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Investigating the interactions between data assimilation

and post-processing in hydrological ensemble forecasting
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M-H. Ramos

G. Thirel
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Abstract

We investigate how data assimilation and post-processing contribute, ei-

ther separately or together, to the skill of a hydrological ensemble forecasting

system. Based on a large catchment set, we compare four forecasting options:

without data assimilation and post-processing, without data assimilation but

with post-processing, with data assimilation but without post-processing,

and with both data assimilation and post-processing. Our results clearly

indicate that both strategies have complementary effects. Data assimilation

has mainly a very positive effect on forecast accuracy. Its impact however

decreases with increasing lead time. Post-processing, by accounting specif-

ically for hydrological uncertainty, has a very positive and longer lasting

effect on forecast reliability. As a consequence, the use of both techniques is
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recommended in hydrological ensemble forecasting.

Key words: hydrological ensemble forecasting, data assimilation,

post-processing, ensemble dressing, uncertainty propagation

1. Introduction1

1.1. Addressing uncertainties in hydrological ensemble forecasting2

Developing and improving operational hydrological ensemble forecasting3

systems is a critical step toward better decision-making and risk management.4

The skill of operational hydrological ensemble forecasting systems is limited5

by two main sources of uncertainty (Krzysztofowicz, 1999): meteorological6

uncertainty and hydrological uncertainty. From a pragmatic point of view,7

the need to properly account for these two main sources of uncertainty arises8

because (i) a hydrological forecaster has no choice but to rely on uncertain9

meteorological forecasts; (ii) even with accurate inputs, hydrological forecasts10

will remain uncertain due to our limited knowledge of initial conditions and11

the inherent limitations of the forecast model used.12

Meteorological uncertainty is commonly addressed by propagating an en-13

semble (or multi-scenario) input of weather forecasts. For instance, several14

operational and pre-operational flood forecasting systems across the globe15

have been set up to be forced by ensemble numerical weather predictions16

(see Cloke and Pappenberger, 2009, for a review). Addressing the hydro-17

logical uncertainty issue is less common, although a general framework of18

probabilistic forecasting that includes a hydrological post-processing method19

has been introduced fifteen years ago by Krzysztofowicz (1999). Since then,20

a number of other hydrological uncertainty processors have been proposed21
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(Montanari and Brath, 2004; Montanari and Grossi, 2008; Solomatine and22

Shrestha, 2009; Coccia and Todini, 2011; Morawietz et al., 2011; Weerts et al.,23

2011; Ewen and O’Donnell, 2012; Pianosi and Raso, 2012; Smith et al., 2012;24

Van Steenbergen et al., 2012; Yan et al., 2012), but their use is not widespread25

for operational ensemble forecasting.26

Although generally dealt with separately, statistical post-processing and27

data assimilation (also called real-time model updating in the engineering28

community) can be intrinsically related in the hydrological forecasting frame-29

work. Both represent techniques that may be used in a forecasting system30

to improve the quality of the forecasts (i.e., to provide more accurate and31

reliable forecasts) and to, ultimately, enhance the usefulness of the forecasts32

in decision-making. Since forecasting deals with an uncertain future, these33

techniques aim to bring additional information to the forecast procedure and34

take into account the various uncertainty sources (or at least the major un-35

certainty sources) affecting the forecasting chain. This is usually achieved by36

merging information from model and observations.37

While data assimilation and post-processing share a general goal, the38

techniques applied may differ in the practice of hydrological forecasting.39

These differences usually draw the separation between what is defined as data40

assimilation and what is defined as post-processing in a modelling framework.41

The definitions used in this study are the following: we use the term “post-42

processing” when using the hydrological uncertainty processor (Section 2.4),43

whose primary purpose is to dress deterministic forecasts with uncertainty44

based on distributions of past model errors and, this way, build probabilis-45

tic forecasts. “Data assimilation” refers to techniques applied to perform46
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the updating of the system before it issues a deterministic forecast. Here47

it concerns the state updating of the hydrological model and a model error48

correction applied to its output (Section 2.3).49

The fact that data assimilation has the potential to improve real-time50

streamflow forecasting is widely accepted (see Liu et al., 2012, for a review).51

In contrast to probabilistic and ensemble-based data assimilation methods52

(e.g., Weerts and El Serafy, 2006; Salamon and Feyen, 2010; Moradkhani53

et al., 2012; Vrugt et al., 2013), deterministic updating schemes are designed54

to improve forecasts without producing probabilistic outputs. They may be55

easier to implement, mainly operationally, but at the price of leaving the56

uncertainty quantification issue unanswered. In these cases, the use of sta-57

tistical post-processing methods together with data assimilation procedures58

provides a way to reduce and quantify the predictive uncertainty in the hy-59

drological forecasts.60

1.2. Integrating uncertainties in hydrological ensemble forecasting61

“Ensemble dressing” is an intuitive and operationally-appealing method62

that allows integration of uncertainties from hydrological modelling and me-63

teorological (ensemble) forcing. The main difference with other ensemble-64

based post-processors (e.g., Wang and Bishop, 2005; Fortin et al., 2006;65

Brown and Seo, 2010; Boucher et al., 2012; Brown and Seo, 2013) is that, for66

ensemble dressing, hydrological modelling errors are assessed separately, and67

later combined with ensemble forecasts. Distributions of modelling errors are68

obtained from long time series of simulated and observed data (i.e., learning69

from the past), and then applied to ensemble forecasts to obtain the total70

predictive distribution.71
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In recent studies, the use of ensemble dressing has been implemented72

and tested to improve the skill of hydrological ensemble forecasting systems.73

For instance, Reggiani et al. (2009) present a Bayesian ensemble uncertainty74

processor for medium-range ensemble flow forecasts in the Rhine river basin.75

Hopson and Webster (2010) use an uncertainty processor based on the k-76

nearest neighbours (k-NN) resampling method to dress probabilistic medium-77

range forecasts for two large basins in Bangladesh. Zalachori et al. (2012)78

compare different strategies based on pre-and post-processing methods to re-79

move biases in a streamflow ensemble prediction system developed for reser-80

voir inflow management in French catchments, while Pagano et al. (2013)81

present a hydrological application of ensemble dressing for 128 catchments82

in Australia.83

The studies mentioned above have in common the fact that they focus84

on post-processors for operational applications and on the overall evaluation85

of the quality of post-processed forecasts. Like in the studies that develop86

and test data assimilation techniques, most of the forecast assessment is on87

the benefits (in terms of quality) that post-processors or data assimilation88

may bring to forecast quality (accuracy, reliability, sharpness, etc.) at fixed89

forecast lead times. Little is known about the interactions between these two90

components of a forecasting system and the impacts of implementing both91

post-processing and data assimilation on the performance of the forecasts92

along the forecast lead times.93

1.3. Aim and scope of the study94

This study aims to shed light on the interactions between data assimi-95

lation and post-processing in hydrological ensemble forecasting. We address96
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the following questions:97

1. How does data assimilation impact hydrological ensemble forecasts?98

2. How does post-processing impact hydrological ensemble forecasts?99

3. How does data assimilation interact with post-processing to improve the100

quality and skill of hydrological ensemble forecasts over the forecast lead101

times?102

We address these questions with the help of a large set of catchments,103

making it possible to draw more general and robust conclusions.104

2. Data and methods105

2.1. Data set106

A set of 202 unregulated catchments spread over France was used (Fig-107

ure 1). The catchments represent various hydrological conditions, given the108

variability in climate, topography, and geology in France. This set includes109

fast responding Mediterranean basins with intense precipitation as well as110

larger, groundwater-dominated basins. Some characteristics of the data set111

are given in Table 1. Catchments were selected to have limited snow in-112

fluence, since no snowmelt module was used in the hydrological modelling113

(Section 2.3).114

Potential evapotranspiration (PE), precipitation, and discharge data were115

available at hourly time steps over the 1997–2006 period. Temperature inputs116

originate from the SAFRAN reanalysis (Vidal et al., 2010). PE was estimated117

using a temperature-based formula (Oudin et al., 2005). Precipitation data118

come from a reanalysis dataset recently produced by Météo-France based on119
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Figure 1: Locations of the 202 French catchments used in this study (dots correspond to

the gauging stations, and blue color is catchment areas).

weather radar and rain gauge network (Tabary et al., 2012). River discharge120

data were extracted from the HYDRO national archive (www.hydro.eaufrance.fr).121

2.2. PEARP, the Météo-France ensemble forecast122

A short-range meteorological ensemble prediction system, the Météo-123

France PEARP EPS (Nicolau, 2002), was used to produce hydrological en-124

semble forecasts. The PEARP EPS runs once a day at 18:00 UTC; it has125

11 members, a 60 h forecast range, and a 0.25◦ (ca. 25 km in France) grid126

resolution. A spatial disaggregation to an 8 km x 8 km grid, which includes127

bias correction, was applied to the PEARP forecasts. Bias correction was128

applied to precipitation forecasts using a multiplying factor obtained from a129

comparison between the mean of the PEARP ensemble and the Météo-France130

SAFRAN reanalysis over a complete year (March 2005 to March 2006). De-131

tails can be found in Thirel et al. (2008). PEARP forecasts were available132
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Percentiles

0.05 0.25 0.50 0.75 0.95

Catchment area (km2) 31 108 245 653 3761

Mean annual precipitation (mm/y) 725 848 957 1158 1465

Mean annual potential evapotranspiration (mm/y) 645 668 701 745 828

Mean annual runoff (mm/y) 143 232 344 513 964

Q/P ratio 0.18 0.27 0.35 0.47 0.68

P/PE ratio 0.93 1.14 1.36 1.66 2.14

Mean elevation (m) 86 155 306 535 843

Discharge autocorrelation at 48 h 0.28 0.5 0.66 0.81 0.94

Table 1: Characteristics of the 202 catchments. P–precipitation, PE–potential evapotran-

spiration, Q–discharge.

over the 2005-2009 period, but only the period matching the observed data133

could be used here, i.e. from August 2005 to December 2006.134

PEARP forecasts were already used at the daily time step in recent hydro-135

logical studies (Thirel et al., 2008; Randrianasolo et al., 2010). Overall, they136

showed good quality over France at this time step. The quality for short-137

term forecasting at hourly time steps (with either raw and post-processed138

forecasts) is first assessed here.139

2.3. The GRP rainfall-runoff forecasting model140

The GRP model is a continuous, lumped storage-type model designed141

for flood forecasting. Its structure was derived from the GR4J model (Perrin142

et al., 2003) and is composed of a production function and a routing function.143

The production function consists of a non-linear soil moisture accounting144

(SMA) reservoir and a volume adjustment coefficient. The routing function145
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includes a unit hydrograph and a non-linear routing store. The GRP model146

uses catchment areal rainfall and PE as inputs; it is parsimonious with three147

parameters to be calibrated against observed data: one in the production148

function (the volume adjustment coefficient) and two for the routing function149

(the base time of the unit hydrograph and the total capacity of the routing150

store). In this study, the three free parameters were calibrated for each151

catchment by minimizing the root mean square errors (RMSE) during the152

first five years of available data (1997– 2001).153

Importantly, the hourly version of the GRP model uses together two154

data assimilation procedures for flood forecasting. The first exploits the last155

available observed discharge to directly update the routing store state, and156

the second exploits the last relative error to correct the model output with157

a multiplicative coefficient. More details about the forecasting model GRP158

and the two assimilation procedures can be found in Berthet et al. (2009).159

2.4. Hydrological uncertainty processor160

We used a hydrological uncertainty processor (HUP) to evaluate the con-161

ditional errors of the hydrological model. Only hydrological uncertainty is162

considered by the HUP here since the model is run with observed weather163

data. The meteorological uncertainty is subsequently considered through the164

joint use of the HUP with the PEARP forecasts, as described in Section 2.5.165

The HUP used here is a data-based and non-parametric method that was166

applied by Andréassian et al. (2007) to assess model simulation uncertainties167

and compute empirical uncertainty bounds to flow simulations. Here it is168

applied to produce probabilistic flow forecasts. The basic idea is to estimate169

empirical quantiles of relative errors stratified by different flow groups. The170
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HUP is trained during the period used for calibrating the parameters of the171

hydrological model (1997–2001). Note that it is possible that this approach172

yield optimistic uncertainty estimates, since errors are usually larger on an173

independent period than during the calibration period. Since forecast error174

characteristics vary with forecast range when data assimilation is used, the175

HUP is trained at several lead times separately.176

For each catchment, the HUP is trained as described below:177

Step 1. The hydrological model is run with observed weather data as input and178

the time series of relative errors is evaluated: Qfct/Qobs, where (Qfct,179

Qobs) are the pairs of discharge forecasts and observations.180

Step 2. The time series is stratified into 20 groups according to the magnitude of181

the Qfct. The limits of each group are fixed so that each group contains182

the same number of values.183

Step 3. Within each group, an empirical distribution of relative errors is defined184

and 99 quantiles are estimated (corresponding to the percentiles 1%, 2%,185

... 98%, 99%).186

Application of the HUP for another forecast period is described by the187

last step:188

Step 4. Once defined during the training period, the empirical quantiles of rel-189

ative errors can be applied to any forecast discharge at a certain lead190

time. The limits of each group are the same as those obtained during191

the training period. Note that when data assimilation is not used, the192

empirical quantiles of relative errors are the same whatever the forecast193

lead time is. Given a discharge forecast Qfct, we first determine the flow194

10



  

group Qfct belongs to; then Qfct is multiplied by the 99 quantiles of rel-195

ative errors; the 99 values obtained describe the predictive distribution196

at the considered time step and for a given forecast horizon. In cases197

of extrapolation (i.e., when the forecast discharge is out of the range of198

the flow groups defined during the training phase of the HUP), values199

of relative errors from the nearest flow groups (i.e., the lowest or the200

highest flow groups) are used.201

Preliminary studies carried out to compare this approach to other similar202

post-processing approaches suggest that it can yield similar results in terms203

of forecast performance, while being simpler in its application.204

2.5. Ensemble dressing method: an integrator of the meteorological and hy-205

drological uncertainties206

The ensemble dressing method is used as an integrator of the meteoro-207

logical and hydrological uncertainties. It consists in two steps. Firstly, each208

time an ensemble PEARP forecast is available, the hydrological model is run209

with the ensemble forecast and the HUP is applied, according to Step 4 of210

Section 2.4, to each of the 11 members of the ensemble for each lead time211

considered. Secondly, the 11 × 99 values obtained at each lead time are212

pooled together and an empirical cumulative distribution is estimated. From213

this distribution, 99 quantiles are retained as the members of the dressed214

ensemble.215

Application and evaluation of the ensemble dressing method for the en-216

semble forecasts is done over an independent period, the 17-month period217

from August 2005 to December 2006.218
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2.6. Experiments219

The hydrological ensemble forecast system combines meteorological and220

streamflow data from observation networks, the Météo-France PEARP en-221

semble forecast, the GRP rainfall-runoff model with its two data assimilation222

functions, the hydrological uncertainty processor (HUP) and the ensemble223

dressing method. Hereafter we will use the term “post-processing” to de-224

scribe the joint use of the HUP and the ensemble dressing method, while the225

term “data assimilation” will refer to the two updating techniques used in226

the GRP model.227

In order to assess the benefits of data assimilation and post-processing,228

considered together or separately, different configurations of the forecasting229

chain were analysed. Our experiments comprise a chain without data assim-230

ilation and post-processing (NoDA-NoPP), without data assimilation but231

with post-processing (NoDA-PP), with data assimilation but without post-232

processing (DA-NoPP), and with both data assimilation and post-processing233

(DA-PP). The characteristics of the experiments and the acronyms used are234

given in Table 2.235

In particular, the NoDA-NoPP experiment corresponds to the situation236

where the hydrological model is run in simulation mode, i.e., without using237

recent streamflow observations for data assimilation, and is then driven by238

the PEARP ensemble forecast when the forecast is issued. When data assim-239

ilation is used, the state of the routing reservoir of the hydrological model is240

first updated based on the last observed discharge, and the second procedure241

is then applied separately at each streamflow ensemble member. This struc-242

tured analysis allows us to identify the influence of data assimilation and243
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post-processing separately to assess the benefits of both components when244

used together in the forecasting chain.245

Without data assimilation With data assimilation

Without post-processing NoDA-NoPP DA-NoPP

With post-processing NoDA-PP DA-PP

Table 2: Acronyms used for the different experiments used in this study.

2.7. Forecast evaluation methods246

The evaluation of the performance of probabilistic forecasts should reflect247

the different facets of probabilistic forecasts. In this study, the forecasts248

obtained from the four experiments set up (Table 2) were evaluated with249

both deterministic and probabilistic scores. We aimed to assess the influence250

of data assimilation and post-processing on the following characteristics of251

ensemble forecasts: accuracy of the ensemble mean, overall sharpness and252

reliability of the whole ensemble, and overall forecast quality of the ensemble.253

More specifically, we evaluated the accuracy of the ensemble mean val-254

ues with the relative bias (BIAS) and the normalized root-mean-square error255

(NRMSE). To assess the overall reliability of the forecasts, we used the Prob-256

ability Integral Transform (PIT) diagram (see e.g., Laio and Tamea, 2007;257

Thyer et al., 2009) and an index that quantifies deviation from the ideal case,258

the alpha score (Renard et al., 2010). The overall sharpness of the forecasts259

was measured with an index based on the interquartile range that we called260

normalized mean interquartile range (NMIQR). Finally, we assessed the over-261

all forecast quality of the whole ensemble with the mean Continuous Rank262
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Probability Skill Score (mean CRPSS). The mean CRPSS is computed with263

the unconditional streamflow climatology as the reference. These scores are264

presented in more details in A.265

3. Results and discussion266

3.1. Forecast accuracy267

Figure 2 shows the distributions of the two deterministic scores used to268

assess forecast accuracy: the relative bias (BIAS) and the normalized root-269

mean-square error (NRMSE). Each score is computed for lead times 6 h,270

12 h, 24 h and 48 h and for all 202 catchments. The distribution of the 202271

values is summarized with boxplots.272

We note that forecast accuracy decreases with increasing lead time for273

the four experiments. For NoDA experiments (NoDA-NoPP and NoDA-PP),274

the loss of performance is quite limited: it is only related to the decreasing275

performance of the PEARP ensemble precipitation forecasts. For DA experi-276

ments (DA-NoPP and Da-PP), the decrease is stronger and the performances277

converge toward those of NoDA experiments: the effects of the two DA pro-278

cedures used in the GRP forecasting model vanish with larger horizons; the279

decrease in performance of the hydrological model is then added to the losses280

in performance of the PEARP ensemble precipitation forecasts. Figure 2 also281

reveals that post-processing does not significantly impact forecast accuracy,282

whether or not DA is used. DA has a much stronger impact on the ensemble283

mean values than post-processing, especially for shorter lead times and, to a284

lower extent, for larger lead times. The two DA procedures used in the GRP285

forecasting model have been designed to improve the performance of deter-286

14



  

ministic forecasts and, as it can been seen, they clearly help improving the287

mean of the ensemble forecasts. Post-processing on the other hand primarily288

aims to account for hydrological uncertainty. Its capability to reduce overall289

bias and squared errors in the mean of the ensemble forecasts is limited here.290

Nonetheless, for all lead times, forecast accuracy is best when DA and PP291

are used together, which indicates the benefits of the combined use of data292

assimilation and post-processing.293
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Figure 2: Distributions of two deterministic scores, the relative bias (BIAS) and the

normalized root-mean-square error (NRMSE), for ensemble streamflow forecasts from the

four experiments (see Table 2) and lead times 6 h, 12 h, 24 h and 48 h. Boxplots (5th, 25th,

50th, 75th and 95th percentiles) synthesize the variety of scores over the 202 catchments

of the data set.
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3.2. Reliability294

Figure 3 presents the PIT diagrams obtained for each of the 202 catch-295

ments, when considering 24 h ahead ensemble forecasts. Since similar figures296

were obtained for the other lead times (not shown).297

From Figures 3a and 3b, it can be seen that most of the curves are almost298

horizontal straight lines, while they would follow the bisector (black lines in299

the graphs) in the ideal case of reliable ensemble predictions. Figures 3a300

and 3b clearly reveal that the raw ensembles are lacking reliability for all301

of the catchments. The impact of post-processing on reliability is apparent302

when looking at the results on Figures 3c and 3d: the curves of the ensem-303

ble streamflow forecasts with post-processing follow the ideal situation much304

more closely than the curves shown in Figures 3a and 3b (ensemble stream-305

flow forecasts without post-processing). It means that the overall reliability306

of the ensembles is clearly improved with post-processing and this for both307

cases, with and without DA. A comparison of solely Figures 3c and 3d con-308

firms also the positive impact of data assimilation on the reliability of the309

ensembles: the PIT curves of the dressed ensembles are substantially closer310

to the diagonal (perfect reliability) when DA is applied.311

The PIT diagrams convey a visual evaluation of the overall reliability of312

probabilistic forecasts. To quantify it, we used the alpha score, a reliability313

index that measures the deviation of the PIT curves from the ideal situation.314

Figure 4 presents the distributions of the alpha scores obtained for each315

experiment over the 202 catchments. Results in Figure 4 confirm the visual316

evaluation obtained with the PIT diagrams: the two experiments that do317

not account for hydrological uncertainty (NoDA-NoPP and DA-NoPP) lack318
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Figure 3: PIT diagrams of the 24 h ahead streamflow ensemble forecasts from the four

experiments (see Table 2). Each line represents one of the 202 catchments of the data set.

17



  

reliability. Their alpha values are almost always below 0.5, while the alpha319

values obtained when hydrological uncertainty is taken into account (NoDA-320

PP and DA-PP) are almost always higher than 0.5. The benefits of DA is321

also apparent when comparing, on one hand NoDA-NoPP and DA-NoPP,322

and on the other hand NoDA-PP and DA-PP, although it can be also seen323

that DA alone (comparing NoDA-NoPP to DA-NoPP) cannot correct under324

dispersion of the ensemble forecasts. Post-processing is then a necessary step325

to achieve reliable forecasts in the forecasting chain analysed.326

These results suggest that for the 202 catchments studied the spread327

obtained by propagating solely the precipitation ensembles into the hydro-328

logical model is too small to properly reflect the range of forecast errors. The329

deterministic data assimilation strategy used here is effective in improving330

the reliability of the ensemble forecasts, but it is not self-sufficient to correct331

the under dispersion of the streamflow ensemble forecasts as revealed by the332

PIT diagrams in Figure 3 and the alpha scores in Figure 4. This is a strong333

indication that the hydrological uncertainty issue should be specifically ad-334

dressed in order to improve the overall reliability of hydrological ensemble335

forecasts.336

3.3. Sharpness337

Sharpness is a desirable characteristic of any probabilistic forecast. The338

sharper the forecast, the less uncertain it is, and thus the more information is339

conveyed. The four experiments we used made it possible to investigate how340

meteorological and hydrological uncertainties interact and affect sharpness.341

Figure 5 shows the distributions of a sharpness index, the normalized mean342

interquartile range (NMIQR), over 202 catchments.343
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Figure 4: Distributions of the alpha score reliability index for streamflow ensemble fore-

casts from the four experiments (see Table 2) and for lead times 6 h, 12 h, 24 h and 48 h.

Boxplots (5th, 25th, 50th, 75th and 95th percentiles) synthesize the variety of scores over

the 202 catchments of the data set. Perfect score is 1.0.
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It can be seen that the ensemble spreads of three experiments, NoDA-344

NoPP, DA-NoPP and DA-PP, increase significantly with increasing lead time,345

while it is more stable over lead times for the experiment NoDA-PP. For346

NoDa-NoPP and DA-NoPP, the median value of NMIQR over the 202 catch-347

ments raises in a very close behaviour for both experiments, from around 0.05348

for 6 h ahead forecasts to 0.13 for 48 h ahead forecasts. For the experiment349

DA-PP, the increase in the median values is much more important: from350

0.07 at 6 h to 0.32 at 48 h. These results indicate that forecast uncertainty351

increases with increasing lead time as the result of increasing meteorological352

uncertainty alone (NoDA-NoPP and DA-NoPP) or as the result of increas-353

ing meteorological and hydrological uncertainties considered together and354

with DA (DA-PP). Comparing DA-NoPP and DA-PP reveals the impact of355

post-processing: taking into account hydrological uncertainty leads to more356

spread and less sharpness in ensemble forecasts. Comparing NoDA-NoPP357

and DA-NoPP shows that the propagation of meteorological uncertainty has358

a rather similar impact on ensemble sharpness whether or not DA is used359

to update the states of the forecasting model. Remarkably, the ensemble360

spreads obtained without DA but with post-processing (NoDA-PP) is stable361

across the lead times with a median value over the 202 catchments around362

0.52. This is because statistical post-processing reflects the large errors ob-363

tained when the forecasting model does not use DA (see Figure 2). In this364

case, the spread obtained when taking hydrological uncertainty into account365

is so large that the increasing spread of the PEARP ensemble forecasts with366

increasing lead time has no visible impact on the spread of the post-processed367

ensemble: hydrological uncertainty dominates meteorological uncertainty.368
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Not surprisingly, sharper forecasts are obtained when only meteorological369

uncertainty is taken into account (NoPP experiments). This is to the detri-370

ment of reliability: ensemble forecasts with only meteorological uncertainty371

are sharper but not reliable, reflecting the presence of under dispersion (as372

shown in Section 3.2). The use of post-processing (PP experiments) leads373

to ensembles that are more spread out because they attempt to handle hy-374

drological uncertainty and reflect hydrological forecast errors. Ensembles are375

thus less sharp but, on the other hand, achieve reliability. At this point, it376

should be remembered that sharp but unreliable forecasts should be consid-377

ered with caution. Unreliable forecasts can convey a wrong impression of378

certainty that results from having neglected one or several important sources379

of uncertainty.380
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Figure 5: Distributions of the normalized mean interquartile range (NMIQR) for stream-

flow ensemble forecasts from the four experiments (see Table 2) and for lead times 6 h,

12 h, 24 h and 48 h. Boxplots (5th, 25th, 50th, 75th and 95th percentiles) synthesize the

variety of scores over the 202 catchments of the data set. Perfect score is 0.
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3.4. Mean CRPSS381

The analysis of the impacts of data assimilation and post-processing on382

two important characteristics of probabilistic forecasts, reliability and sharp-383

ness, showed that post-processing was necessary to improve reliability, but384

at the cost of lower sharpness, i.e., greater ensemble spread and uncertainty,385

even if sharpness could be improved with the application of a data assimi-386

lation procedure. We now turn our attention to the mean CRPSS, a proba-387

bilistic score that provides an assessment of the overall quality of ensemble388

forecasts.389

Figure 6 shows the distributions of the mean CRPSS over 202 catchments.390

We note that performance decreases with increasing lead time for the two ex-391

periments with data assimilation: median values of the CRPSS are equal to392

0.84 (DA-NoPP) and 0.87 (DA-PP) for 6 h range forecasts, and equal to 0.45393

(DA-NoPP) and 0.57 (DA-PP) for 48 h range forecasts. Mean CRPSS values394

of the two experiments without data assimilation decrease only slightly but395

are much lower than values obtained with data assimilation (median values396

around 0.10 for NoDA-NoPP and around 0.45 for NoDA-PP). This is espe-397

cially true for shorter lead times and, to a lower extent, for larger lead times.398

Furthermore, the comparison with the reference climatology shows that data399

assimilation alone is sufficient to generate skillfull forecasts for more than400

95% of the catchments for lead times up to 24 h, but post-processing (DA-401

PP) is necessary to achieve forecasts that have better overall performance402

than climatology at 48 h.403

These results show the general added value of data assimilation and post-404

processing to the overall quality of ensemble forecasts. When evaluating the405
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overall quality of ensemble forecasts with the CRPSS, the benefits in terms406

of reliability overcome the loss of sharpness that results from accounting for407

hydrological uncertainty. The streamflow ensemble forecasts that explicitly408

account for both sources of uncertainty, meteorological and hydrological un-409

certainties, through post-processing, while reducing as much as possible hy-410

drological uncertainty, here through data assimilation, are the most skillfull411

forecasts.412
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Figure 6: Distributions of the mean CRPSS for streamflow ensemble forecasts from the

four experiments (see Table 2) and for lead times 6 h, 12 h, 24 h and 48 h. Boxplots

(5th, 25th, 50th, 75th and 95th percentiles) synthesize the variety of scores over the 202

catchments of the data set. Perfect score is 1.0.

4. Summary and conclusions413

We investigated the relative contributions of data assimilation and post-414

processing to the skill of hydrological ensemble forecasts. The study as-415

sessed the benefits of data assimilation and post-processing with the help of416
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four configurations of a short-range hydrological ensemble forecasting system:417

without data assimilation and post-processing (NoDA-NoPP), without data418

assimilation but with post-processing (NoDA-PP), with data assimilation419

but without post-processing (DA-NoPP), and with both data assimilation420

and post-processing (DA-PP).421

We applied deterministic and probabilistic scores to streamflow forecasts422

of a large catchment set which brought into light the main general conclusions423

listed below:424

• We verify the well-known fact that short-range hydrological forecasts425

benefit from data assimilation. Data assimilation has a strong impact426

on improving the quality of the ensemble mean, and a much lesser effect427

on the variability of the ensemble members (i.e., their spread).428

• The benefits of a simple yet efficient hydrological uncertainty processor429

to improve the reliability and the overall quality of the short-range430

hydrological ensemble forecasts were demonstrated. Post-processing431

has a strong impact on forecast reliability.432

• The benefits of the combined use of data assimilation and post-processing433

were demonstrated: both contribute to achieve reliable and sharp fore-434

casts, with impacts acting differently according to the target lead time.435

The stronger impact on forecast reliability comes from the use of post-436

processing. Adding data assimilation to the system helps in improving437

sharpness and reliability at all lead times, with higher gains in perfor-438

mance at shorter lead times.439

We acknowledge some limitations. It was only possible to evaluate the440
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forecasting chain over a 17-month period of ensemble forecasts, since this441

was the common period between observations and forecasts we had available.442

Furthermore, PEARP ensembles are ran only once a day, which limits the443

number of hourly evaluation pairs. For these reasons, it was not possible to444

evaluate flows over specific flooding thresholds . However, with increasing445

data archives, we expect that such an issue will be treated in future work.446

Our study considered only one data assimilation technique (state up-447

dating with error output correction) and one post-processing method (en-448

semble dressing with hydrological errors) together with one rainfall-runoff449

model forecasting (GRP model). There are several other techniques and450

models in the literature that could also be tested using the methodology pre-451

sented here. For instance, a comparison between different configurations of452

the method used, or different hydrological uncertainty processors, including453

methods that take into account the autocorrelation of errors (e.g., Schoups454

and Vrugt, 2010) could be investigated. Besides, while a bias correction was455

applied to the PEARP forecasts, a more sophisticated pre-processor (see e.g.,456

Verkade et al., 2013) could be used to further investigate how meteorological457

and hydrological biases interact and contribute to the quality of the final458

hydrological ensemble.459

Also, the effectiveness of a data assimilation technique or a post- process-460

ing method (and hence the choice of the procedures to operate in a forecast-461

ing system) is affected by different sources of uncertainties present in a flow462

forecasting system, including the forcing data, initial conditions, parameter463

uncertainty and model structural uncertainty. In our study, we followed the464

works of Krzysztofowicz (1999) and focused on a decomposition of the total465
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uncertainty into meteorological and hydrological uncertainty. Observational466

or parameter uncertainties were thus not explicitly considered. Additional467

sources of uncertainty may however affect the performance of data assim-468

ilation techniques and post-processors, as well as the way they interact in469

the forecasting system. Further investigations would be necessary to better470

assess the extent to which this may affect forecast quality.471

Although our findings may be related to the configuration used, they are472

based on common techniques and on the study of a large set of catchments,473

which helps in giving robustness and generality to the results obtained. The474

study also shows that, for a given system configuration, it is interesting475

to analyse how data assimilation and/or post-processing techniques set up476

to improve forecast quality affect the attributes of the forecasts and inter-477

act to provide overall good forecasts. The aim of a forecaster may then478

be to achieve a good combination of hydrological model, data assimilation479

and post-processing procedures that results in an overall good quality of480

his/her operational system (eventually over specific space and time scales of481

interest), rather than to search for the best data assimilation technique or482

post-processor available, without taking into account how they will interact483

between them and with the probabilistic forecasting system as a whole.484

Despite those limitations, our results strongly suggest that data assimila-485

tion and post-processing techniques based on hydrological uncertainty pro-486

cessors should be more widely tested to foster their implementation in pre-487

operational and operational hydrological ensemble forecasting systems and488

their use in real-time probabilistic forecasting. The use of both strategies is489

highly recommended since they have complementary effects: data assimila-490
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tion has a very positive effect on forecast accuracy, and thus helps reduce491

hydrological uncertainty, but its impact diminishes with lead time, while492

post-processing, by accounting for hydrological uncertainty, has a very posi-493

tive and longer lasting effect on forecast reliability.494
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A. Evaluation scores495

The evaluation scores used in this article are defined and briefly described496

below. For more details, the reader may refer to Wilks (2011).497

A.1. Relative Bias498

The relative bias (BIAS) is defined as the ratio between the mean of499

deterministic forecasts and the mean of observations,500

BIAS =

∑N
k=1 Qfct(k)∑N
k=1 Qobs(k)

(1)

where
(
Qfct(k), Qobs(k)

)
is the kth of N pairs of deterministic forecasts and501

observations.502

Values higher (lower) than 1 indicate an overall overestimation (underes-503

timation) of the observed values.504

A.2. Normalized root-mean-square error505

The root-mean-square error (RMSE) is a widely used measure of accuracy506

for point forecasts,507

RMSE =

[
1

N

N∑
k=1

(
Qfct(k) − Qobs(k)

)2

]1/2

(2)

where
(
Qfct(k), Qobs(k)

)
is the kth of N pairs of forecasts and observations.508

The lower the RMSE, the better. For a perfect deterministic forecast,509

RMSE=0.510

The normalized root-mean-square error (NRMSE) is obtained by dividing511

the RMSE by the mean runoff. The use of a non-dimensional score facilitates512

the comparison of the results obtained over different catchments.513
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A.3. PIT diagram and alpha score514

The Probability Integral Transform (PIT) diagram is a graphical tool515

used to assess the reliability of probabilistic forecasts (Gneiting et al., 2007;516

Laio and Tamea, 2007). The PIT diagram corresponds to the empirical517

cumulative distribution of the PIT values, which are defined for each pair518

of forecasts and observations as the value that the cumulative predictive519

distribution F reaches at the observation, pobs = F (Qobs). It is analogous to520

a cumulated version of the rank histogram. If the forecasts are reliable, the521

PIT values follow a uniform distribution on the interval [0, 1] and the PIT522

curve is close to the 1:1 line. Reliability of the probabilistic forecasts implies523

that the observations should not be preferentially located in specific parts524

of the predictive distributions, but instead should uniformly span the whole525

predictive range.526

The alpha score is an index proposed by Renard et al. (2010) to reflect527

the overall reliability of probabilistic forecasts. The alpha score is directly528

related to the PIT diagram. It is defined as 1 − 2A, where A is the area529

between the bisector and the PIT curve,530

A =
1

N

N∑
k=1

∣∣pobs(k) − pth(k)
∣∣ (3)

and where
(
pobs(k), pth(k)

)
is the kth of N pairs of observed and theoretical531

PIT values.532

The alpha score ranges from 0 to 1. 0 indicates poor reliability while533

values close to 1 indicate perfect reliability.534
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A.4. Normalized mean interquartile range535

To assess the sharpness of probabilistic forecasts, we defined the mean536

interquartile range (MIQR) as the mean of the interquartile range of fore-537

casts over the evaluation data. The interquartile range, defined as the range538

between the upper quartile (75th percentile) and the lower quartile (25th per-539

centile) of a distribution, is a robust measure of the spread of a distribution.540

MIQR is computed as541

MIQR =
1

N

N∑
k=1

(
Q75

fct(k) − Q25
fct(k)

)
(4)

where
(
Q25

fct(k), Q75
fct(k)

)
is the kth of N pairs of quartiles of the forecasts.542

Similarly to the NRMSE, we divided the MIQR by the mean runoff to543

obtain a non-dimensional score.544

A.5. Mean CRPS and mean CRPSS545

For a forecast-observation evaluation pair, the Continuous Rank Proba-546

bility Score (CRPS) (e.g., Matheson and Winkler, 1976; Gneiting et al., 2007)547

measures the quadratic distance between two cumulative distribution func-548

tions, the cumulative predictive distribution F (x) and a Heaviside function549

based on the observed value 1{Qobs 6 x}
)
:550

CRPS(F, Qobs) =

∫ ∞

−∞

(
F (x) − 1{Qobs 6 x}

)2
dx (5)

The mean CRPS, CRPS, is the average value of the CRPS over the N551

pairs of evaluation data:552

CRPS =
1

N

N∑
k=1

CRPS(k) (6)
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The mean Continuous Rank Probability Skill Score (CRPSS) is a skill553

score based on the CRPS. Skill scores (SS) are used to assess the relative554

quality of two forecasting systems. They are generally defined as:555

SS = 1 − ScoreA

ScoreB
(7)

where ScoreA and ScoreB are the scores of the forecasting system A and556

B respectively. The forecasting system B is usually termed the reference557

forecast.558

Climatology is commonly used as a reference. To compute the mean559

CRPSS with the unconditional climatology as the reference, an unconditional560

streamflow ensemble forecast is first obtained from the empirical distribution561

of all observed discharges over the evaluation period, and then used for all562

forecast occasions.563
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Figure 3. PIT diagrams of the 24 h ahead streamflow ensemble forecasts from the four a-d) experiments 

(see Table 2). Each line represents one of the 202 catchments of the data set. 

 



  

 1

Highlights 

 

• Data assimilation and post-processing impact hydrologic ensemble forecasts’ 

skill. 

• Data assimilation has a strong impact on forecast accuracy. 

• Post-processing has a strong impact on forecast reliability. 

• The combined benefits of data assimilation and post-processing were 

demonstrated. 

• We recommend the use of both data assimilation and post-processing in 

forecasting. 

 


