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‘This February 1953 file photo shows an aerial view of a windmill

pump elevated above the floodwaters in the coastal village of Oude

Tonge in The Netherlands. It took the collapse of dikes, drowning

deaths of more than 1,800 people, and evacuation of another 100,000

in 1953 for the Dutch to say ”Never again!” They have since con-

structed the world’s sturdiest battery of dikes, dams and barriers. No

disaster on that scale has happened since.’ (Photos, 2012)
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Abstract

In a world where floods are an important hazard, the incentive for flood forecast-

ing, promoted by the advances in earth observations’ quality, is growing. In this

context, while models are developed and used primarily on a national level, it has

appeared essential to share data and models internationally. The present research

inscribes itself into this scope. Seven years of hourly simulations and two weeks of

hourly hindcasts with a lead time of five days, with and without an error correction

procedure, were executed using the Delft-FEWS forecasting platform for four flood

forecasting models and five sub-basins of the Meuse River basin. These models in-

cluded two lumped conceptual models, the HBV-96 model, operationally used in

the Netherlands and in Germany and the GR4H model, the hourly version of the

GR4J model, used in France; and two fully-distributed physically based models,

the wflow hbv and wflow sbm models developed at Deltares, the Netherlands. The

quality of the simulations and of the hindcasts produced by each model for each of

the five sub-basins was analysed and compared based on a combination of graphi-

cal techniques and performance metrics. This intercomparison framework brought

to light several results. It has been shown that the Regnie interpolation method im-

proved the HBV-96 model simulation performance for high flows compared to the

Kriging interpolation method, highlighting the importance of data interpolation.

Furthermore, the conceptual HBV-96 and GR4H models produced more reliable

simulations and hindcasts than the physically-based wflow models. Finally, the

use of high resolution input data did not show any clear improvement of the sim-

ulations and hindcasts quality. As part of a larger project, this research has set

the starting point for further investigations regarding the disparities in the models

results identified.





Chapter 1

Introduction

Flooding is an event characterised by the physical phenomenon of slow or fast

submersion of a zone usually dry. It can have a partially artificial origin due to an-

thropogenic alterations of the environment (forest denudation, dams. . . ) and/or be

controlled by meteorological events such as precipitation, temperature variations

(snow melt) (PAGASA, 2004).

While, based on data acquired from 1980 to 2008, floods kill on average over 6700

people, affect more than 96 million people and lead to damage costs of approxi-

mately 10 billion euros per year worldwide (UNISDR, 2013). It has become evi-

dent that flood modelling and flood forecasting systems are crucial for the improve-

ment of safety and protection against this natural hazard (WMO, 2011a).

Over the years, forecasting models have been developed in Germany, The Nether-

lands and France. In Germany, the federal Institute of Hydrology (BfG), and in

the Netherlands, the Dutch Water Management Centre (WMCN), use the semi-

distributed HBV-96 model as their basis for flow forecasting. Simultaneously, in

France, the national research institute in sciences and technologies of the environ-

ment (IRSTEA, formerly known as Cemagref) and the French flood forecasting

centres (SCHAPI-SPC) use lumped rural engineering (GR) models for flow fore-

casting of the Meuse River basin. Moreover, with the prevailing advances in earth

observations’ quality (precipitation, temperature, evapotranspiration, soil moisture,

etc) the incentive to enhance the use of distributed hydrological models has in-

creased greatly. The recent development of two distributed hydrological models

at Deltares (Dutch research institute), the wflow hbv and the wflow sbm models,

supports this.

Although these modelling systems are becoming more efficient with time, they will

never be perfect due to several factors, such as uncertainty in weather observations

and predictions, models accuracy to represent real systems, forecasts lead time 1,

1Lead time is the time that separates the moment when the threat is recognised (e.g.: here flooding
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etc (Verkade and Werner, 2011).

By comparing the performance of flood forecasting models, essential outcomes re-

garding the relation between flood modelling and flood forecasting limitations and

the above mentioned factors that contribute to those limitations can be obtained;

these outcomes being the key to an improvement of the flood forecasting models

(WMO, 2011b).

Within the framework of a larger project, which leading drivers are to improve

flood forecasting by adding more models to the Delft-FEWS forecasting platform

and by sharing data (both historical and operational) within and across national

boundaries, the specific objectives of this research were to compare several flood

forecasting models (HBV-96, GR4H, wflow hbv and wflow sbm) in simulations

and hindcasts, for several sub-basins of the Meuse River basin, in order to:

• disentangle the link between model performance and model structure, as-

sessing the limits of model complexity, and

• explore the benefits of using high resolution forcing data

For this purpose, simulations and hindcasts were executed within Delft-FEWS

and analysed for the four different models for five sub-basins of the Meuse River

basin.

So far, these four forecasting models have only been compared on a local scale.

This project is thus unique in the sense that it enters in the context of international-

wide intercomparisons for flood forecasting models used in Germany, The Nether-

lands and France. Furthermore, using the Meuse River basin as the basis of the

intercomparison is an appropriate choice due to its transnational boundaries.

Moreover, this research, carried out with Deltares and IRSTEA, originates and

embeds itself in the scope of international projects on the Meuse such as the in-

ternational ’Amice’ project; symposiums such as the ’Mini-Symposium: Towards

improved transnational hydrological modelling of the Meuse basin’ (Archambeau,

2013); as well as international agreements such as the ’Accord international sur

la Meuse’ approved in Gent, Belgium in 2002 according to which the members

(the governments of Germany. Belgium, France, the Luxembourg and The Nether-

lands) are guided, within their actions, by the principle of prevention (flood fore-

casting being a step towards prevention; de Wallonie, 2002).

In a first part, the research area, the models and the forecasting platform used for

the purpose of this research are presented. In a second part, the methods imple-

mented and their corresponding results are described. Subsequently, the results

are discussed and the main conclusions of the research are stated. Finally, rec-

ommendations are given with the aim of proposing a clear continuation of this

research.

event) and when the predicted event takes place (Verkade and Werner, 2011).
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Chapter 2

Research area

2.1 Meuse River basin

Geographical location

The Meuse River is a 875 km long river, originating in Pouilly-en-Bassigny, North-

East of France. In the Netherlands, it divides near Heusden into the Afgedamde

Maas and the Bergse Maas. The Afgedamse Maas joins the Waal distributary

branch of the river Rhine at Woudrichem, which merges with the Bergse Maas

(then called Amer) downstream, to form the Hollandsch Diep (Figure 2.1). Its

total basin area is 33,000 km2, partially covering France, Luxembourg, Belgium,

Germany and The Netherlands (Figure A.1, Appendix A).
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Figure 2.1: Meuse River in the Netherlands, (WWasser, 2013)

Geology

Three major soil types predominate this river basin: i) sedimentary Mesozoic rocks

found from the Meuse River source until its confluence with the Chiers River, ii)

Paleozoic metamorphic rocks from the confluence with the Chiers River until the

Belgian-Dutch frontier, and iii) Cenozoic unconsolidated sedimentary rocks from

the Belgian-Dutch border until its outlet, with an increasing tidal deposits contri-

bution towards the outlet of the Meuse River basin (Tu, 2006).

Land use

The land use of the Meuse River basin consists mainly of agricultural land (pastures

and arable land), covering up to 60% of the total basin area, while forested and

urban areas cover the rest of the basin (approximately 30% and 10% of the total
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basin area respectively; De Wit et al., 2007).

Climate

A temperate maritime climate dominates the Meuse River basin, with cool sum-

mers and temperate winter periods. As a result, the precipitation is fairly regular

throughout the year, but presents a large spatial variability due to the elevation

distribution over the whole area.

The elevation ranges from less than 100 m downstream, where low precipitation

values of 700 to 800 mm are found, to more than 500 m in the Ardennes, with high

annual precipitation values of 1000 to 1300 mm (Tu, 2006).

Hydrology

The Meuse River is a rain-fed river, although snow is a component of its regime

during the winter months. Its mean discharge rate is about 250 m3/s, with high

flows - that eventually lead to floods - in winter around 3000 m3/s and low flows in

summer of 10 m3/s (Tu, 2006).

The Meuse discharge regime is characterised by temporal variations (as seen pre-

viously), as well as spatial variations. The latter are controlled by the landscape

and man-made flow regulating structures.

The upstream section of the Meuse River, until Charleville-Mézières (Figure A.1,

Appendix A) is marked by a hilly landscape with large floodplains. This landscape,

together with the numerous weirs present in this area and the existence of a lateral

canal alongside certain segments of the river, lead to substantial flood mitigation

downstream.

The central section of the Meuse River, delimited by Charleville-Mézières and

Liège, crosses the peculiar mountainous landscape of the Ardennes Massif (Figure

A.1, Appendix A). Throughout this part, the Meuse River flows through narrow

steep valleys and its tributaries show very high river gradients. These features give

rise to high flood waves, partially attenuated by weirs.

Finally, the downstream section of the river presents very wide floodplains and

numerous weirs, the Meuse gradually turning into a typical lowland river (Tu,

2006).
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2.2 Sub-basins selection

For the purpose of this research project, a selection of five sub-basins of the Meuse

was made. The purpose of this selection is to offer a sample of sub-basins present-

ing large contrasts in basin area, precipitation heights as well as location within

the Meuse catchment (upstream or downstream), in order to examine the effect of

model definition on simulations and forecasts quality. The following sub-basins

were selected:

− The Meuse in Saint-Mihiel (2543 km2)

− The Meuse in Stenay (3914 km2)

− The Chiers in Carignan (1978 km2)

− The Semoy in Haulmé (1338 km2)

− The Ourthe in Tabreux (1597 km2)
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Figure 2.2: Selected Meuse sub-basins used for the models intercomparison
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Chapter 3

The models

Models are ‘a selected simplified version of a real system and phe-

nomena that take place within it, which approximately simulates the

excitation-response relationships that are of interest’ (Bear and Cheng,

2010).

The models considered for the purpose of this research all aim at simulating river

discharge from input climatic conditions, their main differences lying in the models

structures. In this section, a short overview of the latter is given.

3.1 HBV-96

The HBV-96 model is the operational model running within the Delft-FEWS plat-

form at Deltares (see Chapter 4) (Berglov, 2009). HBV-96 is a conceptual semi-

distributed hydrological model, originally created at the Swedish Meteorological

and Hydrological Institute (SMHI) in 1996 from a re-evaluation of the lumped

HBV hydrological model (Lindstrom et al., 1997; SMHI, 1999) (Figure B.1, Ap-

pendix B).

The model runs with hourly time steps over sub-basins (about 40 km2) using the

following input meteorological data: hourly precipitation and air temperature and

potential evapotranspiration monthly mean averages. Computation of precipitation

and air temperature is done through an optimal interpolation method, and potential

evapotranspiration is corrected using altitude. Sub-basins are subdivided into zones

defined by elevation and vegetation spatial distribution. Four different land use

classes are used within the model: open areas, forests, lakes and glaciers (Berglov,

2009).

HBV-96 is structured in multiple routines: i) the precipitation routine, ii) the soil

moisture routine and iii) the runoff response routine. The latter is composed of two
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zones, an upper non-linear reservoir and a lower linear reservoir. The upper zone

reservoir generates a quick runoff flux, while the lower reservoir produces as an

output a baseflow component. The outputs of the reservoir are then summed prior

to being subjected to the MAXBAS tranformation function (Figure B.2, Appendix

B). This function is a triangular weighting function and is used as a routing func-

tion to compute simulated runoff. Between sub-basins, the routing is achieved by

the use of modified Muskingum’s equations and delay parameters (lag and damps)

(Lindstrom et al., 1997; Berglov, 2009).

The HBV model has applications in flood modelling and operational flood fore-

casting in more than fifty countries all over the world. From multiple compari-

son framework, it has been established that the latter produced moderate to good

flood simulations and forecasts. This quality, adjoined to its simplicity, conferred

by its low number of parameters, has made the HBV-96 model adequately ad-

justable to an extensive number of cases, especially to large sub-basins such as the

Rhine river basin (Berglov, 2009; Gorgen et al., 2010; De Wit, 2005; Drogue et al.,

2010).

Many developments have been made for the operational use of the HBV-96 for

flood forecasting within Delft-FEWS. These include the improvement of: the data

interpolation method (Weerts et al., 2008), the evaporation calculations and the

precipitation and temperature updating for forecasting (Berglov, 2009).

3.2 GR4H

The GR4H model is the hourly version of the GR4J daily model (Mathevet, 2005).

It is a four-parameter empirical lumped rainfall-runoff model created at IRSTEA in

the early 1980s. This model aims at reproducing a catchment’s stream response to

water inputs events by an ensemble of conceptual (non-physical) processes (Figure

C.1, Appendix C; Perrin et al., 2003, 2007).

The GR4H model runs with hourly precipitation data (Pk) and average potential

evapotranspiration data (E), lumped over the catchment area, as inputs and has four

parameters (X1: the production store maximum capacity (mm), X2: the ground-

water exchange coefficient (mm), X3: the routing store maximum capacity (mm)

and X4: the time base of the unit hydrographs (hours)) optimized for each basin

(Perrin et al., 2003, 2007).

Two conceptual reservoirs are present within this model, a production store and a

routing store. The production store behaves conceptually similarly to an unsatu-

rated reservoir, controlling the water infiltration into the ground. The routing store,

as its name indicates, acts like a groundwater reservoir and participates to the water

routing out of the system.
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Water is routed linearly by two unit hydrographs (UH1 and UH2), which contri-

bution is fixed. Indeed, 90% of the water is routed by UH1 and 10% of the water

is routed by UH2. While conceptual, this routing method enables to simulate the

time lag between a rainfall event and its corresponding peak discharge. This is

done through the ordinates of the unit hydrographs, defined by S curves (SH1 and

SH2), that distribute the water entering the unit hydrographs over time (Figure C.2,

Appendix C) (Perrin et al., 2003, 2007). Nevertheless, these unit hydrographs can

be related to physically based hydrological fluxes, being respectively baseflow and

quick runoff.

For this project, the GR4H model does not present any snow routine as it was

not yet ready on the hourly time step. This should however not be problematic,

considering that the snowmelt water contribution to the total discharge does not

exceed 15% for the sub-catchments selected. Nonetheless, simulations were anal-

ysed carefully for periods during which the contribution of snowmelt water was

relatively high.

Numerous intercomparison projects including the GR4H model have lead to the

conclusion that the latter performed satisfactorily on average and that an increase in

the number of parameters did not show significant improvements of the streamflow

simulations quality (Perrin et al., 2003; Mathevet, 2005; Gorgen et al., 2010; Lerat

et al., 2006; Perrin, 2000). Nonetheless, several comparisons have also shown that

more flexible models perform better than the GR4H model (Demirel et al., 2013;

Esse, 2012; Esse et al., 2013; Pushpalatha et al., 2011).

The GR4H model is not used as thus at IRSTEA for operational forecasting pur-

poses. Instead, the forecasting model used nowadays, called GRP, was born from

several research activities which lead to the modification of the original GR4H

structure, as well as the addition of several assimilation procedures to the latter

(Tangara, 2005; Berthet, 2010).

3.3 OpenStreams models

OpenStreams is a project initiated by Deltares. Still in progress, this project’s

aim is to enhance hydrological models (or model components) re-use in different

frameworks. The models or parts of models can be used independently through

a command line interface or they can be associated through the use of a layer

inherent to OpenStreams, which aim is to execute a standard interface that can

process different programming languages (Schellekens, 2012).

Within OpenStreams there is wflow, a distributed hydrological modelling platform.

The wflow models are written as a set of PCRaster python scripts imbricated into

each other (Wesselung et al., 1996).
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The maps, input data, parameters and models states needed for the computation of

the models are organized within folders, they constitute the models ’database’.

The computation of the models is done over grid cells, using static PCRaster maps.

For the purpose of this project, these maps have a 1 km by 1 km resolution. They

are created using a digital elevation model (dem) and a land use map of the consid-

ered basin. These maps include: a catchment delineation map, dem maps, a map

of the gauges, the original land use map (the land use classes are the following:

infrastructures, arable land/pastures/permanent crops, forested areas, other nature,

wetlands and water bodies), a local drainage direction (ldd) map, a soil map, a

rivers map, a sub-catchment delineation map and maps of the spatial distribution

of physical parameters used for the models computations.

Input data are hourly precipitation, potential evapotranspiration and temperature

point data interpolated over the maps grid cells.

Parameters are distributed over the catchment in terms of the catchment’s soil and

vegetation classes.

Model states encompass all the information needed (reservoir contents, fluxes, etc)

for starting the model from a selected moment in time. They are kept in the model’s

memory after each time step, for the following step.

The routing procedure within the wflow models consists of a kinematic wave func-

tion (Shultz et al., 2008), which is an approximation of Saint-Venant’s equations.

This function routes water over the ldd network and depends on several parameters,

such as channel width and the manning roughness coefficient.

The wflow platform presently includes the wflow hbv and the wflow sbm mod-

els; a short description of these distributed hydrological models is given thereafter

(Schellekens, 2013).

3.3.1 wflow hbv

The wflow hbv model is a fully distributed version of the HBV-96 model, where

the original routing function (MAXBAS) was traded for a kinematic wave function

(Schellekens, 2013). A complete diagram of the hydrological processes involved

in the wflow hbv model is presented in the Appendix D (Figure D.1), together with

a description of the model’s variables (Figure D.2, Appendix D). This diagram was

produced based on the wflow hbv python script.

This model, based on nineteen parameters, includes a snow routine.

For this project, the Seepage, the ForecQ qmec and the Inflow fluxes were deacti-

vated.

The interception values of the wflow hbv model were involuntarily set to zero prior

14



to the model simulations and hindcasts. This was discovered at a late stage of

the project, disabling any additional model runs. Therefore, the wflow hbv model

results were analysed but did not permit any reliable comparison with the other

model results.

Due to their recentness, there is no published literature referring to the wflow sbm

and the wflow hbv models performances, apart from the wflow documentation

(Schellekens, 2013).

3.3.2 wflow sbm

The wflow sbm model originates from the distributed topog sbm simple bucket

model developed by Vertessy and Elsenbeer (Vertessy et al., 2000) in the sense

that it follows the same soil modelling concept. The following description of the

wflow sbm model is based on the wflow documentation (Schellekens, 2013) and

on the wflow sbm python script from which a diagram of the processes inherent to

the model was made (Figures D.3 and D.4, Appendix D).

The originality of the wflow sbm model lies in its direct runoff component. Indeed,

the precipitation water that does not infiltrate into the soil (FreeWaterDepth) runs

off directly onto the soil’s surface (similar to an overland flow) and contributes to

the Kinematic wave.

The water that infiltrates reaches the soil water reservoir which consists of a bucket

composed of an unsaturated store (UStoreDepth) and a saturated store (FirstZoneDepth),

working intrinsically (Vertessy et al., 2000). Part of the water present in the satu-

rated store seeps to the surface (ExfiltWater and SubCellGWRunoff ) and is added

to the Kinematic wave. The other part of the saturated store water content moves

horizontally between cells (FirstZoneFlux) based on a D8 network 1, acting as a

groundwater flow (Schellekens, 2013).

Part of the surface runoff water can reinfiltrate (Reinfilt) in the unsaturated store.

This model, dependent on twenty parameters, includes a snow routine.

For the purpose of this project, the Inflow and the Reinfilt fluxes were deacti-

vated.

1D8 network principle: water flow from a cell to the surrounding cells is controlled by the slope

between the two cells. The slope is determined from a ldd network, itself based on a digital elevation

model DEM (Kiss, 2004).
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Chapter 4

The forecasting platform

For the purpose of this study, the simulations and forecasts were conducted using

the forecasting platform Delft-FEWS (Flood Early Warning System). It is used

both operationally and in stand alone and has applications in about forty opera-

tional centers and eight different hydrological fields 1.

The main initial objective of its development was to offer a flexible platform where

data and models could be collected for operational forecasting. Its originality relies

essentially on its flexibility; being data-centric, this platform provides the possibil-

ity to store data on a database, while hydrological modelling is handled by external

models linked to the platform.

Delft-FEWS, its current form introduced in 2002-2003, produces forecasts through

a series of steps defined by XML files: data import and storage, data processing

(accumulation, aggregation, merging of data, etc), model execution (through gen-

eral adapters) and finally data export (Werner and Weerts, 2012; Deltares, 2010;

Werner et al., 2013). All these steps can be processed as workflows using the

platform’s user interface (Figure E.1, Appendix E), which also allows for the se-

lection and visualization of data as maps and graphics (Figure E.2 and Figure E.3,

Appendix E).

This platform, due to its flexibility, offers an objective environment for the present

models intercomparison project.

1Further information is provided on the following webpage: http://oss.deltares.nl/web/delft-

fews/fews-maps.
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Chapter 5

Methods

5.1 From GR4H to wflow gr4

In order to be executable within Delft-FEWS, the GR4H model had to be incor-

porated in the wflow platform according to a pre-defined framework (Schellekens,

2013).

Thus, the original FORTRAN code was first reprogrammed in the PCRaster Python

dynamic language. Subsequently, the wflow gr4 model’s database (static maps,

initial states, parameters) was created, prior to the model’s link to the platform.

Creation of the static maps

A set of static maps with a resolution 1 km by 1 km was first generated for each

of the five sub-basins using as initial maps the dem and land use maps of the

wflow hbv and wflow sbm models for the Meuse River basin.

Creation of the initial states

Initial states (the two unit hydrographs water content, the routing store and the

production store water content) were then obtained for each sub-basin for the

wflow gr4 model by running simulations on the command line using one week

of forcing precipitation and evaporation data. These states were used at the start

of the simulation period as cold initial states by the wflow gr4 model within Delft-

FEWS.

Creation of the parameters - Calibration

A set of parameters (X1, X2, X3 and X4) for each of the five sub-basins was finally

obtained through the wflow gr4 model calibration, performed using a proprietary

software developed at IRSTEA, called AirGR. The calibration was based on ob-

served hourly discharge measurements using the Nash-Sutcliffe model efficiency
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coefficient (NSE) as objective function (formula proposed in Nash and Sutcliffe

(1970)).

The sources of the forcing data used for the calibration are shown in Table 5.1,

presented underneath.

Table 5.1: Forcing data of the wflow gr4 model calibration

Sub-basins Precipitation Evaporation Discharge

The Meuse in Saint-Mihiel

The Meuse in Stenay
Reanalysis data: Pluviometer 1 hr + 24

hrs + 24 radars

Hourly from the

Banque Hydroa

The Semoy in Haulmé

The Chiers in Carignan
SAFRAN daily + pluviometer hourly

= SAFRAN hourly

Hourly from the

Banque Hydro

The Ourthe in Tabreux
Hourly, retrieved from FEWS-Rivieren by Willem van

Verseveld (Deltares)

ahttp://hydro.eaufrance.fr/

The AirGR software follows a calibration procedure structured in two steps. First,

a prefiltering step is performed based on a given set of parameters. Here, three

parameter sets were provided. At the end of this step, the parameter set offering

the best fit is chosen as a starting point for the second calibration procedure. This

second step consists of a steepest descent local search. By changing parameters

individually, this algorithm aims at producing the best fit for the preselected cali-

bration coefficient. When the pace between two iterations becomes too small, the

procedure stops, delivering the last set of parameters produced.

The operational hbv, the wflow hbv and the wflow sbm models were acquired al-

ready calibrated.

Link to the platform

Finally, the wflow gr4 model was linked to the Delft-FEWS platform through a

general adapter XML file, on the same basis as the other three models, already

coupled to the latter prior to the beginning of this research project.

The wflow gr4 model, although still being lumped, worked on a grid basis, using

gridded data as input. The total runoff obtained for each grid cell was then summed

in order to obtain the sub-basins discharge at the outlet.
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5.2 Simulations

5.2.1 Data import and transformation

Prior to running the model simulations within Delft-FEWS, the data were imported

into the platform before being processed. These two steps were indeed primordial

for the data availability and usability by the models.

Precipitation (Figure F.1, Appendix F) and temperature data was imported to the

platform from the following sources: DWD-Synop, DWD–TTRR, KNMI–Synop,

LMW, MSW–Maas, MeteoFrance, REGNIE-HYRAS. The daily potential evapo-

ration was obtained from monthly averages of the Meuse sub-basins.

Subsequently, a data preprocessing step was executed. A concise description of the

transformation methods used for the operational hbv model and the wflow models

respectively is presented thereafter.

The operational HBV-96 preprocessing scheme

For this model, two precipitation interpolation techniques were used.

• Precipitation

1. Regnie

The Regnie tranformation procedure is based on inverse distance inter-

polation methods. From monthly mean values of daily precipitation of

a background grid, hourly areal mean precipitation values assigned to

the HBV centroids were obtained1 (Figure F.2, Appendix F) (Weerts

et al., 2008).

2. Kriging

The Kriging preprocessing method relies on a linear Kriging interpo-

lation method 2 (Figure F.3, Appendix F). From precipitation synoptic

time series, scalar precipitation data assigned to the hbv centroids were

computed (Figure F.3, Appendix F).

• Temperature

1The allocation of values to hbv centroids is done by the Thiessen polygon method which assigns

the weights of each scatter point for each basin (Minnet, 2014)
2The Kriging interpolation function is a Gaussian process regression of data interpolation be-

tween available values at spatially distributed locations. Several functions exist within the Kriging

interpolation method; such as the exponential, Gaussian, linear, spherical and power functions (Min-

net, 2014).
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The temperature preprocessing was done via a spherical Kriging interpola-

tion method. Temperature time series were transformed in order to obtain

hourly temperature data for the hbv centroids (Figure F.4, Appendix F).

• Evaporation

The evaporation was used as it was imported, without any transformation,

by this model.

The wflow preprocessing scheme

• Precipitation

The output of the operational hbv precipitation transformation was used as a

starting point for the wflow precipitation transformation method. The hourly

precipitation centroid scalar values were interpolated to grids corresponding

to the sub-basins using a linear Kriging interpolation method (Figure F.5,

Appendix F).

• Temperature

For the temperature transformation module, the output of the operational hbv

temperature preprocessing was here used again as a starting point for the

wflow temperature transformation module. The hourly temperature centroid

scalar values were interpolated to grids corresponding to the sub-basins using

a spherical Kriging interpolation method Figure F.6, Appendix F).

• Evaporation

The imported centroid scalar daily evaporation was interpolated to hourly

sub-basins grids values using an inverse distance transformation.

5.2.2 Simulations execution

The simulations were executed for all fours models (HBV-96 run twice, once with

the Regnie precipitation transformation data and once with the Kriging precipi-

tation transformation data, wflow sbm, wflow hbv and wflow gr4) using the pre-

viously transformed input data. These simulations were performed on an hourly

basis, with a one day interval, from the 1st of January 2006 at 1 am until the 28th

of February 2013 at 11 pm. The year 2006 was chosen as a warm-up year. This

daily interval was selected in order to save the models states once a day in the

database for subsequently running the hindcasts.
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5.2.3 Performance assessment

In order to assess the simulations performance an optimal combination of graphical

techniques and performance metrics were computed on the following period: 1st

of January 2007 at 1 am until the 28th of February 2013 at 11 pm.

Graphical techniques

A selection of six graphics was made, these were created for each model and each

sub-basin and include a plot of:

• Simulated and observed discharge timeseries

• The cumulative discharge timeseries

• The discharge residual timeseries

– The discharge residual was calculated by substracting the simulated

discharge from the observed discharge. Thus, a positive number indi-

cates that the simulated discharge is lower than the observed discharge

and vice versa.

• The cumulative residual timeseries

• The simulated versus the observed discharge

• The RMSE, MSE ranking versus the MAE ranking

– The models were classified in function of their MAE, RMSE and MSE

scores (from 1 to 5, 1 representing the model with the best score, 5 the

model with the worst score). A dot on the one to one line signifies that

the model has the same ranking for those criteria. When a model plots

under the one to one line, it suggests that the latter model makes errors

of larger magnitude than the model plotting under the line.

These graphics were chosen in order to allow a complete investigation of mod-

els performances temporal dynamics to promote the identification of patterns and

sources in error occurrence.

Performance metrics

A selection of five continuous performance metrics was made, focusing on dif-

ferent aspects of the simulations. The following criteria were computed for each

model and each sub-basin:

• The Mean Absolute Error (MAE):
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The MAE measures the average magnitude of the simulation errors with the

following formula:

MAE =
1

N

N
∑

i=1

|Si −Oi| (5.1)

With,

N: the number of elements

Si: the simulated discharge for element i

Oi: the observed discharge for element i

The MAE ranges from 0 to ∞, 0 being the perfect score, and has the same

units as discharge.

Being a linear score, all the errors are weighted equally. However, this error

metric does not indicate the direction of the deviation from the observed

measurements (Koh and Ng, 2009; Sigbritt, 2001).

• The Root Mean Square Error (RMSE):

The RMSE is also a measure of the average magnitude of the simulation

errors, according to the following formula:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Si −Oi)2 (5.2)

The RMSE ranges from 0 to ∞, 0 being the perfect score, and has the same

units as discharge.

Being a quadratic score, the RMSE gives a higher weight to larger errors.

Like the MAE, the RMSE does not indicate the direction of the deviation

(Koh and Ng, 2009; Sigbritt, 2001).

• The Mean Squared Error (MSE):

The MSE measures the mean squared difference between the simulations

and the observations according to the following formula:

MSE =
1

N

N
∑

i=1

(Si −Oi)
2 (5.3)

It ranges from 0 to ∞, 0 being the perfect score, and its units are the square

of the discharge.
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As well as the RMSE, this metric is a quadratic score, giving higher weight

to the larger errors. Like the MAE and the RMSE, the MSE does not indicate

the direction of the deviation (Koh and Ng, 2009).

• The Mean Error (ME):

The ME measures the average forecast error with the following formula:

ME =
1

N

N
∑

i=1

(Si −Oi) (5.4)

It ranges from -∞ to ∞, 0 being the perfect score, and has the same units as

discharge.

The ME indicates the direction of the deviations. A positive score signifies

that the total simulated discharge is overestimated; reciprocally, a negative

value suggests that the total simulated discharge is underestimated. Nonethe-

less, one has to be careful with this metric, as a perfect score does not suggest

a perfect simulation per se, errors might be compensating each other (Koh

and Ng, 2009).

Intercomparison framework

Based on the above graphical techniques and performance metrics, an intercompar-

ison framework was established in order to analyse specific characteristics of the

models simulations and relate those to models structures (for the following mod-

els: HBV-96 using the Kriging interpolation method and the wflow models). This

framework is structured in two main parts:

1. Overall statistical models performance assessment:

(a) Error magnitude:

i. Mean absolute error

ii. Root mean square error

iii. Mean square error

iv. Graphic of RMSE, MSE ranking versus MAE ranking

(b) Under or overestimation of total discharge:

i. Graphic of cumulative discharge timeseries

ii. Graphic of cumulative residual timeseries

iii. Mean error
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2. Model dynamics performance assessment: peakflows and low flows:

i. Graphic of simulated and observed discharge timeseries

ii. Graphic of discharge residual timeseries

iii. Graphic of simulated versus the observed discharge

This same framework was used to assess the effect of data transformation on model

simulations, by comparing the simulated discharge of the HBV-96 model based on

the Kriging interpolation method (HBV Kriging) with the HBV-96 model based on

the Regnie interpolation method (HBV Regnie).

As a result of the simulations performance assessment a higher simulated stream-

flow quality could be expect from the physically based distributed models (wflow hbv

and wflow sbm) in contrast to the lumped models (HBV-96 and wflow gr4).

5.3 Hindcasts

5.3.1 Data import and transformation

Prior to running the hindcasts, precipitation and temperature COSMO-LEPS data

were imported into the Delft-FEWS platform and interpolated according to the

Kriging interpolation method described previously (see Section 5.2.1).

Subsequently, the interpolated precipitation was perturbed in order to obtain fif-

teen different precipitation scenarios. These scenarios were obtained by adding

and multiplying the original COSMO-LEPS interpolated precipitation data with a

varying factor. These ensembles permitted the production of probabilistic hind-

casts.

5.3.2 Hindcasts execution

The hindcasts were executed for the four models (HBV-96, wflow sbm, wflow hbv

and wflow gr4) on an hourly basis, from the 5th of January 2011 at 1 am until the

20th of January at 1 am. The hindcasts were produced with a lead time of five

days.

5.3.3 Error correction

Furthemore, an error correction procedure was applied to the models hindcasts.

This correction procedure, called autoregressive (AR) error correction method, is
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an automatic algorithm that combines the simulated discharge, the observed dis-

charge and the forecast discharge time series of a specific location in order to up-

date the forecast discharge for each time step. By establishing the residual between

the observed and the forecast discharge, the so called model error, this algorithm

predicts the future error in order to correct for it (Minnet, 2014; Broersen and

Weerts, 2005).

5.3.4 Performance assessment

For an optimal determination and comparison of the models performance in for-

casting mode, a combination of two performance metrics, computed over the en-

tire hindcast period using the Ensemble Verification Software (EVS), were used

to analyse several quality attributes of the probabilistic forecasts(Brown et al.,

2010).

• The Mean Continuous Ranked Probability Skill Score (CRPSS):

The CRPSS is a measure of the ensemble skill. It computes the average

square error of a probability forecast for the entire time series according to

the following formula:

CRPSS =
CRPSREF − CRPSMAIN

CRPSREF

(5.5)

Where REF refers to the reference forecast and MAIN refers to the forecasts

to be evaluated. The EVS uses as default a sample climatology for the ref-

erence forecast. This sample climatology corresponds to the average of the

forecasts to be evaluated.

The CRPS is calculated as follows:

CRPS =
1

N

N
∑

i=1

∫ x=+∞

x=−∞

(F f
i (x)− F o

i (x))
2dx (5.6)

With,

N: the number of elements

F
f
i (x): the forecast probability cumulative distribution function for element

i

F o
i (x): the observation cumulative distribution function for element i

The CRPSS ranges from -∞ to 1, 1 being the best score, and does not have

any units. If the CRPSS is negative, it signifies that the reference fore-

27



casting system gives a better forecast discharge than the forecasting model

(Brown et al., 2010; Sigbritt, 2001).

The CRPSS gives indications regarding the limits of predictability of a

forecasting system (when this one reaches a score of 0) as well as it is a

measure of the reliability, of the resolution and of the uncertainty of the

considered hindcasts (CRPSS = reliability+resolution−uncertainty).

Where reliability defines the degree of agreement between the frequency of

occurrence of an event and the forecast probability; resolution refers to the

ability of the forecast to resolve a set of observed events into subsets with

different frequency distributions; and uncertainty is the distribution of the

observed discharge (Sigbritt, 2001; Koh and Ng, 2009).

• The forecast errors by observed value:

The forecast errors are a measure of the ensemble distribution. They are

measured according to the following method.

Firstly, for each observed value, the hindcasts ensembles are pooled in ten

different bins, defined by deciles of forecast probability (from 0 to 1). There-

after, for each bin, the forecast error is calculated by substracting the ob-

served discharge from the ensemble member and plotted against the ascend-

ing observed discharge.

This graphic displays the ensemble distribution of the errors between the

hindcast discharges and the observed discharges, shown by the vertical spread

of the forecast errors; as well as it gives an overview on the ensemble mean

of the hindcasts (over or underestimation of the observed flow).

Intercomparison framework

An intercomparison framework was established on the previously described met-

rics. This was done in order to assess and compare the forecasting performance

of the HBV, wflow gr4, wflow hbv and wflow sbm models (with and without

the error correction algorithm). This framework is here again structured in two

parts:

1. Ensemble skill:

i. Graphic of the CRPSS

2. Ensemble distribution:

i. Graphic of the forecast errors by observed value

Considering that the HBV-96 model is used operationally within the Delft-FEWS

platform, with the previously described error correction procedure, for flood fore-

casting at Deltares a higher quality of hindcasts could be expected from the latter
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model. The other models not being used at all operationally, or not as thus in the

case of the wflow gr4 model (see Section 3.2).

The conjunction of models performance assessment in simulation mode and in

forecasting mode thus enabled the creation of a complete picture of the models’

behaviour.
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Chapter 6

Results

6.1 From GR4H to wflow gr4

The implementation of the wflow gr4 model within the wflow platform is presented

on the following website: http://schj.home.xs4all.nl/html/.

Creation of the parameters - Calibration

A set of parameters was obtained for each Meuse subcatchment previously se-

lected, according to the calibration procedure described in Section 5.1 (see Table

6.1).

As seen in the following Table, the calibration was performed on different pe-

riods of time for each subcatchment, depending on the forcing data availabality.

For the Ourthe in Tabreux, a calibration period overlapping the simulation period

was selected due to the unavailability of hourly data for this subcatchment prior to

2002.

The calibration gave high Nash-Sutcliffe coefficients, the lowest result being of

0.87 for the Ourthe in Tabreux. The calibration results are illustrated with plots of

simulated and observed discharge for the run calibration period, presented in the

Appendix G (Figures G.1 to G.5).
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Table 6.1: Calibration periods and parameters used in the wflow gr4 model for the

five sub-catchments

Calibration period Calibration parameters

Sub-basin name Warm up Run
X1

(mm)

X2

(mm)

X3

(mm)

X4

(hour)
NSE

The Semoy in Haulmé 1995 - 1996 1996 - 2005
156.8

0.33
212.7

51.2 0.89

The Chiers in Carignan 1995 - 1996 1996 - 2005
357.8

-0.2
225.9

43.8 0.9

The Meuse in Saint-Mihiel 1987 - 1997 1997 - 2007
257.8

-0.53
171.8

93.5 0.89

The Ourthe in Tabreux 2002 - 2005 2005 - 2011
143.3

-0.77
270.4

23.2 0.87

The Meuse in Stenay 1987 - 1997 1997 - 2007
268.9

-0.66 307
152.6

0.92

6.2 Simulations

In this section, the models simulations obtained for each sub-basin with the four

different models (HBV with the Kriging and the Regnie interpolation methods,

wflow gr4, wflow hbv and wflow sbm) will be analysed according to the inter-

comparison framework described in Section 5.2.3.

6.2.1 Overall statistical model performance assessment

Error magnitude

Looking at Table 6.2, presenting the mean absolute errors based on the model sim-

ulations for the five sub-basins, the following observations can be made.

On average, the wflow gr4 and the HBV Regnie models give the lowest mean

absolute error, while the wflow hbv model shows the highest mean absolute er-

ror.

Therefore, the wflow gr4 and the HBV Regnie models produced overall a sim-

ulated discharge closer to the observed discharge than the other models and the

wflow hbv model gave a simulated discharge further off from the observed dis-

charge than the other models.

Furthermore, we can conclude that the HBV-96 simulations with the Regnie inter-

polation method are in most cases closer to the observed discharge than the HBV

Kriging simulations.
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Table 6.2: Mean absolute error in m3/s from Equation 5.1 for the different models

Sub-basins
HBV

Kriging

HBV

Regnie
wflow gr4 wflow hbv wflow sbm

The Meuse in Saint-Mihiel 12.5 10.6 11.8 19.0 13.1

The Meuse in Stenay 19.1 15.2 15.5 25.1 17.5

The Chiers in Carignan 7.0 7.4 9.9 17.9 12.2

The Semoy in Haulmé 11.7 10.9 8.5 9.9 15.2

The Ourthe in Tabreux 7.4 6.3 6.3 13.1 8.0

Subsequently, by comparing the root mean square errors (Table 6.3) and the mean

square errors (Table 6.4) with the mean absolute errors (Table 6.2), further conclu-

sions can be made regarding the error magnitude of the simulations for each model

and each sub-basin (Figure 6.1).

Figure 6.1 compares the ranking of each model for the RMSE, MSE and the MAE

criteria. Overall, we can conclude that the wflow sbm model made errors of large

magnitude as it plots high on the RMSE, MSE ranking. On the contrary, the

wflow gr4 and the HBV Regnie models are on average relatively low on the RMSE,

MSE ranking; suggesting that they made errors of smaller magnitude than the other

models.

Table 6.3: Root mean square error in m3/s from Equation 5.2 for the different

models

Sub-basins
HBV

Kriging

HBV

Regnie
wflow gr4 wflow hbv wflow sbm

The Meuse in Saint-Mihiel 24.3 20.9 19.4 24.6 26.1

The Meuse in Stenay 31.7 26.1 25.5 35.7 32.3

The Chiers in Carignan 12.5 12.4 14.0 21.4 18.8

The Semoy in Haulmé 21.6 19.7 18.8 18.4 29.2

The Ourthe in Tabreux 14.8 12.2 11.7 18.2 25.3

Table 6.4: Mean square error in m6/s2 from Equation 5.3 for the different models

Sub-basins
HBV

Kriging

HBV

Regnie
wflow gr4 wflow hbv wflow sbm

The Meuse in Saint-Mihiel 590.5 436.6 374.5 603.3 681.4

The Meuse in Stenay 1004.3 680.8 651.2 1275.3 1041.8

The Chiers in Carignan 155.8 153.6 196.6 459.9 354.6

The Semoy in Haulmé 466.9 386.4 353.9 337.5 855.2

The Ourthe in Tabreux 220.1 149.9 137.4 329.7 642.3
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(a) The Meuse in Saint-Mihiel (b) The Meuse in Stenay

(c) The Chiers in Carignan (d) The Semoy in Haulmé

(e) The Ourthe in Tabreux

Figure 6.1: Plots of the RMSE/MSE ranking versus the MAE ranking
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Under- or overestimation of total discharge

From the figures of the cumulative discharge and the cumulative residual (Figures

H.1 to H.5, Appendix H), as well as the mean error table (Table 6.5), the overall

under- or overestimation of total discharge can be identified for each model and

each sub-basin.

The HBV-96 model simulations, both with the Kriging and the Regnie transfor-

mation methods, show negative mean error values for all sub-basins except for

the Chiers in Carignan, suggesting that they underestimated the total discharge for

those four sub-catchments for which they present a negative mean error.

The wflow gr4 model and the wflow sbm model show similar results. The total

simulated discharge was underestimated for the Meuse in Saint-Mihiel, the Meuse

in Stenay and the Semoy in Haulmé, for which they both present negative mean

errors; and overestimated for the Chiers in Carignan and the Ourthe in Tabreux,

presenting positive mean error values.

Finally, the wflow hbv model displays large positive mean error values for all sub-

basins except for the Semoy in Haulmé. This model therefore overestimated largely

the total discharge for all the sub-basins, except for the Semoy in Haulmé for which

it underestimated it slightly. Overall, the wflow hbv model shows the largest over-

or underestimations of total discharge.

Given the positive mean error values for the Chiers in Carignan, surpisingly all the

models show an overestimation of the total discharge for this sub-basin.

Table 6.5: Mean error in m3/s from Equation 5.4 for the different models

Sub-basins
HBV

Kriging

HBV

Regnie
wflow gr4 wflow hbv wflow sbm

The Meuse in Saint-Mihiel -6.8 -4.0 -0.4 12.3 -1.4

The Meuse in Stenay -14.4 -10.2 -4.2 14.3 -6.4

The Chiers in Carignan 2.2 4.1 8.8 16.7 8.5

The Semoy in Haulmé -9.8 -8.6 -1.9 -0.6 -4.4

The Ourthe in Tabreux -1.0 -3.7 2.2 10.2 2.6

6.2.2 Model dynamics performance assessment: peakflows and low

flows

A close look at model simulations will be carried out in order to identify the pat-

terns in under or overestimation of total discharge for each model by characterising

their behaviour during high and low flows respectively. For this purpose, the sim-

ulations for the Meuse in Saint-Mihiel were used as representative for the general

model performances.
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HBV Kriging model simulations results

From Figure 6.2a, presenting the observed and the simulated discharge timeseries

of the HBV Kriging model for the Meuse in Saint-Mihiel, a general picture of this

model behaviour during both high flows and low flows can be drawn. In a first

place, it can be seen that the overall observed discharge dynamic was seemingly

well captured by the HBV Kriging model. Nonetheless, several dissimilarities be-

tween the modelled and the observed discharge are distinguishable. For the last

four low flow events shown in Figure 6.2a, from the year 2009 until the year 2012

included, the HBV Kriging model produced a slightly higher discharge than the

observed discharge. This suggests that this model tends to overestimate low flows.

Moreover, all the observed peakflows present in Figure 6.2a show a simulated dis-

charge lower than the observed discharge. This is especially noticeable for the

three high flow extreme events of the year 2011 until 2013 included. The HBV

Kriging model therefore appears to be underestimating high flows.

Figure 6.2b depicts the discharge residual of the HBV Kriging model for the Meuse

in Saint-Mihiel. When correlating the results given by the latter figure with the re-

sults previously described of Figure 6.2a, a complete image of the HBV Kriging

model behaviour during high and low flows, as well as the magnitude of the under-

and overestimations made by the model can be obtained. Several positive residual

peaks, ranging from 100 m3/s until 2010, to around 250 m3/s for the last three years

of simulations (2010 to 2013), can be appreciated in Figure 6.2b, corresponding to

the high flow events of Figure 6.2a. This suggests that the HBV Kriging model

underestimated the discharge during those peakflow events. Furthermore, a large

negative residual peak reaching a value of approximately -200 m3/s can be distin-

guished at the end of the year 2011, signifying that the model overestimated the

observed discharge for this specific event. This might be due to the timing of the

peak, indeed, the model simulated a peak either too early or too late compared to

the observed peak. Regarding low flows, marginally negative residual values are

observable in Figure 6.2b, corresponding to the low flow events of Figure 6.2a,

suggesting a slight overestimation of the observed discharge by the HBV Kriging

model during low flow conditions.
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(a) Simulated and observed discharge timeseries

(b) Discharge residual timeseries, Qobs −Qsim

Figure 6.2: HBV Kriging model results for the Meuse in Saint-Mihiel. (a) Simu-

lated and observed discharge timeseries. (b) Discharge residual timeseries

Figure 6.3 presents the simulated versus the observed discharge for the HBV Krig-

ing model for the Meuse in Saint-Mihiel. The discharge corresponding to low flow

events appear to be plotting imperceptibly above the one to one line on the latter

figure. This indicates that the HBV Kriging model slightly overestimated the dis-

charge during observed low flow conditions. The larger the discharge becomes,

the broader the scatterplot appears on Figure 6.3, suggesting that the HBV Krig-

ing model made larger errors for higher discharges. Nonetheless, this scatterplot

is positioned principally underneath the one to one line, which shows a tendency

of the model to underestimate high flows. Three striking dotted lines, appearing

under the one to one line, correspond to high underestimations of peakflow events

by the model. These might be correlated to the three last extreme peakflow events

depicted in Figure 6.2a, which were underestimated by the HBV Kriging model.

Additionally, a striking peak can be appreciated above the one to one line, reaching
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a simulated discharge of about 320 m3/s while the observed discharge was approx-

imately 100 m3/s. This event was thus overestimated by the model and can be

linked to the highly negative residual peak observed in Figure 6.2b and associated

to a timing error of the discharge peak.

Figure 6.3: Simulated versus observed discharge of the HBV Kriging model for

the Meuse in Saint-Mihiel

Looking at the discharge simulations for the event of January 2011 (Figure 6.4),

an important event in the River Meuse flooding history, the previously described

HBV Kriging simulation characteristics can be observed. Indeed, the dynamics of

low flows was well captured by the HBV Kriging model. Nonetheless, the model

appears to have overestimated the discharge slightly during low flow conditions.

Furthermore, the peakflows were all underestimated by the model for this specific

event, combined with a small underestimation of the peaks time lag.
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Figure 6.4: Simulated and observed discharge event, HBV Kriging model for the

Meuse in Saint-Mihiel

HBV Regnie model simulations results

Figure 6.5a illustrates the simulated and the observed discharge timeseries of the

HBV Regnie model for the Meuse in Saint-Mihiel. Based on this figure, the ob-

served discharge dynamics appear to be well captured by the model, especially

for the low flows, where only small discrepancies can be seen between the sim-

ulated and the observed discharge from 2009 until 2013. Contrastingly, almost

all peakflows were underestimated by the HBV Regnie model, except for a singu-

lar peakflow event situated at the beginning of the year 2008. Similar discharge

characteristics were highlighted by Figure 6.2a for the HBV Kriging model simu-

lations.

By correlating Figure 6.5b, depicting the discharge residual timeseries of the HBV

Regnie model for the Meuse in Saint-Mihiel, with Figure 6.5a, positive discharge

residuals corresponding to observed peakflows on Figure 6.5a are appearent. These

residuals range from approximately 100 m3/s until 2010, to about 250 m3/s for the

last three years of simulations, 2010 to 2013, and correspond to an underestimation

of the observed peakflows by the HBV Regnie model. These results are similar to

the results for the HBV Kriging model shown in Figure 6.2b. Interestingly, a neg-

ative residual of about -200 m3/s can also be observed at the end of the year 2011,

during a high flow event, which was also observed for the HBV Kriging model
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(Figure 6.2b) and can as thus be associated to an overestimation of the simulated

discharge by the HBV Regnie model due to an error in the timing of the peak by

the latter. Additionally, two similar negative residuals of lower magnitude than

the previous one can be seen at the beginning of the year 2007 and at the end of

2010, reaching values of approximately -110 m3/s and -80 m3/s respectively. These

peaks correspond to an overestimation of the observed discharge due to a timing

error of the peakflow and were not present for the HBV Kriging model (Figure

6.2b). Therefore, the HBV Regnie model appears to have a higher tendency of

time lag under- or overestimation than the HBV Kriging model does. Based on

Figure 6.5b, slightly negative residual discharge values can be distinguished and

attributed to the low flow periods in Figure 6.5a. The latter observation suggests,

such as for the HBV Kriging model, a small overestimation of the observed low

flows by the HBV Regnie model.

(a) Simulated and observed discharge timeseries

(b) Discharge residual timeseries, Qobs −Qsim

Figure 6.5: HBV Regnie model results for the Meuse in Saint-Mihiel. (a) Simu-

lated and observed discharge timeseries. (b) Discharge residual timeseries
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Figure 6.6 presents the simulated versus the observed discharge of the HBV Regnie

model for the Meuse in Saint-Mihiel. In this figure, the low flows plot impercepti-

bly above the one to one line, supporting the previous observations about the slight

overestimation of low discharges by the HBV Regnie model, similarly to the HBV

Kriging model. Moreover, the width of the scatterplot appears to get broader to-

wards higher observed flows, while it situates itself under the one to one line. This

indicates a larger magntiude of the discrepancies between the simulated and the

observed discharge for high flows as well as the tendency to underestimate the lat-

ter, as pointed out previously. Nevertheless, this scatterplot is situated closer to

the one to one line than the scatterplot corresponding to the HBV Kriging model

and illustrated in Figure 6.3. Thus, the HBV Kriging model underestimated high

discharges more largely than the HBV Regnie model did. The same peaks are

hereafter noticeable under the one to one line, for extremely high discharge events,

as were observed for the HBV Kriging model (Figure 6.3). These correspond to

the underestimated peakflows by the HBV Regnie model presented in Figure 6.5a.

Furthemore, several peaks appear above the one to one line, the largest reaching

a simulated discharge of about 280 m3/s, while the observed discharge approxi-

mated 100 m3/s. These peaks can be associated to the negative residuals illustrated

in Figure 6.5b, where the HBV Regnie model overestimated the observed flow.

This overestimation, also highlighted by Figure 6.3 for the HBV Kriging model, is

nonetheless lower for the HBV Regnie model.

Figure 6.6: Simulated versus observed discharge of the HBV Regnie model for the

Meuse in Saint-Mihiel

Figure 6.7 shows an observed and simulated discharge event by the HBV Krig-

ing and Regnie models, for the Meuse in Saint-Mihiel. This figure illustrates all

the previous comparative results of the HBV Kriging and Regnie simulations char-

acteristics. Indeed, while the discharge dynamics was similarly well captured by

both models and while both models equally marginally overestimated low flows;

the HBV Kriging model appears to have underestimated peakflows more largely
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than the HBV Regnie model did. This was found in Section 6.2.1, where the HBV

Regnie model produced less errors and of lower magnitude on average than the

errors produced by the HBV Kriging model, suggesting that the latter model made

larger more frequent errors, corresponding to discrepancies between observed and

simulated discharge during peakflows.

Figure 6.7: Simulated and observed discharge event, HBV Kriging and Regnie

models for the Meuse in Saint-Mihiel

wflow gr4 model simulations results

Figure 6.8a presents the wflow gr4 model simulated discharge and the observed

discharge timeseries for the Meuse in Saint-Mihiel. Based on this figure, the

wflow gr4 model simulations present a similar dynamic to the observed discharge.

Nonetheless, this model overestimated all the low flow events, while all the peak-

flows were underestimated, simlarly to the HBV Kriging and Regnie models.

As shown by the discharge residual timeseries of the wflow gr4 model for the

Meuse in Saint-Mihiel (Figure 6.8b), positive residual values, ranging from ap-

proximately 100 m3/s until 2010 to 250 m3/s from 2011 to 2013, similarly to the

HBV models simulations (Figures 6.2b and 6.5b), correspond to high observed dis-

charges present in Figure 6.8a. This suggests that the wflow gr4 model underesti-

mated high flow events with the same approximate magnitude as the HBV models.
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A large negative residual of approximately -50 m3/s can as well be observed at the

end of the year 2011 on Figure 6.8b, during a peakflow event presented in Figure

6.8a. The latter was also observed, with a nonetheless larger magnitude, for the

HBV models simulations (Figures 6.2b and 6.5b). It could be due here again to an

overestimation of the observed flow by the wflow gr4 model due an over- or under-

estimation of the peak time lag. Moreover, Figure 6.8b displays negative residual

values of around -10 m3/s on average, that can be associated to the overestima-

tion of low flows by the wflow gr4 model. These negative values are larger than

the values observed for the HBV models (Figures 6.2b 6.5b), indicating that the

wflow gr4 model made larger errors for low flows than the latter models.

(a) Simulated and observed discharge timeseries

(b) Discharge residual timeseries, Qobs −Qsim

Figure 6.8: wflow gr4 model results for the Meuse in Saint-Mihiel. (a) Simulated

and observed discharge timeseries. (b) Discharge residual timeseries

Figure 6.9 illustrates the simulated versus the observed discharge of the wflow gr4

model for the Meuse in Saint-Mihiel. Low flows plot above the one to one line,

more perceptibly than the HBV models simulations (Figures 6.3 and 6.6), sug-
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gesting, as stated above, that the wflow gr4 model overestimated low flows more

largely than the HBV models did. Contrastingly, high observed flows are situated

under the one to one line, illustrating the wflow gr4 model tendency to underesti-

mate high flows, as seen in Figures 6.8a and 6.8b. Singular peaks plotting under

the one to one line, corresponding to high observed discharge values, correspond

to the extremely high discharge events underestimated by the wflow gr4 model.

These characteristics were also noted for the HBV models (Figures 6.3 and 6.6).

Furthermore, an isolated event can be seen above the one to one line, reaching

a simulated discharge of about 180 m3/s where the observed discharge reached

a value of approximately 130 m3/s. This event can be correlated to the negative

residual pointed out in Figure 6.8b. The latter corresponds to the same observed

event as the one overestimated by the HBV models and attributed to an under- or

overestimation of the observed peak time lag. Nevertheless, it appears as an iso-

lated event for the wflow gr4 model, and of lower magnitude than for the HBV

models simulations, where this appeared more frequently.

Figure 6.9: Simulated versus observed discharge of the wflow gr4 model for the

Meuse in Saint-Mihiel

Based on the following figure, Figure 6.10, presenting an observed peakflow event

simulated by the wflow gr4 model for the Meuse in Saint-Mihiel, the previously

stated characteristics of the wflow gr4 model simulations can be observed. Low

flows were overestimated by the wflow gr4 model, more significantly than by the

HBV models (Figure 6.7) and peakflows were underestimated by the model, such

as for the HBV models (Figure 6.7). Nevertheless, the discharge event situated in

November 2010 was almost fully grasped by the wflow gr4 model. Additionally,

while the discharge dynamics appeared well captured by the wflow gr4 model in

Figure 6.8a, a contrasting result can be observed hereafter. Indeed, the simulated

discharge appears smoothed, while during high flows it exhibits a characteristic

bell-shape distribution.
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Figure 6.10: Simulated and observed discharge event, wflow gr4 model for the

Meuse in Saint-Mihiel

wflow hbv model simulations results

The prevailing information contained in Figure 6.11a depicts the tendency of the

wflow hbv model simulations during high and low flows for the Meuse in Saint-

Mihiel. From the latter figure, a high overestimation of the low flows by the

wflow hbv model can be distinguished, coupled to an underestimation of high

flows.

From Figure 6.11b, presenting the discharge residual timeseries of the wflow hbv

model for the Meuse in Saint-Mihiel, positive residual peaks of approximately 100

m3/s until 2010 (included) and of about 220 m3/s and 190 m3/s at the end of the

year 2010 and at the beginning of the year 2013 respectively, can be observed.

These positive values correspond to peakflow events present in Figure 6.11a and

therefore suggest that the wflow hbv model underestimated those peakflows. Nev-

ertheless, those positive residuals presented in Figure 6.11b, display, on average,

a lower magnitude than for the previously described models (the HBV and the

wflow gr4 models). This indicates that the wflow hbv model underestimated the

discharge for peakflow events less than the latter models. Furthermore, a large neg-

ative residual peak can be observed at the end of the year 2011, reaching a value of

approximately -230 m3/s. The same peak was observed for the HBV models and

the wflow gr4 model, but appears of higher magnitude for the wflow hbv model,

45



and could be attributed to an overestimation of the observed flow due to an over-

or underestimation of the peak time lag by this model. Additionally, an average

negative residual of -50 m3/s can be remarked, corresponding to the observed low

flows of Figure 6.11a. This implies a large overestimation of low flow discharges

by the wflow hbv model, greater than for the HBV and the wflow gr4 models, as

indicated by the negative residual average.

(a) Simulated and observed discharge timeseries

(b) Discharge residual timeseries, Qobs −Qsim

Figure 6.11: wflow hbv model results for the Meuse in Saint-Mihiel. (a) Simulated

and observed discharge timeseries. (b) Discharge residual timeseries

Figure 6.12 displays the simulated versus the observed discharge for the wflow hbv

model for the Meuse in Saint-Mihiel. Low flows appear significantly above the

one to one line, conveying a characteristical large overestimation of low observed

flows by the wflow hbv model. For high observed flows, data tend to be positioned

slightly below the one to one line, suggesting an underestimation of high discharges

by the wflow hbv model. Large peaks are appearant under the one to one line, for

high observed discharges, and correspond to peakflow events underestimated by
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the wflow hbv model. Similar peaks were detected for the HBV and the wflow gr4

models (Figures 6.3, 6.6 and 6.9). In addition, a peak can be observed above the

one to one line, reaching a simulated discharge of approximately 340 m3/s for an

observed discharge of 100 m3/s. This discharge overestimation by the wflow hbv

model could be associated to the large negative residual noticed in Figure 6.11b at

the end of the year 2011.

Figure 6.12: Simulated versus observed discharge of the wflow hbv model for the

Meuse in Saint-Mihiel

Figure 6.13 exposes the previously stated characteristics of the wflow hbv model

simulations for the Meuse in Saint-Mihiel. Indeed, while low flows were largely

overestimated by the wflow hbv model, high flows appear underestimated by the

latter. Nevertheless, the observable peakflows of this specific event were captured

slightly more completely than they were by the HBV and the wflow gr4 mod-

els.
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Figure 6.13: Simulated and observed discharge event, wflow hbv model for the

Meuse in Saint-Mihiel

wflow sbm model simulation results

From Figure 6.14a, the simulated and the observed discharge timeseries for the

Meuse in Saint-Mihiel, an outline of the wflow sbm model behaviour during high

and low flows can be drawn. Based on this figure, the wflow sbm model did not

appear to capture the observed discharge dynamics. The simulated low flows ex-

hibit peaks where no peaks were observed, while peakflows were underestimated

by the wflow sbm model.

Figure 6.14b presents the discharge residual timeseries of the wflow sbm model

for the Meuse in Saint-Mihiel. From the latter figure, positive residual discharges

ranging from 100 m3/s to approximately 320 m3/s are observable. These residuals

can be correlated to the peakflows presented in Figure 6.14a and thus imply an

underestimation of those peakflows by the wflow sbm model. According to this

postive residuals range, the wflow sbm model displayed the highest underestima-

tion of high flows compared to all the previously described models. Furthermore,

multiple singular negative residual peaks, comprised between 0 and -100 m3/s,

on average, are existent. These negative peaks appear during low observed flows,

suggesting that the wflow sbm model overestimated low flows in a non system-

atic manner, as seen in Figure 6.14a. Larger negative residuals can be seen from

the end of the year 2011 until the end of the simulations. These peaks range from
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nearly -150 m3/s to -250 m3/s and can be associated to an overestimation of the ob-

served discharge. The peak present at the end of the year 2011 was also observed

for the previously described models (Figures 6.2b, 6.5b, 6.8b and 6.11b) and could

be associated, similarly to the other models, to an under- or overestimation of the

peak lag time. Moreover, the negative residual peak with a corresponding value of

around -250 3/s, observed during observed low flows of the summer 2012, seems

to be a simulation error.

(a) Simulated and observed discharge timeseries

(b) Discharge residual timeseries, Qobs −Qsim

Figure 6.14: wflow sbm model results for the Meuse in Saint-Mihiel. (a) Simulated

and observed discharge timeseries. (b) Discharge residual timeseries

From Figure 6.15, displaying the simulated versus the observed discharge for the

wflow sbm model for the Meuse in Saint-Mihiel, characteristical features of this

model simulations can be observed. The figure shows a large spread of the dis-

charge data, with low observed discharges plotting above the one to one line and

high observed discharges plotting predominantly under the one to one line. This

denotes a tendency of the wflow sbm model to overestimate low flows and to un-
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derestimate high flows in a non regular manner. Singular peaks can be appreciated

above the one to one line and can be associated to the negative residual peaks in

Figure 6.14b, corresponding to overestimations of the observed discharge. More-

over, peaks can as well be noticed under the one to one line for high observed

discharges, similarly to the other models simulations results (Figures 6.3, 6.6, 6.9

and 6.12) and correspond to the underestimation of peakflows previously seen in

Figure 6.14b, characterised by postive residuals.

Figure 6.15: Simulated versus observed discharge of the wflow sbm model for the

Meuse in Saint-Mihiel

From Figure 6.16, a simulated and observed event for the wflow sbm model for the

Meuse in Saint-Mihiel, features of the wflow sbm model simulations can be appre-

hended. Indeed, this model produced very dynamic simulations, particurly for low

observed flows, during which singular peaks were simulated by the wflow sbm

model and led to an average overestimation of the low flows by this model. Fur-

thermore, the peakflow events were largely underestimated by the model and a

distinct underestimation of the time lag for peaks can be seen.
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Figure 6.16: Simulated and observed discharge event, wflow sbm model for the

Meuse in Saint-Mihiel

For the HBV Kriging, HBV Regnie, wflow gr4 and wflow sbm models, the com-

bination of the underestimation of high flows and the overestimation of low flows

clarified the overall underestimation of total discharge seen in Section 6.2.1. Re-

garding the wflow hbv model, the overall overestimation of total discharge (Sec-

tion 6.2.1) can be explained by the slight underestimation of high flows and the

large overestimation of low flows.

The Meuse in Saint-Mihiel was used as representative for the general models’

dynamics in this Section. Nonetheless, contrasting results were obtained for the

Chiers in Carignan, for which all the models overestimated the total discharge.

6.3 Hindcasts

In this section, hindcasts, produced for each sub-basin by the four different models,

will be analysed according to the models ensemble skill and distribution.

Figure 6.17 shows the ensemble hindcasts obtained for the Chiers in Carignan with

the HBV model without error correction, as an example of the hindcasts produced

during this research. Based on this Figure, the HBV model hindcasts ensemble plot
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majoritarily above the observed discharge, signifying that the HBV model overes-

timated the discharge for this specific event for the Chiers in Carignan.

Figure 6.17: HBV ensemble hindcasts (without error correction) for the Chiers in

Carignan

6.3.1 Ensemble skill analysis

In a first part, the models overall performance in forecasting mode will be exam-

ined. And the effect of the error correction on the limits of their ability to predict a

given event will be displayed.

Hindcasts without error correction

Looking at the figures presenting the CRPSS for each model by forecast lead

time (Figure 6.18), we can observe that all the models show on average a nega-

tive CRPSS, especially for the Meuse in Stenay, suggesting that they present a

poor resolution, as well as a poor reliability and a high uncertainty. Moreover, sev-

eral patterns could be detected when comparing the models performances. Indeed,

the wflow hbv model displays the highest CRPSS for the Meuse in Saint-Mihiel

(Figure 6.18a) and the Meuse in Stenay (Figure 6.18b). Whereas the HBV model

presents the highest CRPSS for the Semoy in Haulmé (Figure 6.18d) as well as
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the Ourthe in Tabreux (Figure 6.18e). These models therefore produced the hind-

casts with the highest ensemble skill for the respective sub-basins.

Contrastingly, the wflow sbm model exhibits the lowest CRPSS for most of the

sub-basins, excluding the Chiers in Carignan. Hence, this model generated the

hindcasts with the lowest ensemble skill overall.

Additionally, the wflow gr4 model demonstrates a medium CRPSS for all the

sub-basins, compared to the other three models.

The Chiers in Carignan displayed divergent results from the other sub-basins in

the sense that the wflow gr4 model presents the highest CRPSS for this sub-

basin. Furthermore, whereas the wflow hbv and the HBV models display the high-

est CRPSS for the other sub-basins, they exhibit the lowest CRPSS, on average,

for the Chiers in Carignan.

Investigating the CRPSS evolution with increasing lead time, no trend is observ-

able. Indeed, a tendency of decreasing ensemble skill with lead time, shown by the

decreasing CRPSS, would have been expected. Nonetheless, this tendency can

only be appreciated for two sub-basins, being the Semoy in Haulmé and the Ourthe

in Tabreux.
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(a) The Meuse in Saint-Mihiel (b) The Meuse in Stenay

(c) The Chiers in Carignan (d) The Semoy in Haulmé

(e) The Ourthe in Tabreux

Figure 6.18: Plots of the CRPSS from Equation 5.5 with lead time
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Hindcasts with error correction

When comparing the hindcasts ensemble skills for all the models and all the sub-

basins selected without and with error correction, a clear improvement can be dis-

tinguished for the hindcasts presenting an error correction procedure. Indeed, up

to two days lead time, most models with an error correction presented a positive

CRPSS (Figure 6.19). This suggests that all the models reliably predicted an ob-

served discharge two days in advance. Additionally, a decrease of the CRPSS

with increasing lead time, and thus of the ensemble skill, is appreciable on Fig-

ure 6.19 for the models with an error correction algorithm. This trend was not

observable for the models without the error correction procedure.

From the time of predictability of each model (last lead time for which the model

presents a positive CRPSS), an average predictability limit could be computed for

each model. On this basis, the HBV model showed the highest predictability limit,

being able to forecast an event with approximately three and a half days lead time

on average. The wflow hbv and the wflow gr4 models followed with predictability

limits of on average slightly higher and slightly lower than three days lead times,

respectively. As for the wflow sbm model, it could predict events skillfully with a

lead time of approximately two days on average, as indicated by Figure 6.19.
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(a) The Meuse in Saint-Mihiel (b) The Meuse in Stenay

(c) The Chiers in Carignan (d) The Semoy in Haulmé

(e) The Ourthe in Tabreux

Figure 6.19: Plots of the CRPSS from Equation 5.5 with lead time, models with

error correction
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6.3.2 Ensemble distribution analysis

Hindcasts without error correction

Figures 6.20a to 6.21b display the forecast errors versus the observed discharge,

for a twenty-four hours lead time, for four of the five sub-basins studied. The

Chiers in Carignan exposed contrasting results from the other sub-catchments in

Section 6.3.1, hence it was excluded from the ensemble distribution analysis. The

following figures, providing informations on the hindcasts sharpness and errors,

is an attempt towards the determination of the origin of the results presented in

Section 6.3.1. From the latter, the models ensemble mean can be assessed. It can

be seen that, overall, the models tend towards a negative forecast error, implying

that they underestimated the observed discharge.

Figures 6.20a and 6.20b expose the forecast errors versus the observed discharge

for a lead time of twenty-four hours for the Meuse in Saint-Mihiel and the Meuse

in Stenay respectively. From these figures, it can be observed that the wflow hbv

model presents forecast errors overall closer to zero than the other models, es-

pecially appreciable with increasing observed discharges. This signifies that the

wflow hbv model produced hindcasts closer to the observed discharge for the Meuse

in Saint-Mihiel and the Meuse in Stenay than the other models did, as was previ-

ously seen in Section 6.3.1 with the ensemble skill analysis. Furthermore, the

spread in forecast errors for the wflow hbv model, represented by the vertical lines

in the following figures, appears to be relatively small, suggesting, to a certain

extent, a high sharpness of its hindcast ensembles.

Considering the Meuse in Saint-Mihiel and the Meuse in Stenay (Figures 6.20a

and 6.20b respectively), the wflow sbm model produced the largest forecast errors

for the latter, errors augmenting with increasing observed discharges. Likewise,

this model displays the highest spread in forecast errors, indicating a very low

sharpness of its hindcast ensembles. These observations are consistent with the low

ensemble skill presented by the wflow sbm model for the Meuse in Saint-Mihiel

as well as for the Meuse in Stenay (Section 6.3.1).

The HBV and the wflow gr4 models produced hindcasts with an average error

range and ensemble distribution when comparing them with the hindcasts produced

by the wflow hbv and the wflow sbm models for the Meuse in Saint-Mihiel and

the Meuse in Stenay. Similar results were observed in Section 6.3.1, in the sense

that the HBV and the wflow gr4 models did not strike as being the best nor the

worst models for those two sub-basins, regarding ensemble skill. Strikingly, the

wflow gr4 forecast errors spread appears to be surprisingly low for the Meuse in

Saint-Mihiel and the Meuse in Stenay, suggesting a high sharpness of its hindcast

ensembles.
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(a) The Meuse in Saint-Mihiel (b) The Meuse in Stenay

Figure 6.20: Forecast errors versus observed discharge, 24 hours lead time, for (a)

the Meuse in Saint-Mihiel, (b) the Meuse in Stenay

Figures 6.21a and 6.21b expose the forecast errors versus the observed discharge

for a lead time of twenty-four hours for the Semoy in Haulmé and the Ourthe in

Tabreux respectively. For those sub-catchments, the HBV model presents forecast

errors closer to zero than the other models, mostly appreciable for high observed

discharges. This implies that the hindcasts produced by the HBV model for those

sub-catchments were closer to the actual observed discharge than the hindcasts

produced by the other models, as was observed in Section 6.3.1. Furthermore,

the HBV model forecast errors present a relatively low spread, suggesting a high

sharpness of this model’s forecast ensembles.

As for the Meuse in Saint-Mihiel and the Meuse in Stenay (Figures 6.20a and

6.20b), the wflow sbm model shows the highest forecast errors as well as the

largest spread of the latter for the Semoy in Haulmé and the Ourthe in Tabreux.

Based on its ensemble distribution anaysis, combined with its ensemble skill anal-

ysis (Section 6.3.1), the wflow sbm model produced the least reliable ensemble

forecasts for those four sub-catchments studied.

For the sub-basins depicted in Figures 6.21a and 6.21b, the wflow hbv and the

wflow gr4 models generated hindcasts with an average error range and ensemble

distribution, when compared to the HBV and the wflow sbm models hindcasts.

The same information was conveyed by Figures 6.18d and 6.18e in Section 6.3.1,

where both models exhibited an average ensemble skill for the Semoy in Haulmé

and the Ourthe in Tabreux.
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(a) The Semoy in Haulmé (b) The Ourthe in Tabreux

Figure 6.21: Forecast errors versus observed discharge, 24 hours lead time, for (a)

the Semoy in Haulmé, (b) the Ourthe in Tabreux

Hindcasts with error correction

Figures 6.22 to 6.26 present the forecast errors by observed discharge, for a twenty-

four hours lead time, for all the models and all the sub-basins without and with the

error correction algorithm. These figures promote the investigation of the effect of

the error correction on the hindcasts ensemble skill (seen in Section 6.3.1) in terms

of their sharpness and errors.

Looking at Figures 6.22, 6.23 and 6.24, corresponding to the Meuse in Saint-

Mihiel, the Meuse in Stenay and the Chiers in Carignan, respectively, the forecast

ensemble errors appear to be closer to the zero line for the models with error correc-

tion than for the models without error correction. This is distinguishable mainly for

high observed discharges. Furthermore, the spread of the ensemble seems smaller

for the models with error correction than for the models without the error correc-

tion algorithm. These observations suggest that, for these three sub-basins, the

error correction procedure induced a reduction of the forecast errors as well as an

increase of the ensembles sharpness for all the models.
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(a) Without error correction (b) With error correction

Figure 6.22: Forecast errors versus observed discharge, 24 hours lead time, for the

Meuse in Saint-Mihiel (a) without error correction and (b) with error correction

(a) Without error correction (b) With error correction

Figure 6.23: Forecast errors versus observed discharge, 24 hours lead time, for the

Meuse in Stenay (a) without error correction and (b) with error correction
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(a) Without error correction (b) With error correction

Figure 6.24: Forecast errors versus observed discharge, 24 hours lead time, for the

Chiers in Carignan (a) without error correction and (b) with error correction

Based on Figure 6.25, for the Semoy in Haulmé, the error correction procedure

seems to have given rise to dissimilar results for the different models. Indeed,

the forecast errors for the wflow hbv and the wflow sbm models appear closer to

zero with the error correction procedure than without the latter. Moreover, the

wflow sbm ensemble spread is clearly smaller with the error correction procedure

than without this procedure. Contrastingly, the forecast errors for the HBV and

the wflow gr4 models appear greater with the error correction procedure and the

spread of the wflow gr4 ensemble forecasts is apparently larger with the error cor-

rection than without the latter. Therefore, whereas the error correction procedure

induced positive results on the wflow sbm and the wflow hbv model hindcasts per-

formances in terms of their ensemble forecasts errors and sharpness, opposite re-

sults seem to have occured for the HBV and the wflow gr4 models for the Semoy

in Haulmé.

(a) Without error correction (b) With error correction

Figure 6.25: Forecast errors versus observed discharge, 24 hours lead time, for the

Semoy in Haulmé (a) without error correction and (b) with error correction
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In the case of the Ourthe in Tabreux (Figure 6.26), dissimilarities in the models re-

sults with the error correction algorithm are also existent. Overall, the wflow hbv,

the wflow gr4 and the wflow sbm models forecasts errors are situated closer to the

zero line with error correction than without the latter. The HBV model forecast

errors, being closer to zero without the error correction algorithm, are highly posi-

tive for high observed discharges with the error correction algorithm. This implies

an overestimation of high observed discharges by the HBV model, with the error

correction procedure, for the Ourthe in Tabreux. Additionally, the spread in the en-

semble forecasts for the HBV, the wflow hbv and the wflow sbm models seems to

be larger for high observed discharges with the error correction procedure. These

observations suggest that the wflow gr4 model is the only model that benefited

positively from the error correction procedure for the Ourthe in Tabreux in terms

of its ensemble forecast errors and sharpness.

(a) Without error correction (b) With error correction

Figure 6.26: Forecast errors versus observed discharge, 24 hours lead time, for the

Ourthe in Tabreux (a) without error correction and (b) with error correction
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Chapter 7

Discussion

Based on the simulations and hindcasts results obtained for the four models for

the five sub-catchments selected, a general comparative overview of the models

performances can be given and is presented in Table 7.1.

7.1 HBV-96 model performance

In simulation, the HBV model presented the best performance for high flows as

well as for low flows, when compared to the other models simulations produced

during this research. Similar results were found in the literature. Indeed, as stated

in Section 3.1, the HBV model has shown a good to moderate performance for

flood simulations and forecasts in several studies (Table 7.1; Berglov, 2009; Gorgen

et al., 2010; De Wit, 2005; Drogue et al., 2010). For low flow conditions, the HBV

model with the Kriging interpolation procedure as well as the Regnie interpolation

procedure displayed a good performance. As regards to high flow conditions, both

interpolation procedures produced simulations of a lower quality than during low

flows, moderate for the Kriging interpolation and moderate to good for the Regnie

interpolation. This is due to the slight underestimation of the discharge during

high flow events by the HBV model, which was equally observed by Weerts et al.

(2008); De Wit (2005) for the Moselle and the Rhine River basins. In addition, as

observed in Section 6.2, the HBV model using the Regnie interpolation procedure

showed better simulation performances, which was also suggested in Weerts et al.

(2008).

The HBV-96 model displayed the least divergence with the observed discharge in

hindcasts, similarly to simulations. It indeed showed a moderate efficiency for

hindcasts without error correction algorithm and a good efficiency with the er-

ror correction procedure (Table 7.1). This model, used operationally at Deltares

for forecasting purposes, has undergone several changes with the aim to increase
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its efficiency for flood forecasting. These changes, referred to in Section 3.1,

have shown positive results on the HBV model forecasts regarding their quality

(Berglov, 2009; Weerts et al., 2008).

7.2 wflow gr4 model performance

Wflow gr4 is the model presenting the simplest and the least flexible structure of all

the models used for this research. This simplicity and lack of flexibility, due to the

small number of parameters and reservoirs, yielded an average simulation perfor-

mance - of moderate effiency in high and low flows - when compared to the other

models studied (Table 7.1). Nonetheless, this lack of flexibility was also the origin

of recurrent discrepancies between the observed and the simulated discharge, as

observed in Section 6.2.

Indeed, a striking feature of the wflow gr4 simulations was the underestimation of

peakflows and the overestimation of low flows. The origin of this moderately poor

performance springs in the wflow gr4 model’s structure.

A first plausible origin of the wflow gr4 model’s moderate simulation performance

could be the fixed unit hydrographs contributions, controlling the amount of base-

flow and quick runoff (UH1 and UH2 respectively, Section 3.2). Similar conclu-

sions were drawn by Esse (2012) and Pushpalatha et al. (2011), who suggested the

creation of a second parallel routing store to offer more resilience in the GR4H

model’s structure.

Another source could be the conceptual water exchange function (Section 3.2),

as this latter depends on parameter X2, which is either positive or negative. A

fifth parameter was introduced to the original GR4J model by Le Moine (2008),

which gave rise to the GR5J model, in order to obtain a more realistic groundwater

exchange. This new parameter (X5), by allowing the groundwater exchange to

fluctuate between negative and positive values, led to improvements in the low

flow simulations.

A supplementary origin of discrepancy between the observed and the simulated

discharge during peakflows could be the absence of a snow module for the wflow gr4

model. However, the snowmelt water contribution to the total discharge does not

exceed 15% for the sub-catchments selected, and should therefore not be greatly

influential on the simulated discharge.

An additional characteristic of the wflow gr4 model simulations, mentioned in Sec-

tion 6.2.2, was the peakflows bell-shape. This attribute of the wflow gr4 simula-

tions is due to the linear routing by the two unit hydrographs (Section 3.2).

With respect to hindcasts, the wflow gr4 model presented a moderate to low effiency

without any error correction procedure, rising to a good effiency with the incorpo-
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ration of an error correction algorithm (Table 7.1). These results can be related to

studies carried at IRSTEA, with as a final purpose the development of a reliable

flood forecasting model. Indeed, as presented in Section 3.2, numerous researches

initiated from the GR4H model, which proved to be efficient in simulation but not

as efficient in forecasting, leading to the creation of the GRP model. This was

achieved through the modification of the GR4H model’s original structure as well

as the inclusion of a data assimilation scheme to the latter (Tangara, 2005; Berthet,

2010). The GRP model is nowadays used operationally at IRSTEA for flood fore-

casting purposes.

7.3 wflow hbv model performance

The wflow hbv model, being a fully distributed version of the HBV model, should

have given similar or better results than the latter. Nonetheless, our results did not

confirm this. Contrarily, as observed in Section 6.2, the wflow hbv model pro-

duced simulations of low effiency for low flow conditions, due to a considerable

overestimation of the observed low flows (Table 7.1). It nonetheless produced more

reliable simulations for high flow conditions than the HBV model did, presenting

overall a good performance for the latter (Table 7.1). This is due to the fact that

the interception was inadvertently set to zero prior to the simulations runs. It was

discovered at the end of the project, when time restrictions prevented running ad-

ditional simulations.

Nevertheless, the wflow hbv model showed a relatively good efficiency in fore-

casting, although and probably due to the fact that the interception was set to zero.

With a moderate performance without any error correction algorithm, increasing

to a good performance with the incorporation of this algorithm to the model (Table

7.1).

7.4 wflow sbm model performance

A striking outcome of this project was the performance of the fully distributed

wflow sbm model, both in simulation and in hindcasting, compared to the perfor-

mance of the lumped models (HBV and wflow gr4). Indeed, overall, the wflow sbm

model showed a lower quality of discharge simulations and hindcasts. Regarding

simulations, this model produced very large errors, leading to a low effiency during

high flows and a moderate effiency for low flows (Section 6.2; Table 7.1). As for

hindcasts, the combination of a poor skill with a poor sharpness of the ensemble

forecasts produced made their quality low to moderate, without and with the error

correction procedure respectively (Section 6.3; Table 7.1).

65



Lobligeois et al. (2013); Smith et al. (2004); Reed et al. (2004) showed that lumped

models could outperform distributed models, depending on the precipitation spatial

variability and the catchment size. According to these authors, distributed models

showed less discrepancy between the observed and the simulated discharge for

large catchments and rainfall events of large spatial variability.

A key feature of the wflow sbm model simulations was the very dynamic behaviour

of the latter, producing peaks during the observed low flows; as well as the under-

estimation of high flows and the over- or underestimation of the peaks time lag

(Section 6.2). Several hypothesis can be emitted in an attempt to clarify the origin

of these phenomenons as no literature review was found on the subject.

A first reason of this dynamic behaviour could be the presence of the FreeWater-

Depth storage, which, acting as overland flow, contributes directly to the Kinematic

wave. This flux is present solely in the wflow sbm model and could therefore be

the cause of the dynamic simulations observed for the latter.

A second reason could be the presence of the ExfiltWater flux (see Figure D.3),

over-contributing to the Kinematic wave and thus the discharge at the outlet of the

sub-basin as a result of the low storage capacity of the model.

The consequence of both reasons would therefore be the presence of singular peaks

during observed low flows, and the underestimation of high flows.

A solution to these discrepancies could therefore be the increment of the storage

capacity of this model’s reservoirs by supplementary calibration procedures.

Additionally, from Vertessy et al. (2000)’s work on the topog sbm model, from

which the wflow sbm originates, similar findings to the previously stated features

were made. Indeed, the topog sbm model similarly underestimated high flows and

their time lag.
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Table 7.1: Performance assessment summary of the four models based on Chapter

6

Name of models HBV wflow gr4 wflow hbv wflow sbm

Original developer SMHI IRSTEA Deltares

Routing method MAXBAS
Two unit

hydrogaphs
Kinematic wave function

Model type
Conceptual,

semi-distributed

Conceptual,

lumped
Physical, distributed

High flows

Moderate with

Kriging, good to

moderate with

Regnie

Moderate Good Low

E
ffi

ci
en

cy

in
si

m
u
la

ti
o
n
s

Low flows
Good with Regnie

and Kriging
Moderate Low Moderate

Without

error

correction

Moderate
Moderate to

low
Moderate Low

E
ffi

ci
en

cy

in
h
in

d
ca

st
s

With error

correction
Good Good Good Moderate

7.5 Simulated peaks time lag error

For the simulations, all models produced at least one highly negative residual at the

end of the year 2011 (Section 6.2.2). This residual was attributed to an overestima-

tion of the observed discharge by the models, due to an over- or underestimation

of a peak time lag. The recurrence of this residual suggests that the error might

be situated in the quality of the input data used by all the models for running the

simulations.

7.6 The case of the Chiers in Carignan

Both in simulation and in forecast, the Chiers in Carignan displayed distinctively

different results than the other sub-basins (Sections 6.2 and 6.3). This could either

suggest that the trend observed for the other four sub-basins is not applicable to

the entire Meuse River basin, due to heterogeneity in geology, land use, etc, or that

there was an error in the input data and/or the interpolation of the latter.
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Chapter 8

Conclusions and

recommendations

8.1 Conclusions

This research was conducted at Deltares and IRTSEA, with as main purpose to

bridge the gap between models performances in simulations and hindcasts and

models structures. To this effect, five sub-basins of the Meuse River basin were pre-

selected in order to offer a spatial basis for the intercomparison framework. These

sub-basins included the Meuse in Saint-Mihiel, the Meuse in Stenay, the Semoy

in Haulmé, the Ourthe in Tabreux and the Chiers in Carignan. Additionally, four

models were chosen, these were the semi-distributed conceptual HBV-96 model,

the GR4H lumped and conceptual model and the fully-distributed physically-based

wflow hbv and wflow sbm models.

The GR4H model from IRSTEA was first transcribed as a PCRaster Python model,

from its original FORTRAN code, and calibrated based on hourly observed dis-

charge measurements using the Nash-Sutcliffe model efficiency criterion (NSE) for

the five pre-selected sub-catchments. The calibration produced an average NSE of

0.9 for all the sub-basins. This transcription, leading to the wflow gr4 model, en-

abled its use within the intercomparative framework built during this project.

The performance of the four models was assessed and compared through the ex-

ecution of seven years of hourly streamflow simulations and a two weeks event

of hourly hindcasts (with and without error correction; with a lead time of up to

five days), for the five sub-basins, using the Delft-FEWS forecasting platform. The

data-centric forecasting platform provided an objective environment for this com-

parison, acting as an empty shell where forcing data was collected and interpolated

prior to the models execution.

The wflow hbv model interception values were unentendedly all set to zero prior to
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the simulations and hindcasts executions. This was discovered at a late stage of the

project, disabling any further model runs. Therefore, unfortunately, no comparison

was legitimately possible between the wflow hbv results and the other models’

results. The wflow hbv model results were nevertheless described.

The models performances in simulations were analysed and compared first quanti-

tatively, based on their overall statistical performances (with the MAE, the RMSE

and the MSE performance metrics) and on the under- or overestimation of the total

discharge by the models. The models performances were then evaluated qualita-

tively, looking at the models’ dynamism during peakflows and low flow conditions.

The HBV model simulations were executed with two different interpolation meth-

ods, the Regnie and the Kriging interpolation techniques. This intercomparison

framework was based on the Meuse in Saint-Mihiel simulation results, used as rep-

resentative for all the sub-basins. Nonetheless, the Chiers in Carignan displayed

contrasting results from the other sub-basins, which were attributed to either an

error in the input data or the interpolation of the latter for this sub-basin, or to

heterogeneity in the Meuse River basin geology, land use, etc (Section 7).

On average, the semi-distributed HBV model (with both interpolation techniques)

and the lumped wflow gr4 model presented the best efficiency in simulations.

These models globally displayed the lowest error magnitudes. Both models pre-

sented a tendency to underestimate the total discharge, due to the overestimation

of the low flows coupled to the underestimation of the high observed flows by

the latter. Nonetheless, the HBV model showed a higher performance than the

wflow gr4 model, especially for low flow conditions. Furthermore, the observed

discharge dynamics were well captured by the HBV model while they were not by

the wflow gr4 model, presenting a smoothed simulated discharge due to its routing

method.

Additionally, it was observed that the Regnie interpolation method conferred the

HBV simulations a higher performance than the Kriging interpolation technique

for high flows. This suggests that both the quality of the forcing data and the

interpolation technique used are primordial to the model performance.

The fully-distributed models, the wflow hbv and the wflow sbm models, presented

on average the lowest efficiency in simulations. The wflow hbv model overesti-

mated largely the low observed flows due to the null interception values, leading to

an overall discharge overestimation. Regarding the wflow sbm model, it presented

on average the highest discrepancies with the observed discharge due to a large

underestimation of the peakflows, combined an overestimation of the low flows,

attributed to an over-dynamicity of the model.

The models performances in hindcasts (with and without error correction) were

analysed with a coupled investigation of their ensemble skill (based on the CRPSS)

and of their ensemble distribution. On average, all the models showed an under-

estimation of the total discharge as well as a low ensemble skill. Globally, the
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HBV-96 and the wflow hbv models presented the highest performance in hind-

casts both with and without the error correction algorithm, showing the smallest

forecasts errors and the largest sharpness of their forecasts. The wflow hbv high

performance in hindcasts was nevertheless linked to the null interception values.

The wflow sbm model displayed the lowest performance, both without and with

the error correction algorithm, due to the large forecast errors produced by the

later, coupled to a small sharpness of its forecasts. The wflow gr4 model, being

moderately performant in hindcasts, showed a very high sharpness of its ensem-

bles.

The error correction algorithm, by increasing the hindcasts sharpness and decreas-

ing the models errors (especially for high observed flows and more noticeably for

one day lead time, showing a decreasing performance with increasing lead time

trend), led to an increase of the ensemble skill as well as an increase of the ensem-

ble distribution of the hindcasts produced by all the models.

A major result of this research is the performance of the fully-distributed physically-

based wflow sbm model compared to the performance of the semi-distributed con-

ceptual HBV model annd of the lumped conceptual wflow gr4 model, the wflow hbv

not being legitimately comparable. Indeed, the wflow sbm model showed no clear

improvements on the simulations and hindcasts efficiencies for the sub-basins se-

lected, compared to the HBV and the wflow gr4 models. On the contrary, the

wflow sbm model displayed the lowest performance, in simulations and in hind-

casts. Section 7 constituted an attempt to clarify this unexpected result, which

nonetheless deserves further research.

8.2 Recommendations

This intercomparison project, although relatively complete, could benefit greatly

from further investigations in order to confirm the trends observed throughout this

research.

As a first step, more sub-basins of the Meuse River basin could be added to this

project. Indeed, as observed in Sections 6.2 and 6.3, the Chiers in Carignan dis-

played contrasting results to the other four sub-basins. Thus, this discrepancy mer-

its additionnal studies.

Conjointly, the values of the wflow hbv model interception should be fixed prior

to running simulations and hindcasts in order to investigate the benefits of using

distributed models alternately to lumped or semi-distributed models for flood mod-

elling and forecasting.

Additionally, a longer period of hindcasts could be executed for all four models in

order to validate the findings made during this project with solely two weeks of

hindcasts.
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Surprisingly low performances were obtained for the wflow sbm and the wflow hbv

models, in simulations and in hindcasts, which were not expected. Therefore, an

additional calibration of the kinematic wave function could be performed for both

of these models, prior to running simulations and hindcasts for the latter.

And finally, the models fluxes quantities and reservoirs contents could be analysed

in order to explore the conjectures made in Chapter 7 regarding the models struc-

tures influences on the simulated discharge.
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Appendix A

Rhine river system
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Figure A.1: Rhine and Meuse courses and river systems (WWasser, 2013)
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Appendix B

HBV-96 model

Figure B.1: Diagram of the HBV-96 model (Schellekens, 2013)
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Figure B.2: MAXBAS transformation function, modified from (Lindstrom et al.,

1997)
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Appendix C

GR4J model

Figure C.1: Diagram of the GR4J model (Perrin et al., 2003)
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Figure C.2: Example of the GR4J model routing method by the unit hydrographs,

with X4 = 32.85 days (Perrin et al., 2003)
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Appendix D

OpenStreams models
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Figure D.1: Diagram of the wflow hbv model per cell
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Figure D.2: Description of the wflow hbv variables
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Figure D.3: Diagram of the wflow sbm model per cell
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Figure D.4: Description of the wflow sbm variables
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Appendix E

The forecasting platform

Figure E.1: Delft-FEWS manual forecast
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Figure E.2: Delft-FEWS map, the Meuse River basin

Figure E.3: Delft-FEWS data display
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Appendix F

Data import and

transformation

Figure F.1: Observed precipitation at the stations locations
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Figure F.2: Regnie precipitation ouput for the operational hbv model

Figure F.3: Kriging precipitation ouput for the operational hbv model
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Figure F.4: Kriging temperature ouput for the operational hbv model
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Figure F.5: Kriging precipitation ouput for the wflow models

Figure F.6: Kriging temperature ouput for the wflow models
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Appendix G

Calibration of the wflow gr4

model

Figure G.1: Calibration run period for the Semois in Haulmé
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Figure G.2: Calibration run period for the Chiers in Carignan

Figure G.3: Calibration run period for the Meuse in Saint-Mihiel
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Figure G.4: Calibration run period for the Ourthe in Tabreux
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Figure G.5: Calibration run period for the Meuse in Stenay
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Appendix H

Simulations results
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(a) Cumulative discharge

(b) Cumulative residual

Figure H.1: The (a) cumulative discharge and the (b) cumulative residual for the

Meuse in Saint-Mihiel
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(a) Cumulative discharge

(b) Cumulative residual

Figure H.2: The (a) cumulative discharge and the (b) cumulative residual for the

Meuse in Stenay
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(a) Cumulative discharge

(b) Cumulative residual

Figure H.3: The (a) cumulative discharge and the (b) cumulative residual for the

Chiers in Carignan
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(a) Cumulative discharge

(b) Cumulative residual

Figure H.4: The (a) cumulative discharge and the (b) cumulative residual for the

Semoy in Haulmé
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(a) Cumulative discharge

(b) Cumulative residual

Figure H.5: The (a) cumulative discharge and the (b) cumulative residual for the

Ourthe in Tabreux
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