

Modelling Pb and Cd bioaccumulation in Gammarus pulex: Application to realistic environmental conditions and consideration of water chemistry

Nastassia Urien, Emmanuelle Uher, Lise C. Fechner, Olivier Geffard, Jérémie

D. Lebrun

▶ To cite this version:

Nastassia Urien, Emmanuelle Uher, Lise C. Fechner, Olivier Geffard, Jérémie D. Lebrun. Modelling Pb and Cd bioaccumulation in Gammarus pulex: Application to realistic environmental conditions and consideration of water chemistry. SETAC Europe 24th Annual Meeting, May 2014, Basel, Switzerland. pp.1, 2014. hal-02600369

HAL Id: hal-02600369 https://hal.inrae.fr/hal-02600369

Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

24th Annual Meeting, 11 - 15 May 2014

Modelling Pb and Cd bioaccumulation in Gammarus pulex: Application to realistic environmental conditions and consideration of water chemistry

N. Urien¹ (nastassia.urien@irstea.fr), E. Uher¹, L. Fechner¹, O. Geffard², J. D. Lebrun¹ ¹ Irstea, UR HBAN, Ecotoxicology, 1 rue Pierre-Gilles de Gennes, 92160 Antony, France ² Irstea, UR MALY, Ecotoxicology, 5 rue de la Doua, 69100 Villeurbanne, France

INTRODUCTION

OBJECTIVES

Since lead (Pb) and cadmium (Cd) are both nonbiodegradable and non-essential, they represent a serious threat for aquatic ecosystems. Metal determination in promising tools to quantify metal bioavailability and predict controlled conditions. aquatic organisms such as gammarids offers encouraging perspective to monitor quality. Indeed, water bioaccumulation is considered as directly linked to active and bioavailable metals in water, fraction expected to be toxic for biota. However, metal uptake in organisms may be influenced by water cationic composition because of

competition processes on biological binding sites. The **1.** Determine kinetic constants to describe Pb development of bioaccumulation metal impact on aquatic ecosystems. In order to arise such models, it is necessary to formalize the abilities of organisms to regulate metals and water chemistry effects controlled conditions. However, what is the in environmental relevance of experimentally derived models to predict bioaccumulation in field conditions?

models constitute and Cd bioaccumulation in G. pulex under

2. Assess the influence of calcium on Pb and Cd uptake under controlled conditions.

3 Assess the suitability of experimentally derived models to describe bioaccumulation under environmental conditions.

RESULTS & DISCUSSION

Bioaccumulation model

- G. pulex significantly accumulated Pb and Cd over time (see example of Pb, Fig.1).
- Kinetics constants k_{μ} and k_{e} required to describe bioaccumulation were successfully determined by fitting model on uptake and elimination dataset.

Calcium influence on metal uptake 2

- For both Pb and Cd, k_{μ} decreased with increasing [Ca²⁺]
- k_{μ} expressed as a function of [Ca2+] in media :

 K_{iCa}^{2+} , the affinity constant of calcium ligands its for fitting determined by а competition model on k_{ij} dataset obtained by varying calcium concentrations in waters. (see example of Pb, *Fig. 2*)

Fig. 2. Effects of calcium on Pb uptake rate constant in G. pulex exposed to 10 Points are L⁻¹. means of triplicates of 5

Model validation 3.

<u>46 sampled sites</u>:

- Contrasted [Ca²⁺] 4 to 200 mg L^{-1}
- Few sites where bioaccumulation goes over the threshold value

= bioavailable contamination in gammarids, above which measured concentrations are expected to reveal a contamination at the sampling site [2].

7 retained sites for Pb 8 retained sites for Cd

For both Pb and Cd :

Fig. 3. Observed versus predicted bioaccumulation with a model using k. (black points) and k.' (red

CONCLUSION

[Ca2+] (mg L-1)				- Good	 Good agreement between predictions and observations 		between ions	points) integrating the effect of calcium. The solid line represents a theoretical model fit (1:1) (points are mean values of triplicates of 5 individuals).
Ki _{Ca} ²+ (L g⁻¹)	Pb	Cd [1]	Table 2. Experimentally derived affinity constants of Pb and Cd in G. pulex (mean \pm S.E).	- Using	the	calcium-dependent	The consideration of [Ca ²⁺] increased model predictions of :	
	44.0 ± 10.3	66.4 ± 21.1		plots ar	plots around the theoretic		ning of the cal fit	40 % for Cd

REFERENCES

[1] Pellet B, Geffard O, Lacour C, Kermoal T, Gourlay-Francé C, Tusseau-Vuillemin M-H. 2009. A model predicting waterborne cadmium bioaccumulation in Gammarus pulex: the effects of dissolved organic ligands, calcium, and temperature. Environ Toxicol Chem 28:2434–2442

[2] Besse, J.-P., Coquery, M., Lopes, C., Chaumot, A., Budzinski, H., Labadie, P., Geffard, O. 2013. Caged Gammarus fossarum (Crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters: Towards the determination of threshold values. Water Res. 47, 650–660

This study confirms the environmental relevance of using experimentally bioaccumulation model to derived bioavailability monitor metal in freshwaters and the importance of considering water chemistry in interpretation field of dataset. Nevertheless, the sampling of a larger

number of sites with contrasted contamination could be opportune to emphasise our results in order to the improve robustness Of predictions. In that sense, further studies with a very high n are suggested to increase the power of observed data.

www.irstea.fr