
HAL Id: hal-02600407
https://hal.inrae.fr/hal-02600407v1

Submitted on 11 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Change detection in categorical evolving data streams
Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet

To cite this version:
Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet. Change detection in categorical
evolving data streams. SAC 2014 - 29th Annual ACM Symposium on Applied Computing, Mar 2014,
Gyeongju, South Korea. pp.792-797, �10.1145/2554850.2554864�. �hal-02600407�

https://hal.inrae.fr/hal-02600407v1
https://hal.archives-ouvertes.fr

Change Detection in Categorical Evolving Data Streams

Dino Ienco
IRSTEA, Montpellier, France
LIRMM, Montpellier, France

dino.ienco@teledetection.fr

Albert Bifet
Yahoo! Research Barcelona,

Catalonia, Spain
abifet@yahoo-inc.com

Bernhard Pfahringer
University of Waikato,

Hamilton, New Zealand
bernhard@cs.waikato.ac.nz

Pascal Poncelet
LIRMM, Montpellier, France
IRSTEA, Montpellier, France

poncelet@lirmm.fr

ABSTRACT
Detecting change in evolving data streams is a central issue
for accurate adaptive learning. In real world applications,
data streams have categorical features, and changes induced
in the data distribution of these categorical features have not
been considered extensively so far. Previous work on change
detection focused on detecting changes in the accuracy of
the learners, but without considering changes in the data
distribution.

To cope with these issues, we propose a new unsuper-
vised change detection method, called CDCStream (Change
Detection in Categorical Data Streams), well suited for cate-
gorical data streams. The proposed method is able to detect
changes in a batch incremental scenario. It is based on the
two following characteristics: (i) a summarization strategy
is proposed to compress the actual batch by extracting a de-
scriptive summary and (ii) a new segmentation algorithm is
proposed to highlight changes and issue warnings for a data
stream. To evaluate our proposal we employ it in a learn-
ing task over real world data and we compare its results
with state of the art methods. We also report qualitative
evaluation in order to show the behavior of CDCStream.

Categories and Subject Descriptors
H.2.8 [Database Management]: Knowledge Management
Applications—data exploration and discovery

General Terms
Theory, Algorithms, Experimentation

Keywords
Evolving data stream, categorical data, unsupervised change
detection, statistical test, concept drifts

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SAC’14 March 24-28, 2014, Gyeongju, Korea.

Many real world applications continuously generate huge
amounts of data, such as web logs, sensor networks, busi-
ness transactions, etc. These data streams [1], due to the
big volumes of information they contain, pose serious issues
for the research community in order to extract useful and
update-to-date knowledge in real-time. Due to its intrin-
sic temporal dimension, the information available in data
streams changes and evolves over the time. More precisely,
this phenomenon impacts on the performance of any su-
pervised (or unsupervised) model learnt over these evolv-
ing data streams: previous models may not be suitable for
newly incoming data [1]. Therefore we need to be able to
adapt models both quickly and accurately. In particular,
di↵erent types of change may happen in the stream. For
instance, classes or concepts that can be underrepresented
during a short period can become overrepresented after a
longer period. Detecting change is essential for adapting
learned models.

Most of the time, a common assumption made by many
research works is to take into account only the aposteriori
probability of the class given the data [8]. Actually, this for-
mulation of the change detection task does not exploit infor-
mation coming from the underlying data distribution and,
generally, it is not suitable for unsupervised tasks where the
class information is not available at all. As it is generally
known, obtaining labels for data (especially in a stream con-
text) can be very time-consuming and may require intensive
human e↵ort that is not always possible [11]. This issue can
limit the use of such techniques that depend on proper class
labels.

Secondly, in real world applications, data is heterogeneous
and often can be represented over set of categorical at-
tributes as well as numerical ones. In the last decade, lots of
approaches have been defined to monitor classification ac-
curacy as evidence or an indication for change in streams
of numerical data (e.g. [8]). There are very few approaches
dealing with the same problem which are able to handle
categorical data [4].

The necessity to address all these points motivates us
to propose a new change detection method especially tai-
lored for categorical data: CDCStream (Change Detection
in Categorical data Stream). Our approach is able to de-
tect and highlight changes in categorical data streams in a
fully unsupervised setting. Interestingly, our method is able
to e�ciently exploit historical data to make its decision. It
works in the batch size scenario: when a new batch arrives,

firstly CDCStream compresses it by extracting a descriptive
summary and it then performs a statistical test to evaluate
if change has happened in the data distribution, or not. The
developed algorithm supplies a segmentation approach that
can also work with other statistics. This means that it can
be coupled with any other measure we want to monitor.

The remainder of this paper is organized as follows. Sec-
tion 2 explores the state of the art in categorical change
detection for data streams. The proposed methodology is
presented in Section 3. Section 4 presents experimental re-
sults for real world datasets and we also report an analysis
of its qualitative behavior. Section 5 concludes.

2. RELATED WORK
The problem of detecting concept drift or change is an

important issue in data stream mining [1]. The research
community has spent a lot of e↵ort to detect change in nu-
merical streams [8], while dealing with categorical data has
not been addressed all that much [4]. A first attempt to
mining concept drift in categorical data is presented in [6].
Their proposed approach determines concept drift by mea-
suring the di↵erence in cluster distribution between two con-
tiguous batches of stream data. An important drawback of
this method, that limits its usability in practise, is the di�-
culty encountered when having to customize the settings of
its many parameters. In [7], a framework was presented for
detecting the change of a primary clustering structure which
was indicated by the best number of clusters in categorical
data streams. However, setting the decaying rates to adapt
to di↵erent types of clustering structures is very di�cult.
Cao proposed two di↵erent rough set theory based methods
to detect concept drifts in streams of categorical data [5, 4].
The former [5] defines the distance between two concepts as
the di↵erence value of the degree of membership of each ob-
ject belonging to two di↵erent concepts, respectively. This
distance can only detect concept drift but not the reasons
leading to the change. The later strategy presented in [4],
evaluates the di↵erence of distributions between two con-
cepts appearing in two consecutive batches. The di↵erence
is defined by the approximation accuracy of rough set theory
which can also be used to measure the speed of change of
concepts. If the di↵erence is bigger than a threshold a con-
cept drift is revealed. Both methods require only a thresh-
old parameter but, unfortunately: i) no hints on how set
this parameter are supplied and ii) the parameter threshold
has no clear associated meaning. These two factors do not
facilitate the analyst to use these approaches. As has been
pointed out, all these methods have several issues related to
parameter settings (too many parameters or no hints about
the value to use). Furthermore, all these approaches assume
that, for detecting a concept drift it is enough to consider
only contiguous batches and no more historical information
coming from the data stream.

3. METHODOLOGY
In this section we describe the general setting and we

introduce our new method. Suppose that we have an in-
finite data stream divided in batches. Each batch S

i

is
associated with the arrival time denoted by the index i:
S = {S1, S2, ..., Sn

, ...}. This scenario is general enough to
model real data streams. Note that, even in the case of
continuous streams of data, we can employ a bu↵er-based

procedure for collecting examples in order to build batches
and then process one batch at a time. In addition, each ex-
ample belonging to the data stream is defined over a set of
categorical attributes. This means that each attribute A

j

is defined over a discrete set of nominal values. As previ-
ously mentioned, the two important points that we address
in this work are the following: (i) extracting useful infor-
mation from each batch in order to summarize it and (ii)
keeping trace of this information to be able to detect change.
All these steps are addressed in a fully unsupervised scenario
where no class information is available di↵erently from many
previous strategies that work in supervised context [1]. To
deal with the first point we exploit the method proposed in
[12], named DILCA. This method is able to extract numer-
ical statistics from a set of categorical examples in order to
summarize the underlying data distribution. To tackle the
second point we monitor the statistics extracted from the
batches by employing the Chebyshev’s Inequality [1]. The
combination of (i) and (ii) allows CDCStream to summarize
categorical batches and to detect changes as they happen in
the underlying data distribution, and to issue appropriate
warnings. In the following we describe in detail the steps
that CDCStream is based on.

3.1 Computing the distance model
Here we revise the DILCA (DIstance Learning for

Categorical Attributes) framework that we can employ to
summarize a batch of categorical data. DILCA was first
introduced by [12] and it was mainly used for clustering cat-
egorical data. The result of this method is a set of matrices,
one for each attribute. Each matrix contains the learnt dis-
tances between each pair of values of a specific attribute. Let
us now consider the set F = {X1, X2, . . . , Xm

} of m categor-
ical attributes over which the batch S

i

is defined. We denote
by Y the target attribute, which is a specific attribute in F

that constitutes the target of the method, that is, on whose
values we need to compute the distances. The notation |X

l

|
refers to the cardinality of the attribute X

l

. DILCA allows
to compute a context-based distance between any pair of
values (y

i

, y

j

) of the target attribute Y on the basis of the
similarity between the probability distributions of y

i

and y

j

given the context attributes, called C(Y) ✓ F \ Y . For each
context attribute X

i

it computes the conditional probabil-
ity for both the values y

i

and y

j

given the values x

k

2 X

i

and then it applies the Euclidean distance. The Euclidean
distance is normalized by the total number of considered
values:

d(y
i

, y

j

) =

sP
X2C(Y)

P
xk2X

(P (y
i

|x
k

)� P (y
j

|x
k

))2
P

X2C(Y) |X| (1)

The selection of a good context is not trivial, particularly
when data are high-dimensional. To select a relevant and
non redundant set of features w.r.t. a given one, [12] pro-
pose to adopt FCBF, a feature-selection approach originally
presented by [15]. We let the reader refer to the cited pa-
per for more details about the context selection step. At
the end of the process, DILCA returns a distance model
M = {M

Xl | l = 1, . . . ,m}, where each M

Xl is the matrix
containing pairwise distances between the values of attribute
X

l

, computed using Eq. 1. The distances contained in the
matrix M

Xl resume the underlying distribution of attribute
X

l

. Each generated matrix M

Xl has some interesting char-
acteristics: it is symmetrical, the diagonal is filled by 0s

(logically the distance between a value and itself is 0) and
each value is bounded between 0 and 1. The set M of ma-
trices is aggregated into one single measure by the following
formula, which only considers the upper triangular part of
each matrix, discarding the all-zeroes diagonal (matrices are
symmetric and their diagonals are filled by 0s):

extractSummary(M) =

P
Ml2M

2⇥
r

P|Xl|
i=0

P|Xl|
j=i+1 MXl

(i,j)2

|Xl|⇤(|Xl|�1)

|F |
(2)

This formula extracts a single statistic starting from the
matrices produced by the DILCA method over a batch of
examples. For each matrix M

l

the squares of all values is
summed and then rescaled by using the root. This value
is then divided by the number of values that are summed
(|Xl|⇤(|Xl|�1)

2). This operation normalizes the coe�cient ex-
tracted from each matrix forcing them back into the range
between 0 and 1.

The outer loop sums the coe�cients of all the matrices
and then the normalization step allows to scale back the
value into the range between 0 and 1 again. The result of
this formula numerically represents a summary of the whole
batch taking into account both the correlation among the
attributes and the attributes’ distributions themselves.

3.2 Change Detection through the Cheby-
shev’s Inequality

Statistical tests are often used in data stream mining in
order to capture changes in the distribution [1]. Most of
the literature focuses its attention on the supervised sce-
nario where the goal is to detect changes as a decrease in
classification accuracy. When that happens, it is time to
re-adapt or start to re-learn a model. To manage this phe-
nomenon, researchers usually exploit one-sided tests. These
tests are usually chosen since changes (in a supervised sce-
nario) are associated with a decrease only of classification
accuracy. If a classifier increases its accuracy, we have no
reason to modify it. Unfortunately, in our context, we work
in a totally unsupervised setting: we want to detect general
variation on both sides of the distribution, because the mon-
itored variable is not the accuracy but an estimation of the
data distribution. To deal with this issue, in order to under-
stand if a batch of data deviates from the actual distribution
or not, we employ techniques from Statistical process con-
trol [8], that are based on Chebyshev’s Inequality [1]. This
statistical test does not assume any data distribution. It is a
two tailed test and it considers both sides of the distribution
to understand if a change is appearing.

Lemma 1 (Chebyshev’s Inequality). Let X be a

random variable with expectation µ

X

and standard deviation

�

X

. Then for any k 2 R

+
,

Pr(|X � µ

X

| � k�

X

) 1
k

2

In particular, we consider the statistic computed over each
batch S

i

as a value coming from a randomly distributed
variable. In this way, without loss of generality, we can use
Chebyshev’s Inequality to monitor if change is happening, or
not, in the data stream distribution.

As we can observe, to use this inequality, we need to com-
pute the average µ

X

and the standard deviation �

X

. As we

assume that a data stream evolves and that it is infinite, we
can never retain all values. To tackle this important issue,
we need to design an intelligent method to understand how
many previous batches we need to use in order to monitor
the actual one. Our solution is sketched in Algorithm 1. The
procedure takes as input parameter the stream of data S and
the values k

c

and k

w

to compute Chebyshev’s Inequality in
order to detect, respectively, changes and warnings. While
a change can be associated with a drift in the data stream, a
warning is a small variation or fluctuation that will not nec-
essarily result in a shift of the data distribution. In addition
to actual change, noise may also cause such warnings.

We can observe that the first step of the algorithm is de-
voted to initialize the list (L) and the standard deviation
used as default in the case where we cannot compute it
(�

default

). The list L contains the summary values up un-
til the previous batch: this means that if we are analyzing
batch S

i

, L contains statistics until batch S

i�1. As we enter
the main loop, given the batch S

i

we extract the actual sum-
mary statistic using Formula 2. Once we obtain the statistic
we check the size of L. We did not check the case in which
L is empty because it can only be empty at the begin. Af-
ter that it will always contain at least one value. When L

contains more than a value we can compute both an aver-
age and a standard deviation. In the case where L contains
only one value, and we have already computed the maximum
(�

MAX

) and the minimum (�
MAX

) standard deviation seen
until now, the actual summary value is used as the average
and the standard deviation is set to (�

MAX

+ �

MIN

)/2.
If the value of �

MAX

and �

MIN

are not defined, than we
are in the first or second batch of the stream, and we have
not yet collected enough evidence to compute these statis-
tics, as we need to see at least two batches before we can
compute them. In this case we need to continue to accumu-
late evidence before being ready to detect changes or warn-
ings. Line 22 checks if � is not null. If so, we employ the
statistical process control technique based on Chebyshev’s

Inequality to evaluate if a change or a warning happens. In
particular, Chebyshev’s Inequality is used with two di↵erent
thresholds k

c

to detect a change and k

w

to detect a warning.
Logically, as a warning is a variation in the distribution less
important than a change (which is more critical by defini-
tion) k

c

is greater that k
w

and for this reason, the inequality
is first used to check if a change happens and successively,
if that first test is negative, the second test determines the
presence of a warning. At the end of the procedure the al-
gorithm adds the new summary value x to the list L.

If a change happens the values (i.e. the statis-
tics/summary values until batch S

i

) in the list L are re-
moved and we restart to fill L with the one extracted from
batch S

i

. Practically, if a change is detected, the actual
batch S

i

is statistically di↵erent from the previous sequence
of batches and, for this reason, we do not need to keep the
history before S

i

anymore. In the case of a warning the
algorithm only reports it to the user, without clearing L.

The final algorithm is a method able to automatically seg-
ment the sequence of summary statistic generated to sum-
marize the batches of the stream.

4. EXPERIMENTS
In this section we evaluate the performance of our ap-

proach CDCStream under di↵erent aspects. We compare the
behavior of our algorithm with the method proposed in [4]

Algorithm 1 ChangeDetectionProcess(S, k
c

, k

w

)
Require: S: stream of instances

Require: kc: stat. parameter to detect a change

Require: kw: stat. parameter to detect a warning (kw < kc)

1: �MAX = �MIN = nil

2: L = ;
3: while hasMoreInstances(S) do

4: Si = extractNextBatch(S)

5: //the summary statistic is extracted as explained in Sec. 3.1

6: x = extractSummaryStatistic(Si)

7: � = µ = nil

8: if (L.size > 1) then

9: µ = avg(L)

10: � = stdev(L)

11: if (�MAX == nil or � > �MAX) then

12: �MAX = �

13: end if

14: if (�MIN == nil or � < �MIN) then

15: �MIN = �

16: end if

17: end if

18: if (L.size == 1 and �MAX 6= nil and �MIN 6= nil) then

19: µ = avg(L)

20: � =

�MAX+�MIN
2

21: end if

22: if (� 6= nil and |x � µ| � kc�) then

23: // CHANGE HAPPENS
24: L = ;
25: else if (� 6= nil and |x � µ| � kw�) then

26: // WARNING HAPPENS
27: end if

28: L.add(x)

29: end while

that we name RSCD. RSCD is the most recent approach
to detect changes in categorical data streams. It obtains
good performance compared to previous methods.

To objectively measure the quality of the two methods,
we compare them in a learning scenario in which a classi-
fier is learnt using a warning model as introduced in [8]. In
particular, at the beginning a classifier is learnt and tested
over the stream of data. Every time a warning is detected,
a background classifier is created and trained in parallel
with the main classifier. When a change is detected, the
main classifier is replaced by the background one (and a
new background classifier is also started). As a base learner
for both CDCStream and RCSD we use the Naive Bayes
classifier [14]. To evaluate the di↵erent methods we em-
ploy the final accuracy of the learnt model. To assess the
accuracy we use the prequential evaluation: each time an
instance arrives, we first test the algorithm on it, and then
we subsequently use the example as training input for the
classifier.

RCSD does not implicitly manage warnings, for this rea-
son we adapt it to manage both changes and warnings. We
consider that a change happens when RCSD returns values
bigger than 0.01 (the same threshold is used in the origi-
nal work [4]) while we highlight warnings when RCSD re-
turns values bigger than 0.005 but lower than 0.01. As these
values represent a threshold over a distance, it is reason-
able that the change threshold is larger than the warning
one. CDCStream is designed to manage both warnings and
changes. For our approach we set the value of k

c

equals to
3 and k

w

equals to 2. We evaluate the two approaches using
di↵erent batch sizes. In particular we employ the following
values: {50, 100, 500, 1 000}.

In order to deeply understand the behaviour of our strat-
egy, we also employ as another competitor the supervised
method presented in [8], that we name SDriftClassif .

Dataset # of Inst. # of Feat. # of Cl.

Airlines 539 383 7 2

Electricity 45 312 8 2

Forest 581 012 54 7

KDD99 148 517 41 2

Table 1: Dataset characteristics

It also implements a warning/change mechanism monitor-
ing the accuracy of the classifier. All our experiments are
performed using the MOA data stream software suite [3].
MOA is an open source software framework in Java designed
specifically for data stream mining.

4.1 Datasets
To evaluate all the algorithms we use four real world

datasets: Electricity, Forest, Airlines, KDD99.
Electricity data [10] is a popular benchmark in stream

classification. The task is to predict the rise or fall of electric-
ity prices (demand) in New South Wales (Australia), given
recent consumption and prices in the same and neighboring
regions. The task proposed in the Forest dataset [2] is to pre-
dict forest cover types of vegetation from cartographic vari-
ables. Inspired by [13] we constructed an Airlines dataset
using the raw data from US flight control. The task is to
predict whether a given flight will be delayed, given the infor-
mation of the scheduled departure. The last dataset we use
is KDD99. One of the big problems with this dataset is the
big amount of redundancy among instances. To solve this
problem we use the cleaned version named NSL-KDD1. To
build the final dataset we join both training and test data. A
summary of the characteristics of these datasets is reported
in Table 1. We observe that this collection of datasets con-
tains both binary and multi-class problems, datasets with
di↵erent size (varying between 42k to 580k instances) and
di↵erent dimensionality (from 7 to 54 attributes).

For analysis purposes, we also introduce one more dataset,
named Forest Sorted, in which the instances of the Forest

dataset are reordered using the attribute elevation. Due to
the nature of the underlying problem, sorting the instances
by the elevation attribute induces a natural gradual drift
on the class distribution, because at higher elevation some
types of vegetation disappear while other types of vegetation
appear smoothly.

As general pre-processing for all numerical attributes we
perform unsupervised equi-width discretization using a num-
ber of bins equal to 5.

4.2 Analysis of Accuracy
In table 2 we report the accuracy performance of the dif-

ferent methods using the warning/change framework as ex-
plained at the beginning of the experimental section. For
each dataset, we highlight in bold the best result obtained
for it. As a first point, we can observe that the supervised
approach did not outperform the unsupervised ones. This
is a remarkable result because SDriftClassif is the only
method that exploits the accuracy to make a decision in or-
der to detect a change and to re-learn the model. The only
case in which SDriftClassif obtains slightly better results
is over KDD99, but the final performances are comparable
as the di↵erence is very low (around one point of accuracy).

1http://nsl.cs.unb.ca/NSL-KDD/

Dataset b=50 b=100 b=500 b=1 000

SDriftClassif. CDCStream RSCD CDCStream RSCD CDCStream RSCD CDCStream RSCD

Electricity 70.58% 73.84% 73.77% 71.23% 72.19% 68.18% 64.45% 66.01% 63.40%

KDD 91.38% 90.81% 90.65% 90.04% 90.06% 90.59% 90.06% 90.87% 90.06%

Forest 80.27% 82.99% 82.25% 81.18% 80.39% 74.46% 64.08% 80.05% 64.08%

Forest Sort. 67.44% 70.57% 68.35% 70.51% 68.35% 72.10% 68.35% 69.33% 68.35%

Airlines 65.25% 66.43% 62.71% 64.50% 64.41% 67.16% 66.73% 67.66% 67.64%

Table 2: Accuracy of models learnt by di↵erent strategies using warning/change framework under di↵erent

batch size

In all the other cases, we can observe that CDCStream out-
performs the other competitors (both supervised and unsu-
pervised).

Considering the comparison between CDCStream and
SDriftClassif we can note that, most of the time, our ap-
proach obtains interesting performances. This is especially
true for Forest Sorted in which for all values of batch sizes it
outperforms SDriftClassif . For both Electricity and For-

est, CDCStream obtains improvements using smaller batch
size (b = 50 and b = 100). This similar behavior is shared by
the classifier learnt using the RCSD approach. This is co-
herent with the results presented in [11]. The authors show
that for these two datasets smaller batches outperform big-
ger ones as they note that small batches forces the learner to
adapt faster to possible changes. This is particularly true for
Electricity, where multiple levels of periodicity are present,
over 24 hours, over 7 days, and over 4 seasons. Drift can
be visually presented by plotting class conditional distribu-
tions over time. Also for Airlines we can observe that our
approach obtains results higher or comparable to the one
achieved by SDriftClassif . This time the better perfor-
mances are reached considering larger batch size (b = 500
and b = 1000), gaining in the best case more than two points
of accuracy.
Analysing the performance of CDCStream, we can note

that most of the time the classifier learnt by our approach
obtains better performance. Also in this case, considering
Forest Sorted, for all batch values CDCStream outperforms
RCSD. Another interesting point is that CDCStream ob-
tains interesting stability results w.r.t. RCSD. This be-
havior is very clear considering the Forest dataset. We can
see that for CDCStream the accuracy varies between 82.99%
(b = 50) and 74.46% (b = 500) while for the rough set based
method the accuracy vary from 82.25% (b = 50) to a mini-
mum of 64.08% (b = 500 or b = 1000), which is a variation
of 18 points of accuracy. A similar, but less drastic behav-
ior can be observed for the Electricity dataset, where larger
batch sizes impact negatively on RCSD while CDCStream

remains more stable.
Generally, we can note that monitoring changes in data

distribution (P (X)) with CDCStream allows to learn a
good model. In supervised approaches, as SDriftClassif ,
the detector reacts to changes in the posterior probability
(P (Y |X)). Most of the time supervised methods assume
that only P (Y |X) varies and it is the only useful quantity
to monitor in order to make a decision [9]. An interesting
future work will be to combine both sources of information
(detected changes in P (X) and in P (Y |X)) in order to learn
better stream classifiers.
To summarize, we can state that the classifier learnt us-

ing CDCStream, under the warning/change detection frame-
work, obtains interesting accuracy results and also generally
improves the classifier quality compared to a previous super-

vised approach. We can also underline that, considering the
benchmark used in the experiments, CDCStream is robust
considering the batch size. This parameter did not have a
strong influence on the final performance.

0.60

0.65

0.70

0.75

0.80

 360 380 400 420 440 460 480 500

su
m

m
a

ry
 s

ta
tis

tic

of batches analyzed

Figure 1: A sample of changes detected by

CDCStream on the Forest Sort. dataset with batch

size equals to 1 000 between the batches 350 and 500

4.3 Analysis of Change Detection Behavior
We report the results concerning the behaviors of

CDCStream and RCSD in Table 3. In this experiment we
measure the percentage of changes detected by both meth-
ods, for each dataset considering di↵erent batch sizes. The
percentage of changes is the number of changes detected di-
vided by the possible number of changes that can happen in
the stream. If a dataset is divided in N batches, the number
of possible changes is equal to N � 1 because we can have,
at most, one change for each batch except the first one as
we cannot start to detect changes before the second batch.
The first aspect we point out is that the two methods have
di↵erent behaviors. This means that when one approach in-
creases the number of changes detected, the other one does
not exhibit the same trend. For instance, if we analyze the
results on Electricity, when we use a batch size equals to 50
the number of changes are similar but, when the batch size
increases, they show di↵erent trends. In particular, for this
dataset, we can observe that bigger batch size (b = 500 and
b = 1000) drastically impacts the percentage of changes dis-
covered by RCSD. This is also confirmed by the decrease
in accuracy for this strategy over large batch sizes. If we
continue to analyze the results, we can note that for Forest

Sort. RCSD has problems to detect the smooth changes
that are intrinsically present in this dataset. This is un-
derlined by the fact that for b = 50 and b = 100 it does
not detect changes (a percentage equals to 0%) and also for

Dataset b=50 b=100 b=500 b=1 000

CDCStream RSCD CDCStream RSCD CDCStream RSCD CDCStream RSCD

Electricity 96.57% 92.93% 64.67% 100% 55.55% 6.66% 44.44% 8.88%

KDD 7.97% 1.34% 1.01% 0.06% 85.52% 0.33% 75.67% 0%

Forest 96.3% 77.63% 34.49% 71.15% 0% 0.17% 18.24% 0.34%

Forest Sort. 12.65% 0% 13.87% 0% 96.21% 0.08% 8.26% 0.17%

Airlines 14.68% 100% 94.12% 100% 2.78% 100% 58.07% 44.52%

Table 3: Change behavior: number of changes triggered over the number of possible changes (Number of

batches - 1)

larger values of batch size it does not react as much (a per-
centage lower than 0.2%). This phenomenon explains why
the model learnt using the RCSD approach always obtains
the same accuracy over all the values of batch size. The
fact that the rough sets based approach does not underline
changes, in this case, impacts the performance of the final
classifier in a bad way. A totally di↵erent behavior is evident
for Airlines. For this dataset RCSD (for batch size of 50,
100, 500) detects as many changes as theoretically possible.
This means that, each time, the model previously learnt is
discarded and replaced with a new one while CDCStream

adopts a di↵erent strategy, and it adapts itself to the value
of batch size in order to discover changes. As a practical
consequence, the strategy adopted by CDCStream outper-
forms the one supplied by RCSD to learn the classification
model for the stream data. In general we can say that,
most of the times, RCSD detects smaller percentages of
changes than the ones detected by CDCStream. When the
opposite happens, RCSD always saturates the percentage
of changes, reaching 100%. In Figure 1 we report the behav-
ior of CDCStream on the Forest Sort. dataset considering
a batch size of 1 000 instances. For lack of space we report
only this example as a representative. We observe similar
behavior over all the other datasets. On the Y axis we plot
the value of the summary statistic (Formula 2) monitored by
CDCStream. The X axis represents the # of batches ana-
lyzed during the stream. Vertical lines are used to highlight
when CDCStream detects a change. In order to easily visu-
alize some interesting behavior we supply the trend between
the first 350 and 500 batches. We can observe that our
metod detects the important change observed around the
batch 390. After that we can note that CDCStream contin-
ues to detect reasonable changes of the monitored statistic
segmenting the time series in a reasonable way. We un-
derlined that the segmentation algorithm implemented in
CDCStream is general and can be employed to monitor any
numerical time series in order to detect variations (increase
or decrease) in the data distribution.

5. CONCLUSION
Detecting changes in a stream of categorical data is not

straightforward. In this paper we presented a new algorithm
in order to deal with this task. We adapt a previous tech-
nique in order to extract summaries from a batch of categori-
cal instances. After that, we develop a new warning/change
detection approach based on Chebyshev’s Inequality that
automatically segments the stream of statistics produced by
the summarization step. A strong point of our approach
is its ability to exploit historical information for decision
making in a dynamic fashion, adjusting the history size au-
tomatically. The only parameters needed by CDCStream

are related to Chebyshev’s Bound and they have therefore

clear semantics. The experiments fully validate the quality
of CDCStream showing interesting results obtained by our
strategy. As future work we plan to apply our method in
categorical data stream clustering to update the model when
changes are detected.

6. REFERENCES
[1] C. C. Aggarwal, editor. Data Streams - Models and

Algorithms. Advances in Database Systems. Springer,
2007.

[2] A. Asuncion and D. Newman. UCI machine learning
repository. University of California, Irvine, School of
Information and Computer Sciences, 2007.

[3] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer.
MOA: Massive Online Analysis. J. Mach. Learn. Res.,
11(May):1601–1604, 2010.

[4] F. Cao and J. Z. Huang. A concept-drifting detection
algorithm for categorical evolving data. In PAKDD

(2), 2013.
[5] F. Cao, J. Liang, L. Bai, X. Zhao, and C. Dang. A

framework for clustering categorical time-evolving
data. IEEE T. Fuzzy Syst., 18(5):872–882, 2010.

[6] H. Chen, M. Chen, and S. Lin. Catching the trend: A
framework for clustering concept-drifting categorical
data. IEEE TKDE, 21(5):652–665, 2009.

[7] K. Chen and L. Liu. He-tree: a framework for
detecting changes in clustering structure for
categorical data streams. VLDB J., 18(6):1241–1260,
2009.

[8] J. Gama, P. Medas, G. Castillo, and P. Rodrigues.
Learning with drift detection. In SBIA, 2004.

[9] J. Gao, W. Fan, J. Han, and P. S. Yu. A general
framework for mining concept-drifting data streams
with skewed distributions. In SDM, 2007.

[10] M. Harries, C. Sammut, and K. Horn. Extracting
hidden context. Mach. Learn., 32(2):101–126, 1998.

[11] D. Ienco, A. Bifet, I. Zliobaite, and B. Pfahringer.
Clustering based active learning for evolving data
streams. In Discovery Science, 2013.

[12] D. Ienco, R. G. Pensa, and R. Meo. From context to
distance: Learning dissimilarity for categorical data
clustering. ACM TKDD, 6(1):1:1–1:25, mar 2012.

[13] E. Ikonomovska, J. Gama, and S. Dzeroski. Learning
model trees from evolving data streams. Data Mining

and Know. Disc., 23(1):128–168, 2010.
[14] I. H. Witten and E. Frank. Data Mining: Practical

Machine Learning Tools and Techniques. Data
Management Systems. Morgan Kaufmann, 2005.

[15] L. Yu and H. Liu. Feature selection for
high-dimensional data: A fast correlation-based filter
solution. In ICML, 2003.

