points fall at a decision step; if a branching point is not in a decision step, it's 
shifted to the following decision-step; 

- TreeBased_MPC.sci: can be used to run the optimization and simulation of the Tree-Based-MPC 
management; it is called by the script "Simulation.sce"; 

- TB_costfunction.sci: calculates the weighted sum of the cost-values relative to all the members of a 
tree of forecasted inflows; for each member of the tree the cost-function is called (costfunction.sci, 
the same used by deterministic MPC). 
 

Moreover for the tree generation a Matlab toolbox (implemented by L. Raso, 2012) is used to generate the 
trees starting from the ensemble forecast. This toolbox implements the scenario reduction and the 
"information based" method for the tree structure generation [Raso et al., 2012]. 

4.9.2.2 Functioning of the MPC management simulation 

The user who wants to run a simulation of MPC management must:  
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1. execute in Scilab the script builder.sce that compiles the C functions (only before the first run); 
2. define the desired options in Loader_user.sce: set the value of the flag variable "UseMPC" for 

choosing MPC (UseMPC=1) or TB-MPC (UseMPC=2) method, define the simulation horizon and  
other important options, as the use of a perfect predictor or real forecasts for MPC; 

3. execute Loader.sce for the loading of all the data and settings (including the ones in 
Loader_user.sce); 

4. run the simulation executing the script Simulation.sce. 
 

In the comments of our code is possible to find more details about the functioning of the simulation. 
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5. Analysis of the results 

In this chapter the results will be presented and analyzed. It is possible to evaluate the performances of the 
Real-Time Controllers implemented using the different climate forecasting models introduced in section 4.1 
(perfect predictor, deterministic and ensemble forecasts by ECMWF). The perfect predictor is taken as the 
baseline case used for running simulation experiments for sensitivity analysis on some parameters of the 
control problem: the length of the receding horizon h, the control horizon grids and the normalization of 
the decisions variables. The optimal setting found with this analysis is then used in the further analysis. 
Several simulation experiments were performed over past scenarios using the historical realizations of 
precipitations on the watershed. Historical flood and drought events were chosen to test the ability of the 
MPC method in tackling them. Firstly, the results of MPC with perfect predictor will be compared with the 
results of current management to evaluate the maximum improvement expected by integrating the use of 
real-time information (forecasts) in the control. Then the results of simulations using real deterministic and 
ensemble forecasts will be presented and the performances of MPC and TB-MPC will be compared. The 
results will be analyzed by calculation of the objective functions values in closed loop simulations. 
Moreover the results will be graphically presented, by plotting the volumes of the lakes in time and the 
hydrographs of the river flows at some key control stations downstream the lakes.  

5.1 Performance indicators in closed loop simulation 

The performance of the real-time controllers can be evaluated analyzing the results of the simulations in 
relation to the objectives set for the case study. The performance can be assumed to be the value of the 
objective function measured in closed loop simulations. The closed loop simulation is the simulation that 
results from the application of the receding horizon strategy over the period of simulation. In other words 
at each time-step only the first control of the sequence of optimal controls is applied and then the same 
problem is repeated after the evolution of the system under the realized disturbances (observed rainfall). In 
order to compare the performances of different controllers, it's necessary to calculate the objective 
function values over a certain time-span, called simulation horizon (  ). Over this horizon the step-costs for 
floods or low flows    

    or   
     are calculated and aggregated (with the sum), to obtain the indicators of 

the performance of the controlled system          and            : 

 

           
                  

  

   

 

 

              
                 

  

   

 

 

where the step-costs at time t,   
       and   

      , are the weighted sum of the step-costs at all the control 
stations and depend on all the decisions for time-step t (vector   ). It must be remembered here that the 
step-costs are expressed in dimensionless units, because they have been normalized (see section 4.6.1). 
It is important to remark that even if the cost functions that we built are not represented in a certain 
monetary or physical unit, this is not a problem for our performance analysis. The costs are strongly 
correlated with the objectives set by the stakeholders, being a linear function of the flow rates over (and 
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under) the critical thresholds at the control stations. So, they are good indicators for the analysis, even if 
they don't reflect a realistic order of magnitude. Moreover for comparisons analysis it is sufficient to 
dispose of relative values.  

5.2 Sensitivity analysis  

In this section we present the sensitivity analysis on some key parameters of the control problem: the 
length of the receding horizon h, the control horizon grids and the normalization of the decision variables. 
This analysis has been carried out by using a perfect predictor as forecasting model. The optimal setting 
found with the sensitivity analysis is then used in the further simulation experiments also using the other 
forecasting models. It must be noticed that the number of parameters of the MPC problem is very high and 
so it's not possible to present here a sensitivity analysis on all the parameters. However, to define the 
standard values of the parameters used in the simulation experiments presented, we tested the sensitivity 
of the results on other parameters, including the parameters used to define the objective function and 
balance the sub-objectives.  

5.2.1 Sensitivity to the optimization horizon (h) 

For MPC with perfect predictor (using observations as forecasts) we can choose the length of the 
optimization horizon h as long as we want, since we have not the limit of the real prediction ability. So we 
can test different lengths of the receding horizon h considered in the on line optimization problem. It's 
natural that we expect that the performance improves enlarging the prediction horizon since we include a 
longer time-series of rainfall forecasts. However it must be remembered that the forecasts available have a 
prediction horizon of 9 days, so this is the maximum length that we could use for the MPC and TB-MPC 
using real forecasts. So the question that arises is to what extent it could be useful to extend this horizon 
until h=9 days. 
It must be noticed that it would be possible to use climate statistics beyond the 9 days of forecast but we 
chose to fit the maximum horizon length to the forecasts length for ease and for the necessity of keeping 
low the number of decisions to optimize. In fact the benefit of enlarging the horizon length h is reduced by 
the limitation on the number of decision variables. We have seen that for the optimization problems (sub-
optimality) it is better to take some accurate decisions than a lot of rough decisions. This limitation can be 
formalized as a limitation on the control horizon grid, keeping low the number of decision time-steps (for 
example 2 or 3 decision time-steps). This restricts the variability of the control actions in the optimization 
horizon and so the usefulness of a long optimization horizon. 
As we have noticed in the remarks in section 4.7.1, as for the ideal optimization horizon, from the 
standpoint of flood control it should be in the range of some days, while for low flows it should be much 
longer. For low flows control we would need to have seasonal weather forecasts and demand forecasts, 
that we don't have. Alternatively, for the time beyond the forecasts horizon, we could use climate statistics 
and a longer horizon (which is difficult because of the optimization problems). However, it must be 
remarked that we already used the climatology statistics with the new filling curves calculated for MPC for 
balancing low-flows step-costs and penalty on the final storages. For these reasons we focus this sensitivity 
analysis only in the point of view of flood control and we will use the same horizon in low-flows conditions.  
In the following figure we report the results of the closed loop simulation using different optimization 
horizon lengths in terms of cumulated costs over the simulation horizon 1/12/1981 - 1/3/1982 (including a 
flood event). The control horizon grid is taken fixed to [1 2 3] when the horizon length is larger than 3 days 
and to [1 2] when the horizon length is equal to 3 days (for a bug in the code that prevents the choice of a 
decision step at the last simulation step of the optimization horizon). 
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Figure 28. Cumulated flooding step-costs over the simulation horizon 1/12/1981 - 1/3/1982 (including a 
flood event) with current management and MPC using different lengths of the receding horizon h. 

 

As shown in the histogram above, the performance indicator for high-flows (       ) confirms that the 
performance improves with the horizon's length. So, we chose a value of 9 days for the optimization 
horizon. 

5.2.2 Sensitivity to the control horizon grid for high-flows 

In section 4.7.1.3 we have introduced the idea of using a control horizon grid with different lengths of the 
control horizons that increase along the optimization horizon. We decided to use two different control 
grids for high and low flows conditions because a finer control horizon is more useful for floods control, for 
the high-variance of inflows in periods of floods and the consequent need of a quick variation of the 
control, while this accuracy is not necessary for normal conditions or low-flows.  
In Figure 29 we report some results of the simulation experiments with different control horizon grids for 
high flows, over the simulation horizon 1/12/1981 - 1/3/1982 including a flood event. The length of the 
optimization horizon is taken equal to 9 days as fixed after the sensitivity analysis presented in the previous 
section. For the notation of the control horizon grids (numbers series in square brackets) we remind to 
section 4.7.1.3. 
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Figure 29. Cumulated floods step-costs over the simulation horizon 1/12/1981 - 1/3/1982 (including a flood 
event) with current management and MPC using different control horizon grids for high-flows. 

 

In the histogram presented above it can be noticed that the two best control horizon grids for high-flows 
are [1 2 3] and [1 2 3 5]. So, we chose to take the control horizon grid equal to [1 2 3 5], even if slightly 
worse in performance than [1 2 3], because it allows to take more into account the variability of the 
predictions in TB-MPC along the forecast horizon and to include the branching points in the control grid. 
This would be difficult with the grid [1 2 3] since the ensemble members typically diverge more after the 
third day of the forecasting horizon. For deterministic MPC, it could be better to take the grid [1 2 3], but 
for consistence in the comparison of the results between MPC and TB-MPC, we took the same control 
horizon grid [1 2 3 5] for the both methods. 
In case of normal or low-flow conditions the control horizon grid has been fixed to [1 2] after performing 
analogous sensitivity analysis experiments. 

5.2.3 Sensitivity to the normalization option 

In section 4.7.3 we have introduced the normalization of the decision variables, option that we developed 
to improve the performance of the optimization algorithm for the case study. In the following figure the 
results of the MPC optimization with and without normalization are reported, using the same simulation 
horizon of the flood event of January 1982 than the previous analysis. The configuration of the algorithm is 
the same in the two cases, changing only the normalization option (with or without). The results confirm an 
improvement by using the normalization option. 
 

 

Figure 30. Cumulated floods step-costs over the simulation horizon 1/12/1981 - 1/3/1982 (including a flood 
event) with current management and MPC with and without normalization of the decision variables. 
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5.2.4 Standard configuration of MPC 

The simulation results presented in this chapter are produced using a standard set of parameters, called 
standard configuration. This standard configuration has been chosen after performing several simulation 
experiments for sensitivity analysis, that we presented only for some parameters. The values of all the 
parameters are reported in the following tables. 
 

Parameter Standard value Unit 

Optimization horizon (h) 9  days 

Control horizon grid for high-flows [1 2 3] - 

Control horizon grid for low-flows [1 2] - 

Normalization of decision 
variables in the optimization 

algorithm 

True - 

Table 2. Standard set of general parameters of the MPC problem chosen by sensitivity analysis and used in 
the simulation experiments presented in this thesis.  

 
 

Parameters for the sub-objectives definition and weighting (see par. 4.4, 4.5 and 4.6) 

Parameter Standard value Unit 

  0,9 - 

                   1 - 

          
    

     
    1 - 

      1015 - 

         109 - 

        10 - 

                   
 10 - 

      40 days 

      4 days 

      2 days 

       0 - 

       0,75 - 

       1,5 - 

       0,1 - 

Table 3. Standard set of parameters for the objectives definition and weighting, used in the simulation 
experiments presented in this thesis (see Chapter 4 for the meaning of the parameters). 

5.3 Deterministic MPC with perfect predictor 

The “perfect predictor", as explained in section 4.1, uses climate observations as forecasts, as if we were 
able to have weather forecasts coinciding with the realized values with zero variance. This is a not realistic 
hypothesis, but it's useful because it allows to obtain an upper bound of the performance that one could 
obtain by using the real-time controller. In practical terms the experiment with a perfect predictor could 
give us an idea of the value of the uncertainty of the forecasts. In fact by comparison of these results with 
the ones using real forecasts it’s possible to understand which improvement we could expect by reducing 
the errors of the forecasting models. In this sense, the results could be used to investigate the interest to 
invest research resources to improve forecasting models, instead of using these resources in other 
directions. 
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In order to run simulations over past scenarios it must remembered that from 1958 to 1988 the lakes were 
not already all operating. Thus for the application of MPC it has been chosen to run all the simulations over 
the so-called “NTP” scenario that emulates the presence of all the lakes from the beginning of the study 
period (1958). This assumption in fact allows us to test the centralized MPC for all the lakes following the 
filling curves (as formalized by the penalty) with an easy implementation: the FCs are assumed to be the 
same for each year, even for the years when lakes were not already in function.  

5.3.1 Performance on flood events 

5.3.1.1 Flood event of 1982 

In order to analyze the performance of the controller on flood events, the period December 1981 - March 
1982 was chosen for running different simulations, since in January 1982 there's the biggest flood of the 
period of data availability. In this event the naturalized flow (the river flow obtained removing the influence 
of the dams from the observed flows) is over the third high-flow threshold at one control station (Nogent-
sur-Seine) and over the second at almost all the others. We can see this situation in the following figure 
reporting the naturalized flow at Nogent-sur-Seine (most critical station) over this period.   
 

 

Figure 31. Simulated naturalized river flow [m3/s] at Nogent-sur-Seine from 1/12/1981 to 1/3/1982 (blue 
line). The 3 horizontal lines (dashed pink lines) correspond to the flooding thresholds. 

 
The current rules manage to contain the flood at Nogent-sur-Seine just at the level of the third threshold 
(as we will show in Figure 33), that is a very critical level that should be avoided. So the question that arises 
is whether MPC can improve with respect to this performance. 

5.3.1.2 Simulated river flows 

The results of the simulation experiments with the MPC management using the perfect predictor on the 
flood event in January 1982 show a good performance in the control of this flood. Analyzing the simulated 
river flows at the control stations it can be noticed that the MPC management succeeds in its objective to 
contain the flood below the second threshold at almost all the control stations. For example, in Figure 32 
the hydrographs at Paris resulting by MPC and current management simulation are shown. It can be 
noticed that when the latter one (curve in blue line with triangles) overcomes the second threshold it 
means that there was a flooding at the downstream station of Paris with the actual management. In 
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particular the river flow simulated with the current rules overpasses for two days (12-13th of January, 

1982) the second flood threshold        
         equal to 1600 m3/s and for 4 days the 1st threshold of security 

margin        
        . Instead with the MPC management simulation (red line with squares) this flooding could be 

avoided, containing the peak just below the second threshold and overcoming the first threshold only for 

one day. The reader should remember here that the first threshold        
         is the level where the step-costs 

begin to increase starting from zero. 
 

 

Figure 32. Simulated river flow [m3/s] at Paris from 1/12/1981 to 1/3/1982 with MPC (red line) and current 
rules (blue line).  

 

When no flood is forecasted at any control station, the hydrograph at Paris follows the actual management 
simulated flow, as it happens at the beginning of the simulation horizon analyzed (first half of December 
1981). Since the station of Paris is the extreme downstream of the system, if there are some flood 
problems at the upstream stations we see that the MPC hydrograph at Paris deviates from the current rules 
one. This is  because the MPC is facing the problems upstream, deriving water from the river into the 
reservoirs. For example, this is what happens in the second half of December 1981 when the MPC is forced 
to derive water into the reservoirs for keeping the flow at Nogent-sur-Seine under the second threshold 
from the second half of December, as we can see in the following hydrograph. For this reason, also at the 
stations downstream Nogent-sur-Seine the river flow simulated by MPC in the second half of December is 
reduced respect to the current rules one. 
Even at Nogent-sur-Seine, the most critical control station, the MPC management outperforms the current 
management. The hydrograph simulated by using MPC at Nogent overpasses the thresholds with a lower 
peak over the second threshold and for less time (4 days with MPC against one month with actual rules) as 
it can be seen in the following figure.  
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Figure 33. Simulated river flow [m3/s] at Nogent-sur-Seine from 1/12/1981 to 1/3/1982 with MPC (red line) 
and current rules (blue line).  

 
The same kind of improvement on the flow peaks simulated with the MPC respect to the current 
management can be noticed at all the control stations. 

5.3.1.3 Reservoirs volumes 

The peak reduction in the hydrographs is obtained by filling the four reservoirs more than the objective 
volume fixed by the FC when the flood event is forecasted, as we can clearly see in the following plot of the 
volume of the lake Marne over the simulation horizon.  

 

Figure 34. Volume [Mm3] of the Marne lake from 1/12/1981 to 1/3/1982 with MPC controller (red line) and 
current rules (blue line). The green line corresponds to the filling curve. 
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In the figure above it can be noticed that the volume of the lake Marne simulated with the MPC controller 
follows the current management at the beginning of the simulation horizon, deviating from the FC in the 
second half of December. Then the deviation of the MPC volume from the FCs increases at the beginning of 
January, when the flood (with the peak on the 12th-13th of January) begins to be included in the prediction 
horizon. This is a good example of the pro-active behavior of MPC: the MPC begins to fill the lake Marne 
about 9 days before the current management, as the length of the prediction horizon begins to include the 
forecasting of the flood.  
The fact that the controller has to work to limit the flood damages at Nogent for a long period in winter 
makes the upstream lakes (Aube and Seine) be completely filled soon, consuming their capacity to laminate 
any eventual flood that occur later in time at the other downstream stations, as it can be seen in the 
following plots of the volume of the Aube lake. The evolution of the volume of the Seine lake is analogous.  
 

 

Figure 35. Volume [Mm3] of the Aube lake from 1/12/1981 to 1/3/1982 with MPC controller (red line) and 
current rules (blue line). The upper horizontal line correspond to the maximum exceptional capacity. 

 
It must be remarked also that the final storages of the reservoirs are very close to the filling curves at the 
end of the simulation horizon, as it is shown in the figure above of the volume of the Aube lake and in 
Figure 34 for the Marne lake. The same behavior can be found for the other reservoirs. This means that the 
MPC management acts in a sustainable way, maintaining the capacity of the system to perform well in the 
future. This result is assured by the minimization of the penalty function on the final storage.   

5.3.1.4 Costs evolution 

It's interesting to analyze also the evolution of the optimal costs over the simulation horizon, as shown in 
the following figure for the flood event of 1982. This analysis allows us to understand why the MPC 
controller behaves in a certain way. It can be seen that when the problems on high flows (and reference 
flows) begin, in mid-December (time-step=15), the penalty cost to be over the filling curve begins to 
increase. This is because the controller fills the reservoirs paying the penalty cost on the storage to reduce 
the step-costs for high flows. These costs remain constant until the flood of the first half of January (time-
steps=30-45), when the lakes are filled more and more to amortize the high flows costs growth. The two 
curves (high flows cost and cost to be over the FC) increase harmoniously, from time-step=35, until the 
limitations of the maximum capacities of the lakes are encountered. At this moment the cost for high-flows 
can no longer be contained. 
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Figure 36. Optimal costs [-] evolution over the simulation horizon from 1/12/1981 (time-step = 0) to 
1/3/1982 (time-step = 90) calculated over the prediction horizon at each time-step. 

 
The result of the MPC simulation in terms of the floods performance indicator         can be compared with 
those of the current rules and of the naturalized system, as reported in the histogram in Figure 37. 
 

 

Figure 37. Floods performance indicator for the naturalized system, current management and MPC (with 
Perfect Predictor) over the simulation horizon 1/12/1981 - 1/3/1982. 
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Looking at the cumulated closed-loop costs for floods in the figure above, it can be noticed that the MPC 
outperforms the current management, that already brought a big improvement respect to the naturalized 
system.  

5.3.1.5 Some general comments (geographical and temporal conflicts) 

In general, from the point of view of flood control, the result that we expect is that at all the control 
stations the simulated river flow with the MPC controller must be:  
 

 equal to the simulated river flow with the current management, if there are no problems at the 
control stations and/or in the storages of the lakes (FCs to recover); 

 under the simulated river flow with the current management when this one overpasses the high 
flows thresholds and it's possible to avoid it deriving more water into the reservoirs than the 
current rules.  
 

In other words, when with the current management the river flow exceeds the 2nd flood threshold (or the 
3rd one) at the control station i, the flow peak must be cut by the MPC to be contained as most as possible 
under these thresholds, if the following conditions are respected: 
 

 the reservoir(s) upstream the control station i has (have) a free storing capacity; 

 the flow to be derived to get the river flow under the thresholds must be less than the capacity of 
the derivation channels. 
 

In the several simulation experiments performed, it was found that the MPC manages to reduce the flow 
peaks over the 2nd threshold when the conditions mentioned above are verified. For example, the result 
for the flood event of 1982 shows that MPC manages to reduce the flood respect to the current 
management at all the stations until the maximum volumes of the reservoirs are reached. This problem of 
reaching the maximum volumes of the reservoirs expresses the temporal conflict of the objectives, that we 
have balanced using the framework explained in section 4.6.2.2. 
 
There are some critical stations where the thresholds are more restrictive. The most critical control station 
is Nogent-sur-Seine. We can see that the thresholds for high flows defined at Nogent-sur-Seine are more 
restrictive than the thresholds for the other stations even immediately upstream/downstream. As it can be 
seen in the controlled stations network scheme reported in Appendix E, the station of Nogent-sur-Seine is 
just after the confluence between Aube and Seine. Looking at the values of the flow thresholds at this 
station and at the two immediately upstream (Arcis-sur-Aube and Mery-sur-Seine), we can see that the 
values at Nogent-sur-Seine are more restrictive (being less than the sum of the values at the two upstream 
stations). So, even when at the other stations the flows are not close to the second threshold, it can happen 
that at Nogent-sur-Seine there are flows very close to this threshold. This condition makes the MPC 
controller fill the reservoirs to avoid exceeding the flood threshold at Nogent. This problem limits the 
performance of the system for the possible flood events coming at other stations and it is representative of 
the geographic conflict of the objectives. 

5.3.2 Performance on critical low-flows events 

From the standpoint of drought attenuation, the advantage that MPC could bring respect to current rules 
lies in the feedback of the control relative to the downstream conditions. Moreover, the MPC management 
allows to control the lakes with more freedom respect to the filling curves management, thanks to the 
balance between the costs to be under the FC and low-flows step-costs. According to this balance, as 
explained in section 4.6.2.1, the MPC management releases more water than the current management 
when it's beneficial in terms of total costs (sum of costs to have a storage under the FC and of low-flows 
step-costs). This difference in behavior between MPC and current rules is of obvious importance for 
drought events of early or late occurrence along the year respect to the statistical occurrence used to 
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calculate the filling curves. For example, MPC is expected to face better droughts that occur in advance 
respect to statistics allowing to release water before the 1st of July. In order to analyze this behavior of the 
controller on low flows regimes, the long drought event of spring-summer 1976 was chosen for simulation 
experiments with MPC. This is the most critical and long drought event of the period of data availability: the 
low flows begin in the filling season (early spring). The naturalized flow is under the third and fourth low-
flow thresholds at some control stations and under the second one at almost all the others. The simulation 
horizon chosen is from 1/3/1976 to 1/1/1977. The results show that the MPC outperforms the current 
management at all the stations keeping the river flow at the control stations over the second low-flow 
threshold for almost all the simulation horizon. This can be noticed for example in the following figure 
representing the hydrograph at Nogent-sur-Seine. 
 

 

Figure 38. Simulated river flow [m3/s] at Nogent-sur-Seine from 1/3/1976 to 1/1/1977 with MPC 
management (red line) and current management (blue line). The horizontal lines (dashed pink) correspond 

to the thresholds used to calculate the low-flows step-costs. 
 

The bad performance of the current management until July 1976 is due to the absence of feedback in the 
control policy, that plans to continue to fill the reservoirs until July even if the river flows downstream are 
already under the low-flow thresholds. Instead the MPC controller begins to release water in April 1976, 
according to the balance of the costs to be under the FC and the low-flows step-costs. These two different 
behaviors can be noticed in the following Figure 39, representing the simulated volumes by using MPC and 
current rules. 
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Figure 39. Volume [Mm3] of the Seine lake from 1/3/1976 to 1/1/1977 with MPC controller (red line) and 
current rules (blue line). The 2 lower horizontal lines correspond to the normal and exceptional minimum 

volumes. 
 

The results of MPC, current rules and naturalized system in terms of cumulated low-flows step-costs in the 
closed-loop simulation are reported in the next figure. Comparing the values of the performance indicator 
we can see that the current management already carries a big improvement respect to the naturalized 
system, reducing the value of an order of magnitude. The MPC management brings a further slight 
improvement respect to current rules. 
 

 

Figure 40. Low-flows performance indicator for naturalized system, current management and MPC (with 
Perfect Predictor) over the simulation horizon 1/3/1976 - 1/1/1977. 
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5.4 Deterministic MPC and TB-MPC with real forecasts  

In this section we will present and compare the results of deterministic and stochastic MPC using real 
forecasts from the point of view of flood control. This choice is due to the fact that we can expect the 
bigger improvements by taking into account the uncertainty in the forecasts for high flows control, since 
this uncertainty typically increases with the inflows. 

5.4.1 Constraining the thresholds for high and low flows 

In the period of forecasts availability (11/3/2005 - 01/10/2008) there are not critical events of floods and 
droughts that jeopardize the actual management performance. So, it’s easy to understand that our real-
time controller would not encounter particular problems and would behave as the current manager.  
In order to give a practical interest to our simulations using real forecasts, we decided to change artificially 
the thresholds for floods and low-flows used by MPC, so that they may become limiting for the hydrological 
regimes of the concerned period. For obtaining the new constrained thresholds we used a multiplicative 
coefficient calculated in order to have naturalized and current management flows over the high-flows 
thresholds at the control stations. The value of the multiplicative coefficient used for reducing the high 
flows thresholds for the simulations presented hereafter is        . Using the new thresholds so 

obtained (half of the original ones), some critical flood events can be found in the study period, for example 
in spring 2006 and 2007. In these two periods the naturalized and current management river flows 
overpass the new third threshold at some control stations and are above the second one at all the stations. 
So the MPC controller is expected to behave differently from current management to control these flood 
events. In Figure 41 we report the naturalized and current management flow at the downstream station of 
Paris over the period 11/3/2005 - 01/10/2008, and the new constrained thresholds. 
 

 

Figure 41. Simulated river flow [m3/s] at Paris from 11/3/2005 to 1/10/2008 with current management (red 
line) and naturalized flows (blue line). The horizontal lines (dashed pink) correspond to the constrained 

thresholds (       ) used to calculate the flood step-costs. 

 
It must be noticed that the fact of using these new thresholds for MPC (and TB-MPC) makes comparisons 
with the current management not significant, because our real-time controllers do not consider anymore 
the same thresholds used so far for evaluating the current management. However, in Figure 41 we showed 
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the current management simulated flow because it was determinant to define the new constrained 
thresholds. 

5.4.2 Performance on flood events  

In order to analyze the performance of the controllers on flood events, we chose the period of spring 2007, 
since in this period there are the most critical high flows. The results presented hereafter are extracted 
from the results over the simulation horizon from 11/3/2005 to 1/10/2008. 
The results of the simulation experiments with MPC and TB-MPC show a good performance in the control 
of the flood event in spring 2007. Analyzing the simulated river flows at the control stations it can be 
noticed that MPC and TB-MPC behave in a similar way, pursuing the objective of containing the river flows 
below the second flooding threshold at the control stations. In general both the controllers, MPC and TB-
MPC, manage to stay under the second threshold or very close. The most critical stations in this simulation 
experiment are Paris and Noisiel, that present the most high peaks over the second threshold. We report in 
the following figure the hydrographs at Paris resulting by the simulation with MPC with perfect predictor, 
MPC with real deterministic forecasts and TB-MPC using ensemble forecasts. The performances ranking of 
the three methods at Paris is representative of the ranking at all the stations.  
 

 

Figure 42. Simulated river flow [m3/s] at Paris from 1/12/2006 to 1/6/2007 with TB-MPC (red line), MPC 
with perfect predictor (green line) and MPC with real forecasts (blue line). 

  
In the hydrograph above it can be noticed that TB-MPC does a little bit better than MPC with real forecasts 
and perfect predictor, reducing more the flow peaks over the second threshold, though the simulated flows 
with these different methods remain very close. A strange result is that MPC with perfect predictor ranks in 
the intermediate position between TB-MPC and MPC with real forecasts, while it was expected to be the 
upper bound of the methods. This is a not rational phenomenon because using uncertain forecasts should 
not lead to better results than a perfect knowledge of the future. This problem seems to be due to the sub-
optimality of the solution of MPC, that has yet to be investigated and overcome. 
The big flow peaks reduction operated by the centralized controllers is obtained filling the reservoirs more 
than the FCs, as already remarked in section 5.3 for the results of MPC with perfect predictor. For example, 
this behavior is shown in the following plot of the Aube lake volume. 
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Figure 43. Volume [Mm3] of the Aube lake from 1/12/2006 to 1/6/2007 with TB-MPC (red line with 
squares) and MPC (blue line with triangles). The upper horizontal line correspond to the maximum 

exceptional capacity. 
 
To compare the performances of MPC and TB-MPC we report the high-flows step-costs cumulated over the 
simulation horizon in Figure 44. 
 

 

Figure 44. Costs of closed-loop simulation over the period 1/1/2007 - 1/6/2007 with MPC using a perfect 
predictor, MPC using real deterministic forecasts and TB-MPC using real ensemble forecasts. 

 
Comparing TB-MPC and MPC in terms of cumulated flood step-costs, it can be noticed that TB-MPC clearly 
outperforms MPC with real forecasts, as already shown in the hydrographs above. As already discussed, the 
fact that TB-MPC does slightly better than MPC with perfect predictor is unexpected and probably due to 
optimization problems still unresolved, that have to be further investigated.  
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5.5 Testing MPC and TB-MPC over climate scenarios 

One on-going direction of research is testing MPC and TB-MPC over future climate scenarios (GCM), in 
order to investigate their possible contribution in efficiency improvement to compensate the effects of 
climate changes. The simulation experiments are done using 7 different Global Circulation Models (GCM), 
forced by the moderate A1B - IPCC emission scenario, to predict the climate evolution over the period 
2046-2065 (TF) and to produce past climate scenarios over the period 1961-1991 (TP). We can assume 
these GCM scenarios to be the future (and past) realizations of the meteorological stochastic process. In 
this way, each GCM model can be used as a deterministic perfect predictor. Afterwards, artificial 
deterministic and ensemble forecasts are generated with the same statistical properties of the errors of the 
available ones (ECMWF) over these scenarios. To perform this generation we used a multivariate error 
model to produce “ensemble-dressing” of the future (and past) climatic scenarios of P [Dhouioui, 2011]. The 
error model is calibrated on the error of real ensemble forecasts produced by ECMWF (available from 2005 
to 2008), as schematically shown in the next figure.  
 

 

Figure 45. Outline of the artificial ensemble forecasts generation for future climate scenarios using an error 
model calibrated on the available ensemble forecasts for past scenario. 

 
In the GCM scenarios, we have an increase of extreme events (floods and droughts) and so we can test the 
RTC on some interesting critical events. The results obtained so far over GCM scenarios regard the use of 
deterministic MPC with perfect predictor and TB-MPC with artificial ensemble forecasts; however, we must 
re-launch these simulations after the latest code improvements (and we still have to run the simulation of 
MPC with real forecasts). Anyway we present here the current results available of the simulations with TB-
MPC over all the GCM scenarios in present time (TP - 1961/1991) and future time (TF - 2046-2065). Also 
current management simulation results are available, so we can compare the performance of TB-MPC with 
that of actual rules. These results on long simulation horizons (many years) can be analyzed looking at the 
distribution of the values of some efficiency indicators, already used for analyzing the current-management 
simulation results by Dorchies et al. [2013]. These indicators are based on two sets of conditions at the 
downstream control stations: the set of satisfactory cases, noted S, when flow at the control stations 
remains within the limits defined by the thresholds, and the set of failures, noted F, when flow is outside 
these limits. Here, we will analyze the following indicators: 
 
a) The failure events frequency. A failure event is defined by the consecutive days when Q(t) is in the 

failure state [Hashimoto et al., 1982]. The frequency of a failure event is equal to      
         

 
 , 

where: freq is the frequency in years-1, n is the number of days of the study period and j the number of 
failure events during the period. 

b) The mean duration of a failure period defined as:       
 

 
      

 
   , where d(i) is the duration of 

the i-th failure period. 
c) The failure rate, that can be defined as the complementary of reliability. Reliability is the probability for 

flow Q(t)  at time t to be in the satisfactory state S [Hashimoto et al., 1982]. 
d) The mean vulnerability. It is among the vulnerability indicators defined by Kjeldsen et al. [2004]. In case 

the reservoir management fails to maintain downstream flow under a high-flow threshold (or above a 
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low-flow threshold), vulnerability is defined as the volume that should have been taken (or, 
respectively, released) by the reservoirs to avoid this situation during the event considered. This can be 
calculated for each failure event. Statistical indicators can be calculated from the set of the vulnerability 
values computed for all the events, as the mean value, Vul1. 

 
In Figure 46 we report the box-plots of the distribution of these indicators calculated over the results of TB-
MPC and current management simulations, for high-flows and low-flows events. 
 

 

Figure 46. Performance benchmarks of TB-MPC and current management over the 7 GCM scenarios run for 
present and future time (TP and TF). Box-plots of: (a) events frequency; (b) mean duration; (c) failure rate; 

(d) mean vulnerability. 
 
Comparing TB-MPC and current management, in the box-plots reported above, it can be noticed: 

a) Events frequency: for high-flows there's not a clear trend; low-flows events are more frequent with 
TB-MPC. This result should not be interpreted negatively in itself, in fact the TB-MPC exceeds the 
thresholds for a larger number of times but for shorter periods than current management does. 
This behavior can be noticed in figures Figure 33 and Figure 38 where the simulated flow by using 
MPC oscillates many times near the thresholds, slightly exceeding them for some times, while the 
current management exceeds the thresholds only once but much more largely. 

b) Mean duration: for both high and low flows the mean duration is less with TB-MPC. 
c) Failure rate: the number of days over critical thresholds is always decreased by TB-MPC. 
d) Mean vulnerability: on average, TB-MPC decreases the mean vulnerability. 

 
From these results we can deduce that TB-MPC globally improves the performance of the reservoirs 
management. So the contribution of a centralized real time controller using ensemble forecasts can be 
determinant to compensate the effects of climate change.  
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6. Conclusions and perspectives 

In this work we developed and tested a centralized Real-Time Controller for the reservoirs management on 
the Seine River using all data available in real-time, including deterministic and ensemble weather 
forecasts. Our goals were: (i) to investigate the effectiveness of MPC and TB-MPC to increase the efficiency 
of reservoirs management and to overcome the limitations of the current rules; (ii) to determine whether 
the stochastic formulation of TB-MPC improved compared to the deterministic MPC; (iii) to test the 
centralized RTC over future climate scenarios to assess its ability in dealing with the impacts of climate 
change on hydrological conditions. 
 
(i) A centralized Model Predictive Controller is showing better results than the current decentralized rules 
as we have shown in the results presented in the previous chapter (see section 5.3). 
The sources of improvement of the dams management efficiency by using MPC (and TB-MPC) can be 
identified in: 
 

 The centralization of the controller: the natural advantage is that each lake contributes to the 
management of the flood and low flows in function of the remaining capacity and of the actual 
storage. For example, when a lake is full the other lakes supply their remaining capacity for 
controlling the flood at the downstream stations. 
 

 The feedback introduced in the control policy and the use of forecasts: the benefit deriving from 
these elements is that the MPC management fills the lakes more than the FCs when a flood is 
forecasted, in order to reduce the flow peaks at the key downstream stations. In the same way, our 
controller releases more than the current rules when critical low flows are predicted.  
 

(ii) The TB-MPC was expected to improve the performance respect to the deterministic MPC, above all in 
case of flood control, because in this case the uncertainty in the forecasts is bigger. As shown in the 
previous chapter (see section 5.4), the results of TB-MPC and MPC using real forecasts are very similar, 
even if TB-MPC performs a little bit better. However, as already noticed, the optimization encounters some 
problems because of the big number of variables to be optimized. So the results are affected by the 
uncertainty on the sub-optimality of the actual solution. This sub-optimality is expected to be more 
important in the stochastic formulation than in the deterministic one, in reason of the bigger number of 
variables. However, the results presented in this thesis are contradictory with this expectation, since the 
MPC with perfect predictor is slightly outperformed by TB-MPC. It seems that there's a problem in the MPC 
with perfect predictor solution that seems to be affected by sub-optimality more than TB-MPC. So it will be 
necessary to better assess the contributions of assimilation of the forecasts uncertainty in the improvement 
of the dams management, after overcoming these optimization problems, following the possible ways 
proposed in the end of this chapter as further research issue.  
 
(iii) The results over future climate scenarios are preliminary, but seem to confirm that a centralized Model 
Predictive Controller can help to alleviate the impacts of climate change, improving the efficiency of the 
reservoirs management (see section 5.5). 

Here below we analyze briefly the perspectives of further research for this work. 

In the present work we used the same model for MPC and for representing the reality, so we analyzed only 
the uncertainty of the meteorological forecasts and not of the hydrological model. The uncertainty in the 
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hydrological model will be considered using the accurate model of the system implemented in SIC [J.P. 
Baume et al., 2005]. In Figure 47 the scheme of integration of the accurate model in the project is shown. 
At each time-step of application of MPC, the reduced model (TGR) is used as internal model to calculate the 
optimal controls that then can be used as inputs by the accurate model to update the states of the system. 
These states can also be used as inputs of the data-assimilation process to better calibrate the internal 
model. So at each simulation step, the internal model can be re-calibrated thanks to the accurate model 
that uses observations and optimal controls, to balance the uncertainty in the weather data and in the 
forecasting model.  

 

Figure 47. Flow-chart for the integration of the accurate model (implemented in SIC) and the data-
assimilation (D.A.) process in the framework of the present work. 

The accurate model and the data-assimilation are scheduled to be applied to the present work in the short 
term after the end of the research reported here. 
 
In order to test TB-MPC and MPC-RF over past scenarios, before the period of availability of the real 
forecasts (before 2005), we will generate artificial predictions for the past as done for the future (see 
section 5.5). In this way we will be able to analyze the results on the observed period and compare TB-MPC 
and MPC, between them, and with the current management over a long period and without need to 
change the real thresholds.  
 
In the results presented in the previous chapter, we have seen that the fact that the controller has to work 
to limit the high flows at the critical station of Nogent-sur-Seine for a long period in winter makes the lakes 
be completely filled soon, consuming their capacity to laminate any eventual flood that occur later in time 
at other stations. This geographical conflict among the objectives at different stations could be solved 
weighting less the cost at the critical station of Nogent-sur-Seine in order to maintain more capacity in the 
reservoirs to control the river flows at the other stations in the future. This aspect of better balancing the 
costs among the different stations could be further discussed with SGL, as a further research direction after 
the end of this work. As we have faced the temporal conflict, defining a penalty function on the final state 
of the lakes, it will be possible to formalize a balancing framework for the geographical conflict. A way 
could be the definition of different weights for the step costs at different control stations in relation to their 
importance, that should involve the manager and the stakeholders. For example, we can expect that a 
ranking among the stations for defining the weights could be correlated to the presence and importance of 
an urban area near the control station. In this sense it's reasonable that the most important weight should 
be assigned to the very downstream station of Paris. 
The temporal conflict between the objectives was found to be a central aspect of the optimization 
problem. To face it, we developed a new framework for balancing the penalty costs to be over/under the 
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FCs and the costs for floods/droughts. For low-flows case, we used new filling curves under the first original 
one calculated to support the low-flows thresholds all over the releasing period, with a simplified method. 
This method is based on the assumption that the first FC is calculated to support the first low-flow 
threshold for all the releasing period. This hypothesis could be wrong. For this reason these new filling 
curves could be better constructed on statistical basis. For high flows, some curves over the first one were 
constructed as reference level to balance the high-flows step-costs. A first sensitivity analysis on the 
parameters used to calculate them (the storage levels used to counterbalance the costs) has been 
performed (testing some different values), but it could be refined. 
 
The most important limitation of this study is given by the optimization problems that we have already 
described in this thesis. The optimization algorithm of Nelder-Mead has proved to be not suitable for the 
case-study problem, despite all the efforts to improve its convergence. The uncertainty of the sub-
optimality of the solution could be so large as to influence our comparison analysis between the solutions 
with MPC and TB-MPC. To make these analysis more robust, other optimization algorithms should be 
tested, for example LQ programming or evolutionary algorithms. The time required for these other 
implementations of the problem was too big to carry out them in the framework of the present work. 
Another direction of research to respond to the current sub-optimality of the solution could be the use of a 
decentralized control problem for each lake. In this way we could reduce the number of variables to be 
optimized and so obtain a better optimal solution. This first solution could be then used as initial solution 
for the centralized problem. 
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Appendices 
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A. Technical schemes of the lakes 

(Source: Dehay, 2012)  
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B. Management Filling Curves of the lakes  

(Source: www.seinegrandslacs.fr)  
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C. Map of the watershed division in BVI 
and gauging stations 

(Source: Carte de situation des lacs-réservoirs. DREAL Champagne-Ardennes/I.I.B.R.B.S.. – Convention 
d’échanges d’informations relatives au risque d’inondation.) 
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D. List of the 25 gauging stations 

 

Code_station Code_HYDRO Area (km²) Location 
TRANN_01 N/A 1557 L'Aube à Trannes 
GURGY_02 H2221010 3819 L'Yonne à Gurgy 
BRIEN_03 H2482010 2979 L'Armançon à Brienon-sur-Armançon 
STDIZ_04 H5071010 2347 La Marne à Saint-Dizier 
PARIS_05 H5920010 43824 La Seine à Paris 
BAR-S_06 H0400010 2340 La Seine à Bar-sur-Seine 
CHAUM_07 N/A 216 L'Yonne à Chaumard 
CUSSY_08 H2172310 247 Le Cousin à Cussy-les-Forges 
STGER_09 N/A 402 La Cure à St-Germain 
GUILL_10 H2322020 488 Le Serein à Guillon 
AISY-_11 H2452020 1349 L'Armançon à Aisy-sur-Armançon 
CHABL_12 H2342010 1116 Le Serein à Chablis 
NOGEN_13 N/A 9182 La Seine à Nogent-sur-Seine 
EPISY_14 H3621010 3916 Le Loing à Épisy 
MONTE_15 N/A 21199 La Seine à Montereau 
ALFOR_16 H4340020 30784 La Seine à Alfortville 
NOISI_17 H5841010 12547 La Marne à Noisiel 
MONTR_18 H5752020 1184 Le Grand Morin à Montry 
LOUVE_19 H5083050 461 La Blaise à Louvemont 
LASSI_20 H1362010 876 La Voire à Lassicourt 
CHALO_21 H5201010 6291 La Marne à Châlons-sur-Marne 
MERY-_22 H0810010 3899 La Seine à Méry-sur-Seine 
COURL_23 H2721010 10687 L'Yonne à Courlon-sur-Yonne 
ARCIS_24 H1501010 3594 L'Aube à Arcis-sur-Aube 
VITRY_25 H5172010 2109 La Saulx à Vitry-en-Perthois 
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E. Scheme of the controlled system 
network 
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F.  New Filling Curves FC1 - FC2 - FC3 - FC4 
(FCs for balancing low-flows step-costs and penalty to be under the FC) 
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