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Summary!

 Drinking water distribution networks are exposed to malicious or accidental 
contamination. Several levels of responses are conceivable. One of them consists of installing a 
sensor network to monitor the system in real time. Once a contamination has been detected, it is 
also important to take appropriate counter-measures. The SMaRT-OnlineWDN project relies on 
modelling to predict both hydraulics and water quality. An online model makes it possible to 
identify the contaminant source and perform a simulation of the contaminated area. The sensor 
system is intended for detection by an early warning system and for online calibration of the 
transport model. 
 
The main objective of this deliverable report is to specify which performance criteria should be 
considered to place water quality and water quantity sensors for both early detection and model 
calibration. 
  
Firstly, a review of previously published research on water security and model calibration is 
presented. Then, the experiences of partners in the two previous German National projects, 
STATuS and IWaNet, and in the FP7 European project, SecurEau, are reported. Next, 
formulations and objectives for early warning detection are proposed. Following, problem 
formulations that aim to minimize the estimator variance for calibration are specified. Finally, a 
summary of the conclusions is given. 
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1 Background 
 
Drinking water distribution networks are exposed to malicious or accidental contamination. As a 
consequence, they should be protected. One useful means of protection is to resort to an early 
warning detection system by placing water quality sensors at strategic and important sites. 
Computer-aided designs by modelling and analysing the fate of contaminations are powerful aids 
for decision makers.  
 
There are two main types of online water quality sensors: a biosensor system (very accurate but 
expensive), or a multi-probe sensor with standard outputs (less sensitive but cheaper). The first 
ones are actually only employed for the monitoring of the water quality at “critical facilities”. 
The second ones may be installed at many points in the system. The early warning system should 
comprise both kinds of sensors. Obviously, only placement for sensor of the second kind (cheap 
with standard output) is sought for the detection system design. 
 
Once a water contamination incident has occurred, it is important to take appropriate counter-
measures. Also, waiting for confirmation might not be desirable, as it would be more prudent to 
firstly take appropriate responses to the contamination threats, and start to study the problem 
sources and extent. In the SMaRT-OnlineWDN project, an important tool is a reliable model for 
water quantity and for water quality. At regular short time steps (e.g., 5 min), the hydraulic 
model should be calibrated for the demand, and the transport model for the velocity. For the 
calibration of this online model, there is a need for measurement data. Where to place sensors 
and meters to improve the online demand calibration is an important question. 
 
The problem of water quality and quantity sensors placement is schematically represented in 
Figure 1. Online simulation and alarm generation are important tasks for the SMaRT-OnlineWDN 
project. The initial sensor network consists of multi-probe sensors (yellow circles) and 
biosensors (pink crosses). The two brown circles represent additional sensor placements to 
supplement an existing sensor network. In this project, the sensor system is considered for 
improving both the early warning detection and the online calibration of the transport model. 

 
Figure 1: Double goals of early warning detection and online calibration for optimal sensor placement 
in SMaRT-OnlineWDN. 
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In the literature, there are many papers that were published on both subjects in an offline context. 
Recently, a few were proposed for the pseudo-real-time context but never with such a short time 
step for calibration update. It is also relevant to report experience by SMaRT-OnlineWDN partners 
in previous National and European projects. We will present first a short review of the literature 
then experience by partners.  

1.1 Main previous published research in water security  

1.1.1 Demand!coverage!method.!!

One of the first formulations is the demand coverage method (DCM) by Lee and Deininger 
(1992) for placing monitoring station (MS). They propose an integer linear programming 
problem with node covering constraints Eq. (1) for the maximisation of the nodal demand 
covered by the monitoring stations. A MS covers a node if a sufficient fraction of water flows 
from this node to the MS for a demand scenario. The design relies on the principle that the water 
quality (trihalomethanes, bacteria, and chlorine residual) decreases with time and distance from 
the source. That is, good quality at a water sample entails a good quality at immediate upstream 
nodes. They extend the formulation to a multi-flow maximum coverage problem to handle 
multiple scenarios of demand. Assembling coverage constraints requires for each scenario: (1) to 
be run at steady state; (2) to make a flow path analysis that results in the water fraction matrix; 
then, (3) to indicate if a node is covered, given a minimum water-fraction criterion (e.g., 50%) in 
the K knowledge-carrying matrix (Eq. (1)). 

(DCM) 1

max ( , )
n

j j
j

f x y d y
=

=∑
  

subject to: 

 
  

xi
i=1

n

∑ ≤ Ns  (cardinality constraint)  

   K
T x − y ≥ 0n   (1) 

 
  
xi ∈ 0,1{ }  and y j ∈ 0,1{ }   

Where xi is one if there a sensor at node i, else 0; yj is an auxiliary variable which indicates if 
node j is covered by the MS or not; and dj is the demand at node j. The maximum coverage 
problem is NP-hard (non-deterministic polynomial-time hard). The greedy algorithm for DCM at 
each stage chooses a set, which contains the maximum weight of uncovered elements. This 
algorithm achieves an approximation ratio of 1 – 1/e. The greedy algorithm has performance 
guarantee when the maximum coverage problem has the same unit cost as the sensor (only 
cardinality constraint), but this is not generally the case when costs are different (when the 
cardinality constraint is replaced by a budget constraint). An improved greedy algorithm may be 
applied as in Khuller et al. (1999). Lee and Deininger (1992) solve the demand coverage 
problem with an ILP solver, while Kumar et al. (1997) use a greedy algorithm and Al-Zahrani 
and Moied (2001) a genetic algorithm (GA).  
 
One drawback of the method for its application to water security is that it is only based on water 
quantity under steady state. Even if multi-flow scenarios are proposed, transient transport 
equations are needed to fully comprehend the complexity of water quality indicators and 
contaminant propagation in the water distribution network. Woo et al. (2001) run a water quality 
model, then modify the objective costs of (DCM) to give a higher weight to nodes with low 
disinfectant concentration.  
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Several authors propose to go further and account for the travel time between nodes to design an 
early warning detection system (EWDS). Regarding the contaminant plume, monitoring stations 
should be designed to raise an alarm within an acceptable time to limit the pollution domain. 
Suggested solutions are: (1) solving a set covering problem for detection of a pollution domain 
within a maximum consumed polluted water volume criterion or (2) solving a MILP problem 
related to the p-median problem that is devoted to the optimisation of impact factors such as the 
average time to detection. The EWDS design requires generating contaminant events with use of 
an offline transport model for the contaminant plume dynamics and impact assessment.  

1.1.2 Coverage!of!pollution!events.!!

Kessler et al. (1998) formulate a set-covering problem (SCP) to find the optimal layout for 
detecting a random pollution event.  The optimal design satisfies a given level of service to the 
consumers that is defined by the maximum volume of consumed polluted water prior to 
detection. The method involves the construction of an auxiliary graph with travel time as arc 
weights; the Floyd-Warshall shortest path finding algorithm is used to demarcate the domain of 
pollution arising out of the Level of Service. Finally, a set cover problem is solved with the aim 
of minimising the design cost. They assign lower costs at nodes with higher detection 
redundancy. The methodology is demonstrated on a small illustrative case and on a midsize 
water network. The 0-1-pollution matrix is built on the auxiliary graph. In the paper this matrix 
has as many rows as non-resource nodes in the graph. Ostfeld and Salomons (2004) observe that 
it is preferable to calculate the domain of pollution with the complete transport model instead of 
the auxiliary graph in order to better take into account the water dilution and the water quality 
changes. Their notion of randomised pollution matrix (P Eq. (2)) is a generalisation of the 
Kessler et al. (1998) ones. A contamination event may comprise several intrusions and start at 
any time. Quality of the design solution is studied with regards to its likelihood of detection and 
the detection redundancy.  

(SCP) { }0,1 1
min ( )
i

n

i ix
i

c x c x
∈ =

=∑
   

subject to: 
   P

T x ≥ 1m   (2) 
The set-covering problem is closely related to the maximum coverage problem and they are both 
NP-hard. The SCP formulation searches for a safe cover for every pollution scenario. Because of 
the budget constraint, realistic sensor networks are unlikely to satisfy such a severe requirement; 
some (location, scenario) pairs may be left undetected if they impact fewer nodes or population. 
Uber et al. (2004) introduce an auxiliary binary variable yik = 1 if location i is protected for 
scenario k by at least one sensor, and zero otherwise. They deduce the following maximum 
coverage problem (MCP) with weaker assumption for the cover: 

(MCP) 1

max ( , )
m

j j
j

f x y w y
=

=∑
  

subject to: 

 
  

xi
i=1

n

∑ ≤ Ns  (cardinality constraint)  

 T
m− ≥P x y 0   (3) 

 
  
xi ∈ 0,1{ }  and y j ∈ 0,1{ }   

Solution of the set-covering problem is achieved by Kesser et al. (1998) using a graph heuristic 
algorithm suggested in the Christofides’s book (1975), by Ostfeld and Salomons (2004) using 
GAs and by Uber et al. (2004) with a greedy algorithm. 
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1.1.3 PUmedian!problem.!!

Propato et al. (2005) propose a MILP (Mixed Integer Linear Programming) formulation. Their 
generic objective function consists of costs that are impact factors for an EWDS such as 
averaged time to detection, likelihood of detection, etc. The formulation of this problem is the 
following: 

(MILP) 1
min ( , )

m

j j
j

f z w zδ
=

=∑
   

subject to: 
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n

j s
j

n Nδ
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 (cardinality constraint)  

 ( )T
n mz δ≥ − +P 1 1   (4) 

 { }0 and 0,1j iz δ≥ ∈   
By changing the variables ( 1i ixδ = −  and 1j jz y= − ) it is possible to show that this MILP 
formulation is close to the MCP problem of Eq. (3).  Nevertheless, there are two small 
differences:  the binary constraint on the auxiliary variable yj is relaxed to be 1jy ≤  that is more 
tractable; and conceptually the P matrix is built differently from Eqs.  (4) and (3). No 
simplification upon a given level of service, i.e., no maximum volume of consumed polluted 
water prior to detection is defined for the P assembling. The factor of adjustment is rather the 
minimum objective function value given the number of sensors. Berry et al. (2006) propose 
another variant with a formulation mathematically equivalent to the p-median facility location 
problem. They report scalability challenges due to 1) the need to use a large number of attack 
scenarios to be representative spatially and temporally and 2) the use of a small water quality-
reporting step. They solve with a Greedy Randomised Adaptive Search Procedure (GRASP) and 
they quantify how close to optimality the solution is with the MIP Cplex solver or with LP 
bounds. Propato and Piller (2006) also solved with the Cplex MIP solver and observe near 
optimality for a greedy algorithm. 
 
To discuss the convenience and the potential of each approach regarding designing an EWSN, 
the Battle of the Water Sensor Networks (BWSN) was held as part of the Eighth annual WDSA 
symposium in Cincinnati in 2006. Among diverse conclusions of the common paper by all the 
BWSN participants (Ostfeld et al., 2008), one may conclude that there is not a single 
formulation/solving method solution that was superior to the others; better solutions were ones 
combining strength of the algorithm with engineering judgement and intuition. Interestingly, 
they suggest several future research directions such as: definition of the pollution matrix and 
better contaminant event generation to better represent the network complexity; graph 
simplification or water quality model simplification without reducing the model prediction 
power; dual use of sensors (not only for security goal but also for model calibration, etc.); 
inclusion of risks; sensor reliability and alarm generation with false positive and false negative 
classification; and finally incorporation of operational conditions. To a greater or lesser extent, 
all these research directions are explored in the SMaRT-OnlineWDN project. 
 

1.2 Main previously published research in model calibration for WDNs 

1.2.1 Parameter!calibration!problem.!!

Network parameters that are used in the hydraulic and transport models are often rough 
estimates. This is mainly because the distribution network is buried underground since a long 
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time and the consumption at any time and location is random. The measurement values 
(pressure, flow, tank levels, concentration, conductivity, etc.) may be used to calibrate the 
parameters of both the hydraulic and the transport models, and to estimate the unknown state of 
the network. Given a set of network measurements, is it possible to derive all water quality and 
quantity unknowns of the network? Carpentier and Cohen (1991) defined the observability 
problem as the one of determining whether the available set of measurements provides sufficient 
information for the state estimation. They define two levels of observability (topological, which 
may be assessed with graph theory, and algebraic, by means of analysing the sensitivity matrix). 
The quality of the estimation of these parameters, which drives the quality of the predictions, 
depends on the position, number and nature of the measurements. This choice must ensure the 
observability of the network but also prevent small errors in measurement resulting in incorrect 
estimations of the parameters (Piller et al., 1999). 
 
Several fitness functions may be selected for the parameter calibration. For a review of them, 
application of hydraulic modelling and suggestion of additional fitness functions and entropy-
based criteria one may consult de Schaetzen (2000) or still Savic et al. (2009). A least-squares 
formulation that minimises the deviations between some predicted values and corresponding 
observations is a standard approach for overdetermined systems. Its weighted form has the 
advantage of dealing with errors in observations. When the latter ones come from exponential 
family distribution (e.g., the Gaussian) the weighted least-squares (WLS) minimisation problem 
corresponds to a maximisation of a likelihood function. The WLS problem reads: 

 (WLS) 
 
min
x∈Rn

1
2 Sy(x,t)− ymes (t)( )TW Sy(x,t)− ymes (t)( )
t0

t f

∫ dt    

subject to: 
 x ≤ x ≤ x  (5) 
 
Where x is the vector of parameters to determine; y(x,t) is the hydraulic and transport state that is 
implicitly defined by the hydraulic and transport equations; S is the selection matrix to select the 
state vector components that corresponds to the measurements; ymes is the vector of 
measurements; and W is a diagonal weight matrix. Most authors have considered a simpler form 
of (WLS) without the time dependency (Kapelan et al., 2002) or with a quadrature formula for 
the integral (Piller, 1995).  
 
Preis et al. (2011) use the Huber function to modify the (WLS) least-squares criterion for large 
residuals to be least absolute deviations (L1 norm). This way the parameter estimation is more 
robust against outliers. More efficient solving methods are gradient type methods that use 
derivatives of the criterion; for example, Piller (1995) applies the Levenberg-Marquardt (LM) 
method for solving WLS calibration problems for water distribution networks. However, as the 
criterion may exhibit several local minima (and maxima) a genetic algorithm (GA) was preferred 
for the first iteration steps in a hybrid GA/LM approach (Kapelan, 2002). In that situation, Piller 
et al. (2010) propose to convexify the LS criterion with addition of a Tikhonov regularisation 
term that penalises departure from a prior solution. 
 
For estimating the Jacobian of the residuals or calculating the LS gradient several methods may 
be explored. 

1.2.2 Sensitivity!estimations.!!

Four main approaches may be used for sensitivity estimations: finite differences, automatic 
differentiation, sensitivity equations and adjoint method. The finite difference techniques can be 
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used with a large number of hydraulic software to approximate the sensitivity; they are easy to 
implement but suffer from a lack of accuracy. Automatic differentiation is a family of techniques 
for computing the derivatives of a function defined by a computer program. Even though this 
method is accurate and fast, it produces lengthy and complex computer codes. Interestingly, for 
the steady state problem, the sensitivity equation method leads to explicit formulations for the 
derivatives of hydraulic state with respect to the demand and roughness hydraulic parameters 
(Piller, 1995). For calculating a row of the Jacobian, a linear system is solved that possesses the 
same structure (same Schur matrix) as the original problem. Fabrie et al. (2010) derive ad hoc 
sensitivity equations from the direct transport-reaction problem. For each pipe, the formulation is 
a 1D hyperbolic partial differential equation with a similar advection and reaction structure to the 
original problem. Solving economies are therefore possible. Gancel et al. (2006) solve, in 
coupled manner, the slow transient hydraulic equations and its sensitivity equations. Finally, the 
adjoint method, largely used in ground water hydrology, consists of solving the adjoint equations 
for determining Lagrangian multipliers, which help to calculate the least-squares criterion 
gradient. Kapelan et al. (2003) report this method yields accurate results and is also time-
efficient. In the case of steady state both methods are equivalent.  
 
Sensitivity analysis allows the determination of how “sensitive” our model is to change in the 
values of these parameters. They have been successfully applied to hydraulic sensitivity 
(Bargiela and Hainsworth, 1989), hydraulic calibration (Piller, 1995; de Schaetzen, 2000; 
Kapelan, 2002; Gancel, 2006) and hydraulic and water quality sampling design (Bush and Uber, 
1998; Piller et al., 1999). For the latter, it gives the most sensitive nodes where it would be most 
profitable to perform the necessary measures for calibration.  

1.2.3 Minimising!the!variance!of!estimators.!!

From optimal design in Statistics (e.g., Optimal_Design, 2013), there are various forms of 
optimality criteria that are used for sampling design. If x̂  is a least-squares estimate of x (a 
solution of problem WLS), a deviation from ymes, or equivalently another measurement error 
realisation, will lead to a different estimate. Under the assumption of a mean-zero independent 
and identically distributed (iid) error, a first-order estimate of the Covariance matrix of the x̂  
parameters is given by: 
 Vx̂ (δ ) = s

2 JTSδ
TWδSδJ( )−1   (6) 

Where the design δ is the set of all the observations; Sδ has the same definition as in Eq. (5); Wδ 
is composed of suitable positive weights for ensuring the weighted residuals to be iid;  J is the 
Jacobian of y with respect to x; and s2 is an estimate of the variance of the residual error. 
 
An attempt to minimise the confidence volume for the parameters is then to seek the design δ 
that minimises the determinant of the Covariance matrix Eq. (6) or equivalently that maximises 
the determinant of the information matrix. This leads to the popular D-optimality design that 
consists of seeking: 
 max

δ
= det Jδ

TWδJδ( )   (7) 

Where δ is the decision variable to determine (where to locate measurements and their nature); Jδ 
is the Jacobian matrix of the model residuals for choice δ; and Wδ is the inverse of the 
covariance matrix for the corresponding observations. In practice the Jδ matrix is extracted from 
the full Jacobian matrix at parameter estimates x0: 
 Jδ = SδJ x0( )   
With J(x0) is the Jacobian matrix of y in x0. Similarly, the observation covariance matrix is 
extracted from the diagonal covariance matrix of potential measurements: 
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 Wδ = Cδ
−1 = SδC

−1Sδ
T   

The D-optimality criterion results in minimising the generalised variance of parameters. 
 
Another criterion is the A-optimality that tries to minimise the trace of the determinant of 
parameter covariance matrix: 
 min

δ
= tr Jδ

TWδJδ( )−1   (8) 

This criterion results in minimising the average variance of the parameter estimates. 
 
Bush and Uber (1998) suggest three simple sensitivity-based methods with simpler but practical 
measures (no determinant, no inverse matrix). Their findings were that both tracer and pressure 
measurements might improve parameter confidence by a factor of 2. Cheung et al. (2005) 
developed a multi-objective sampling method framework. Their method aims simultaneously to 
maximise the model precision (D-optimality), to minimise the number of sensors and to 
maximise the sensor spreading. Kang and Lansey (2010) analyse the trade-off between the 
model accuracy and the model precision for nodal demand uncertainty and pressure prediction 
uncertainty.  
 

1.3 Experience of partners 

1.3.1 The!STATuS!Project!
Within the collaborative research project STATuS that was funded by the German Federal 
Ministry of Education and Research (13N10623, 2009 – 2013), a risk-based approach to water 
network security was elaborated by the partners. 3S worked on the development of a risk map of 
the entire water supply system. The risk map is created by the use of hydraulic simulation model 
and graph decomposition (Deuerlein, 2006; Deuerlein, 2008). Eventually, for each consumer 
(demand node) of the network, the relative risk of being affected by a contamination event was 
calculated as well as for each node and hydrant the risk of being the possible intrusion point of 
the contamination. For the development of the model, a number of contamination scenarios were 
simulated. As parameters, the input flow (contaminant and carrier medium), the place and time 
of intrusion and the duration were varied.  
It is well known that the risk of an event is defined as the product of its probability of occurrence 
and the impact. In the context of STATuS a simple approach was taken where the impact is 
estimated by the total volume of water (flow) that leaves the intrusion node. In a steady-state 
version only the flows have to be considered whereas in the extended period version the integral 
over time must be calculated. One of the most important outcomes was that the risk is not a 
continuous function of input mass. There is a jump in the risk when the contaminant intrusion by 
pumping and flow reversal in the connected pipes reaches a superposed distribution main.  
Other work that is related to SMaRT-OnlineWDN concerns field tests that were carried out in order 
to get a better understanding of the transport and mixing mechanisms in a real network as well as 
the capabilities of common multi-parameter sensors for detection of deteriorating water quality. 
As a surrogate for the contaminant, the conductivity of water from different sources was studied.  
Although development of a new sensor placement algorithm was not part of STATuS, some 
recommendations for the placement of sensors were derived from the results and graph 
theoretical properties of the network (Deuerlein et al. 2010): 
• Sensors should be placed at so called path nodes (nodes with degree > 2) only  
• Full observability of pipes and nodes of the graph theoretical forest is impossible except 
if sensors were to be installed at every leaf node. 
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• Event scenarios for sensor placement could focus on intrusion at path nodes. Other events 
at inner path nodes are covered as part of the latter. Two main cases can be distinguished: If the 
path includes a sink node the contamination is local only and transported to the sink node. In the 
other case the contaminant is transported to one of the end nodes (path node). From there the 
global contamination event is identical with the contamination of the path node directly.  
• Graph theoretical bridge elements are well suited for sensor placement since a sensor on a 
bridge pipe separates the network into two parts without any ambiguity. 
The risk-based approach could be explored in the SMaRT-OnlineWDN project in order to better 
sample the contaminant events. The STATuS recommendation for placing sensors will help to 
reduce the number of candidate locations. This will be examined in the deliverable 3.2. 

1.3.2 The!IWaNet!project!
Within the collaborative research project IWaNet (funded by the German Ministry for Education 
and Research, 01ISO9014B, 2009 – 2011) a hybrid system consisting of a deterministic 
hydraulic simulation model, artificial neural networks (ANNs) and multi-parameter sensors with 
GPRS data transfer was developed. The intention was to use ANNs that were trained by 
simulations for network monitoring and control optimisation (ANN in conjunction with Genetic 
Algorithms). One of the tasks of 3S was to develop a mathematical model for finding the optimal 
sensor locations (Pinzinger et al., 2011). A hybrid method was developed that takes into account 
quality measurements (conductivity, temperature, pH) as well as hydraulic parameters (pressure, 
flow). For detection of contaminants a mono objective integer linear programming (ILP) 
algorithm was implemented. As objective function the maximum coverage of Pollution Events 
(MCP § 2.1) was used. By defining a maximum travel time, the competing objective of 
minimising time to detection was also considered in a simplified way as a constraint.  
For solution of the same problem also a Greedy algorithm was implemented. The results were 
almost as good as those of the ILP but the running time could be reduced by a magnitude. The 
optimal locations for hydraulic measurements were calculated by a second Greedy-Algorithm 
that is based on sensitivities. Using the inverse matrix of the Jacobian of the hydraulic network 
equations delivers, for example, the sensitivity of the pressure at a node i with respect to a 
change of outflow at node k. The node with biggest sensitivity to all other nodes is selected as 
the sensor location. Then, the system is modified (the sensor node is fixed) and the second most 
sensitive node is selected. This procedure is repeated until the maximum number of available 
sensors is reached. In conclusion, the IWaNet project has tested sampling methods for designing 
both an EWDS and an optimal sensor set for calibration. 

1.3.3 The!SecurEau!project.!!

The FP7 SecurEau project  (EC n° 217976) was aimed at the security and decontamination of 
drinking water distribution systems following a deliberate contamination. This 4-year 
collaborative project ended in February 2013 and gathered 14 partners. More specifically, this 
project focused on appropriate responses for rapidly restoring the use of the drinking water 
network after a deliberate contamination. To attain this goal, the SecurEau responses (SecurEau, 
2013) were on 4 different levels: 
1. Setup of an early warning system. Selection of unspecific (multi-probe) sensors able to 

detect unexpected brutal changes to the water quality. Determination of optimal sensor 
locations; 

2. Grab/automatic sampling for identification or detection of the contaminant in a rapid and 
accurate manner. Has the early warning system raised an alarm? If there is high probability 
of a real contamination with potential risks it is necessary to identify it. It could be chemical, 
biological, radiological or nuclear;  
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3. Contamination source identification and definition of the areas contaminated. 
Sorption/Reaction phenomena have been studied for a large array of contaminants to give an 
indication of the contaminated media (water and bulk flow, pipe wall and biofilm, 
sediments...) the level of importance and the transport. Additionally, contaminant source 
identification problem is solved to pre-localise the sources of the problem;   

4. Decontamination procedures and control of the decontamination efficiency. New methods 
to decontaminate polluted installations including an integrated approach to neutralise water. 
The control of the efficacy of decontamination, by using sensors (deposits measurements) 
and coupons installed previously in representative areas of the network. 

 
For the setup of an early-warning system, a multi-objective problem was formulated. Several 
objectives were defined. Some of them are early warning specific; others were introduced to 
mitigate the decontamination procedure; while the last ones decrease the population vulnerability 
and the financial cost. Two groups of constraints were considered in order to select sensor 
designs ready for use by water utilities. The first group is for the operational and capital costs. 
The second group encompasses all the location restrictions and limitations. A novel formulation 
is derived that reduces the problem size in term of unknowns and constraints that leads to a 
Nonlinear Integer Programming problem formulation. A Monte Carlo simulation, that generates 
contaminant scenarios, achieves the cost evaluation. For each scenario, an extended period 
simulation is used to simulate the fate and transport of the contaminant, from its entry point to 
the taps of consumers. A conservative contaminant was selected for its stronger impact with 
respect to the concentration. Uniform probability distribution and equiprobability were applied to 
the contamination scenarios. Finally, it was proposed to simplify the network graph for 
overcoming large execution time but to get a better predictive hydraulic model. Engineering 
expertise was used and it is based on node and link aggregations. 
 

2 Formulations and objectives for early warning detection 
2.1 Sensor design objective definitions 
Half of the four conflicting objectives by Ostfeld et al. (2008) that were part of The Battle of the 
Water Sensor Networks (BWSN) are retained.  
 
The average time to detection criterion is the simplest. It is defined as: 
 

 Z1(δ ) =
1

Nsimu
t j (δ )

j=1

Nsimu

∑   (9) 

 
Where, δ is a feasible sensor design (number and location); Nsimu is the number of 
contamination events to consider; 1/Nsimu is the probability of a contamination event; and tj is 
the minimal detection time of the jth contamination for the given sensor location δ. It is worth 
noting that Z1 corresponds to the expected time to detection for equiprobability of contamination 
events. Consequently, Z1 is the mathematical expectation of the minimal detection time for this 
assumption. More general minimal detection time involving non-perfect sensors will be 
considered in the SMaRT-OnlineWDN project (in the D3.2). 
 
The exposed population affected (i.e., exposed population that becomes infected or 
symptomatic) as defined in the BWSN paper is not proposed here. This is because the 
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information of the population supplied at network nodes is not always available from the water 
utility and especially because the calculation requires contaminant specific parameters such as 
median lethal dose, which is only possible for some targeted scenarios (impossible for general 
contamination purpose). The BWSN volume of contaminated water consumed prior to detection 
was not selected either. It depends on the strong assumption about the demand time pattern that 
should be the same for the same category of demand at every location in the system.  A more 
robust objective design (as proposed in the SecurEau project, 2013) is to consider the average 
fraction of population exposed prior to detection. 
 
The latter is estimated as the ratio of the connections at exposed nodes over the total number of 
connections in the WDN: 
 

 Z2 (δ ) =
1

Nsimu
f j (δ )

j=1

Nsimu

∑   (10) 

 
Where fj is the fraction population exposed to the jth contamination for the given sensor design δ. 
 
The likelihood of detection is the average number of detections for a given sensor design. Its 
complement of one is the average number of failed detection that is: 
 

 LD (δ)=
1

Nsimu
dj (δ)

j=1

Nsimu

∑ =1− Z3(δ)=1−
1

Nsimu
(1−dj )(δ)

j=1

Nsimu

∑   (11) 

 
Where dj is one if the jth contaminant event is detected by δ else zero. Contrary to the two first 
designs (Z1 and Z2) that should be minimised, the likelihood of detection LD should be 
maximised. Alternatively, the average number of failed detections Z3 is to be minimised. 
 
Two additional specific design objectives were defined in the SecurEau project (2013) to 
facilitate the decontamination procedure. The average contaminated network water volume is the 
average volume of contaminated water that is inside the system at the time of warning. It is 
estimated by: 
 

 Z4 (δ)=
1

Nsimu
vj (δ)

j=1

Nsimu

∑   (12) 

 
Where vj is the volume of contaminated water in the system for the jth event before detection by 
δ. The second additional objective to minimise is the average contaminated network pipe 
surface: 
 

 Z5 (δ)=
1

Nsimu
sj (δ)

j=1

Nsimu

∑   (13) 

 
Where sj is the contaminated surface for the jth event before detection by δ. 
 
In order to protect a population that is at risk (e.g., a hospital; a school; a vulnerable customer - 
registered in the Safeguard scheme; and to a certain extent a normal consumer) the average 
fraction of population exposed at risk criterion is used. It is defined as: 
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 Z6 (δ)=
1

Nsimu
rj (δ)

j=1

Nsimu

∑   (14) 

 
Where rj is the fraction of population at risk that is exposed to the jth contamination before 
detection by the given sensor design δ. This criterion differs from the Z2 fraction of population 
exposed (Eq. (10)) as the definition risk may differ from the connection number. An example of 
risk definition is 5, for presence of a hospital or a school; 3 for a safeguard consumer; and 1 for a 
normal consumer. 
 
For operational reasons, the traffic information is proposed in order to account for the 
installation cost that is less (about 10 times) for a location with no traffic than for a location with 
traffic. The installation cost is defined as: 
 
 Z7 (δ)= IC(δ)   (15) 
 
Where IC is the installation cost with respect to the design δ. 
 
Finally, the weighted linear sum criterion is proposed in an attempt to make a trade-off between 
the different objectives: 
 

 Z8 (δ)= wα
α=1

6

∑ Zα (δ)
Zα (∅)

+w7
IC(δ)

δ UICtraffic

  (16) 

 
Where the wα, α = 1,…,7 are positive weights that relates the importance of an objective in the 
design; their sum is one; |δ| is the sensor cardinality (i.e., the number of sensors for the design set 
δ ); ∅   is the empty sensor design set; and UIC is the traffic unitary installation cost. 
In summary, the list of the objectives retained for early-warning detection is: 

- the average time to detection; 
- the fraction population exposed; 
- the likelihood of detection; 
- the average contaminated network water volume; 
- the average contaminated network pipe surface; 
- the average fraction of population exposed at risk; 
- the installation cost; 
- the weighted linear sum of the previous objectives. 

2.2 Constraints 
Two groups of constraints have to be considered in order to select sensor designs ready for use 
by water utilities. 
 
The first group is for the operational and capital costs. Two French SMaRT-OnlineWDN end-users 
planned and started to install and operate water quantity and quality sensors. With full 
sectorisation of 14 sectors, the CUS water utility will install 48 new remote monitoring points for 
a cost of 40 k€/station in 2014/2015. The eight stations funded by the ANR in the SMaRT-
OnlineWDN project were already set up in 2012/2013. The VEDIF water utility has instrumented a 
pilot site on the Villejuif subnet with 20 Kapta sensors and 9 flow meters at the beginning of the 
project and globally, the installation of 70 sensors started on the SEDIF network in 2013 and will 
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stop in March 2014. 110 new quality sensors will be installed on the VEDIF network in 2014. 
The global capital cost for VEDIF is about 420 k€. To simplify, the operational cost is 
considered to be a linear function of the number of sensors. The installation cost for a monitoring 
station will greatly vary from one location to another. Nevertheless, an average installation cost 
may be given and used because of the amount of sensors to install. The capital cost may also be 
considered as a linear function of the sensor number. In this study, operational and capital costs 
are represented and valuated by the number of sensors. 
 
The second group encompasses all the location restrictions and limitations. Some locations are 
selected by the water utility. This leads to defining a preselected sensor set P. Other locations 
should be avoided because they lead to technical and financial limitations: installation costs are 
too expensive and/or technical requirements such as minimum velocity (for optimisation of 
chlorine sensor working) are not met. This defines the feasible sensor set F that is a superset of 
the preselected sensor set P. 

2.3 Formulation 
 
Here, starting from the (MILP) formulation by Propato et al. (2005) a novel formulation is derived that 
reduces the problem size.  
 
Propato et al. (2005) have formulated a Mixed Integer Linear Programming (MILP) problem to solve the 
sensor design problem. This is equivalent to a maximum coverage problem (MCP) with the contribution 
of the jth contaminant event to objectives Eqs (9-15) given by the following expression: 
 

 qj
α (x, y) = cα ij yij

i=1

N j−1

∑   (17) 

 
Where qj is the contribution of interest for the jth event; Nj is the number of nodes belonging to the jth 
contaminant plume (if Nj is 1, qj is zero); cij is the partial impact cost for not monitoring the ith node (in 
the temporal sequence) for the jth contaminant pollution; x is the decision variable that depends on the 
sensor design δ, is binary and is involved only in the constraints Eq. (3) in combination with y; and yij is 
a positive continuous auxiliary variable that is introduced for making the objective function linear. The 
binary yij variable was relaxed to lie between 0 and 1. The advantage of such a formulation is that 
standard solving methods may be built. A disadvantage is the number of variables and constraints which 
makes this problem difficult to solve when numerous contaminant simulations and all the potential node 
locations are to be explored. Actually, the number of auxiliary variables and constraints is of the order of 
N2, where N is the number of nodes. That is for SMaRT-OnlineWDN water utility end-users several 
millions of variables and constraints.   
 
A novel and derived formulation is proposed here to overcome the size problem. The auxiliary variable 
yij is removed from the formulation using Boolean functions instead: 
 

 qj
α (δ ) = cα ij yij

i=1

N j−1

∑ (δ ),  with yij (δ ) = 1− xkj (δ )⎡⎣ ⎤⎦
k=1

i

∏ ∈ 0,1{ }   (18) 

 
Where δ is the sensor design variable with sensor node identifiers as components; xkj is a 
Boolean function that is 1 if there is a sensor at the kth node in the temporal sequence for the jth 
simulation, else zero; and yij is also a Boolean function of δ. Assuming that junction nodes are 
numbered from 1 to N, the mth-member or element of δ verifies: 
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  δm ∈ 1,2,,N{ }, m = 1,,Ns   (19) 
 
Where Ns = δ  is the number of sensors to place. 
 
The sensor design multi-objective problem may be formulated as: 
 

 

 

min
δ

Zα (δ ) = 1
Nsimu

qj
α (δ )

j=1

Nsimu

∑⎡

⎣
⎢

⎤

⎦
⎥
α=1,,7

T

subject to: P ⊂δ ⊂ F, δ = Ns

  (20) 

 
Where P is the pre-selection set; F is the feasible set; Zα is one of the seven objective functions defined 
in Eqs. (9-15); qij is defined by Eq. (18); and δ is the sensor design (decision) variable that is a subset of 
F and a superset of P. This problem consists of a Nonlinear Integer Programming problem that is multi-
objective. The solution to this problem is a set of Pareto points. 

 

 
By combining all the objectives in the weighted linear sum of the objectives Z8, a mono-objective 
version problem can be written as: 
 
 min

δ
Z8 (δ ),  subject to: P ⊂δ ⊂ F, δ = Ns   (21) 

 
Where arg min stands for argument of the minimum. The solution to this problem is proposed as an 
alternative way to find a solution to the multi-objective problem. The weights have to be calibrated by 
the decision maker (main rules look difficult to establish). Clearly, when solving a mono-objective 
programming problem, global information is lost but the decision is made easier. 
 

3 Optimal designs for minimising the variance of estimators  
3.1 Parameter classes and measurements 
 
The nature of measurements and their locations determine if a network is observable and 
influence strongly on the numerical behaviour for the calibration problem. The dispersion of the 
parameter estimation error is also dependant on the sensor design to a greater or lesser degree. 
 
Any water quality or water quantity output may be a candidate to be observed. But the 
measurements may be preselected with cheaper location-specific costs and with the easiness of 
installation. 
 
As discussed in the background chapter, the nodal demands for short periods of time are rough 
estimates.  Accordingly, they will constitute the unknowns that we seek to identify. Based on the 
nature of premise occupation and water use metering analysis, consumers may be grouped in few 
classes with the same demand multiplier time pattern. For example, one will distinguish 
domestic, residential and industrial consumer classes.  Then, the consumers are aggregated at 
nodes.  Few consumers of different classes can be aggregated at the same node. This reads: 
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 d(t) =Gdx(t)   (22) 
 
Where d is the nodal demand; Gd is the nj by nd class matrix of nodal demand allocation; and 
x(t) is the demand class of size nd. This way parameter observability may be obtained as in 
Cohen and Carpentier (1991).  The definition of such classes is a difficult task.  A trade-off 
should be made between the model error resulting from simplification and the parameter 
uncertainty.  Indeed, few parameters are easy to calibrate but errors in the model can be 
significant.  Several authors have examined this question as well as the rational use of 
probability theory and automatic clustering (Mallic et al., 2002; Moughton et al., 2006). 
 
The parameter calibration problem may be extended to the offline identification of relative pipe 
roughnesses, diameters, valve states, pipe kinetics and dispersion coefficients. In the SMaRT-
OnlineWDN project we will focus mainly on online demand calibration. 
 
The vector yall of all potential measurements may be retrieved using the following nonlinear 
regression model assuming x is known and there is no error in the model: 
 
 yall (t) = y(x,t)+ ε all (t)   (23) 
 
Where y(x,t) is the corresponding vector-values calculated from the water quantity and the water 
quality models; and εall is the error or noise vector that we will assume distributed with mean 
zero and diagonal covariance matrix C. In Eq. (23) yall and εall are random variables and y(x,t) is 
the expectation of yall(t). 
 
Some measurements are of a different nature; the accuracy may also depend of the level of the 
measurement values. Also, it is worth introducing the confidence we have in the measurements: 
 
 yi

all − yi ≤ Δyi   (24) 
 
With Δyi the confidence we have for the ith measurement at a given level. We assume these 
coefficients are proportional to the model variance of the model error and let W be the weight 
diagonal matrix with ith term the inverse of the ith measurement confidence squared. More 
specifically, we assume C of this form: 
 
 C =σ 2 diag Δyi

2( ) =σ 2W−1    
 
The latter can be used to homogenise Eq. (23) for the error model to be iid. Thus by reducing by 
the confidence we get: 
 
 Yall (t) = Y(x,t)+E(t)   with E(t) =W

1
2ε(t)  (25) 

 
The model error or Eq. (25) has a mean-zero and there is homoscedasticity, i.e.: the variance 
error matrix is: 
 
 var E(t)( ) =σ 2Im    
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For a sensor design δ, we observe with one realisation at time t some components of yall. Using 
Eq. (23) and the definition of measurements in δ, this could be written as the reduced nonlinear 
regression equation: 
 
 yδ

mes = Sδy(x,t)+ εδ (t)   (26) 
 
With Sδ is the selection matrix we introduced Eqs. (6) and (7). In the same manner, the following 
reduced form with iid errors may be obtained: 
 Yδ

mes = SδY(x,t)+Eδ (t)   (27) 
 

3.2 Influence of the measurement error on the Least-Squares estimation 
 
Let x̂  be the solution of Eq. (26) at least-squares sense. x̂  should be a solution of the normal 
equation: 
 
 Jδ (x̂)

TWδ Sδy(x̂,t)− yδ
mes (t)( ) = 0 p   (28) 

 
Where J( x̂ ) it the Jacobian of y evaluated at  x̂ . x̂  is also a random variable that depends on the 
measurement error εδ. With no measurement error, the least-square estimation is: 
 
 x̂0 /  Jδ (x̂0 )TWδ Sδy(x̂0,t)− Sδy(x,t)( ) = 0 p   (29) 
 
In contrast, with a non-null measurement error the least-square estimation may be significantly 
different and it satisfies: 
 
 x̂ε /  Jδ (x̂ε )TWδ Sδy(x̂ε ,t)− Sδy(x,t)− εδ( ) = 0 p   (30) 
 
We will call the influence of the measurement error on the least-squares estimates, the deviation 
from the solution with no measurement error. At first-order estimates, the influence fulfils the 
linear equation: 
 
 x̂ε − x̂0 = Jδ

TWδJδ( )−1
Jδ

TWδεδ   (31) 
 
With Jδ is a Jacobian estimate that is assumed constant at the vicinity of the solution. 
 
In equivalent manner, this could be rewritten as: 
 
 x̂ε − x̂0 = Tδ

TTδ( )−1
Tδ

TEδ = Tδ
+Eδ   (32) 

 
Where  
 
 Tδ = SδW

+ 12J   (33) 
 
and (W)+ is the pseudo-inverse of W. Tδ is the Jacobian of SδY defined in Eq. (27). To calculate 
this matrix, we need a sensor design δ for the matrix Sδ, the measurement confidences for W and 
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an estimate of J the Jacobian of the system at each potential measurement. The pseudo-inverse 
of Td is the sensitivity matrix of the parameter estimate at least-squares sense. In Eq. (32), the 
influence of measurement errors, depends linearly on measurement errors. 
 

3.3 Selected Criterion that minimises the variance of the least-squares estimator 
 
The main idea (Piller, 1995) is to choose a sensor design δ that minimises the absolute value of 
the influence of measurement error Eq. (32) for measurement errors within the confidence limits 
defined in Eq. (24). Because of W and the appropriate change of variable the upper limit for E is: 
 
 Ei (t) ≤1   (34) 
 
Which means that E belongs to the unit ball for the infinity (or maximum) norm. 
 
For each design δ, we calculate: 
 
 sup

Eδ ∈B∞
Tδ( )+ Eδ = Tδ( )+

∞
  (35) 

 
Where B∞  is the unit ball; and ∞  is the infinity matrix norm which is simply the maximum 
absolute value row sum of the matrix. 
 
The problem of optimal design for parameter calibration is formulated as: 
 

 
min
δ
Z∞(δ ) = Tδ

+
∞

subject to: rank Tδ( ) = p
  (36) 

 
With Tδ is defined in Eq. (33); and rank is the matrix rank operator. The full rank constraint the 
number of Tδ columns is to ensure the algebraic observability. 
 
In the SMaRT-OnlineWDN project optimal solution for Eq. (36) will be compared with regards to 
their performance with the early-warning criteria specified in chapter 2. 

4 Conclusions 
 
This deliverable report specifies which performance criteria should be considered to place water 
quality and water quantity sensors for both early-warning detection systems and model 
calibration. The optimal designs that are proposed come from a thorough analysis of the 
literature and from the SMaRT-OnlineWDN consortium experience. 
 
For early-warning detection system, the eight following different objectives are defined to 
optimise: the average time to detection; the fraction population exposed; the likelihood of 
detection; the average contaminated network water volume; the average contaminated network 
pipe surface; the average fraction of population exposed at risk; the installation cost; and the 
weighted linear sum of the previous objectives. The solution is a two-step method. First, several 
pollution events are simulated and several impact costs if not measuring are worked out. Then, a 
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multi-objective nonlinear integer-programming problem is to be solved to cover the pollution 
events under budget and limitation constraints. A trade-off is to be found, using Pareto-efficient 
fronts on conflicting objectives. 
 
Placing sensors for model calibration relies on selecting designs that reduce the influence of 
measurement errors. The solution proposes to minimise the variance of the least-squares 
estimator. The objective function represents the sensitivity of the demand class parameter 
estimation to the measurement error. The full rank constraint restricts the design solution that 
leads to observability of parameters. The optimal sensor designs lead to calibration problem with 
the best-condition numbers. The confidence interval for parameters will be reduced compared to 
another sensor design with higher score. 
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