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ABSTRACT  

The present study aimed at testing the potential of the 
future mission SENTINEL-2 (European Copernicus 
program) to map croplands in a region of Madagascar 
characterized by small size fields and frequent cloud 
covering. Two approaches were tested and compared : i) 
a classical remote sensing method (RS) using image 
object-based analysis, expert rules and supervised 
classification, and ii) a data mining (DM) approach 
consisting of the extraction of frequent patterns from the 
database and the use of these patterns in different 
algorithms (Naive Bayes, Random Forest, Decision 
Tree and Support Vector Machine) to build 
classification rules. Both methods used SPOT images 
and a ground data set of 324 GPS waypoints collected 
during the 2012-2013 cropping season. 
The remote sensing and data mining approaches showed 
equivalent overall accuracies (82% vs 84% for RS and 
DM methods respectively). However, the DM approach 
showed its ability to handle a large volume of data and 
to do so in a timely manner. This approach has also the 
advantage to extract all the information at its disposal, 
even temporal behaviors, unlike the object-based RS 
approach which requires significant participation of the 
expert. 
Data mining tools are thus recommended for their 
considerable potential for the classification without a 
priori of remotely sensed data, mixing multisource 
information and consequent time series, especially for 
the upcoming Sentinel-2 images that are expected to 
generate a large volume of data to store and process.  
 
 

1. INTRODUCTION 

Food insecurity is particularly worrying in Africa, 
where nearly one country in four suffers from hunger 
[1,2]. In front of the growing number of natural 
disasters, the increasing population, the emergence of 
dedicated crops to production of biofuels, land grabbing 
by foreign investors etc., there is a need for systematic 
and accurate monitoring of agricultural systems and 
their adaptation to changing environment, to assess the 
impacts on food security. 
Early warning systems are designed to provide reliable 
information on preventive potential risk of a food crisis: 
estimating production is capital to compensate for the 
lack of food per food aid or imports in developing 
countries. For that purpose, data on cultivated surfaces 
and yields are an essential prerequisite for a good 
agricultural production forecast [3]. So far, low and 
moderate resolution satellite remote-sensing images 
have been extensively used for crop mapping and 
monitoring [4-6]. Their high temporal frequency and 
their extended geographical coverage associated with 
free or low costs per area unit makes them a particularly 
appropriate information source at both national and 
regional scales. However, with these data, the 
estimation of cultivated surfaces and the discrimination 
between different crops is still challenging in countries 
with fragmented farmland, small size fields or with 
specific weather conditions resulting in high regional 
variability in terms of agricultural systems and practices 
[7,8].  
The upcoming availability of SENTINEL-2 data opens 
up new prospects for research, including 
methodological developments related to agriculture 
monitoring. By mid-2015, this future Earth Observation 
System will propose images of i) higher resolution (10–



 

60 m depending on spectral bands) and frequency (10 
days in 2015 and 5 days in 2016) allowing a fine 
agricultural monitoring adapted to the study of crops in 
areas where agriculture is fragmented, ii) with 
significant swath (290 km) appropriate for regional and 
global studies, and iii) with a large number of spectral 
bands (13) allowing the characterization of patterns of 
land use, and quantitative estimation of biophysical 
variables related to the crop conditions. The pair of 
Sentinel-2 satellites will thus soon represent the best 
compromise between spatial and temporal resolution 
and will replace moderate-resolution images such as 
MODIS for agricultural monitoring.  
To deal with such high spatial resolution images and 
complex landscape, object-based image analysis is an 
interesting approach. An overview of the development 
of object based methods can be found in [9]. These 
methods are used in the expectation that it will divide 
the image into i) relatively homogeneous, and ii) 
semantically significant groups of pixels. Whereas in 
classical pixel approaches spatial concepts are not used, 
in object-based methods a pixel is not studied alone, but 
together with its neighborhood, and this adds spatial 
information to the objects [10]. Dealing with 
agriculture, the object-based image analysis (OBIA) can 
help to delineate field boundaries, and thus to reach 
classification results at field scale. It is thus particularly 
suitable for high spatial resolution images. However, 
OBIA requires an expert intervention through 
supervised methods, which can be difficult when 
dealing with important volume of data. 
As the number of sensors of higher spatial and temporal 
resolutions and possibilities of data sharing are 
increasing, a generation of new tools is being 
developed, which is able to handle large volumes of 
data but also to automatically extract knowledge from 
databases of multiple sources. Since recently, these data 
mining tools are beginning to be used in the field of 
remote sensing [11,12]. An example is the prediction of 
land use from time series of remote sensing images. In 
this case, data mining patterns’ extraction and 
classification algorithms can be employed to perfectly 
solve this task and they are able to scale up over big 
dataset [13]. 
In this context, the present study aimed at testing the 
potential of the future mission SENTINEL-2 to map 
croplands in a region of Madagascar characterized by 
small size fields, a large heterogeneity of the cropping 
practices, and frequent cloud covering. The overall 
objective of this proposal was to provide new products 
from the future satellite mission, based on existing 
(SPOT satellite time series) or recent (PLEIADES) 
missions to support early warning systems for food 
security in fragmented agriculture. 
For this, we developed two different approaches to map 
a cropland mask in fragmented landscapes: i) a classical 
remote sensing method using image object-based 

analysis, expert rules and supervised classification, and 
ii) an original method based on data mining techniques. 
This paper deals mainly with the data mining approach 
as an alternative to conventional methods for defining a 
learning mechanism based on multi-source data. The 
object-based Remote-Sensing (RS) and Data Mining 
(DM) classification results are compared using error 
matrices based on ground sample points. The same 
methodology is currently being developed for cropping 
systems mapping. 
 
2. STUDY ZONE AND MATERIAL 

2.1 Study area2.1 Study area2.1 Study area2.1 Study area    

Madagascar is an island country in the Indian Ocean, off 
the coast of Southeast Africa. Our 60*60 km study zone 
is located near Antsirabe, the capital of the 
Vakinankaratra region, in the central highlands. This 
region has the second highest population density of the 
country and is characterized by terraced, rice-growing 
valleys lying between grassy hills. Despite its small size 
(60*60 km), this study area is characterized by 
heterogeneous landscapes. The irrigation systems are 
well developed, and use all available water, which flows 
through narrow canals for considerable distances. Only 
the areas that cannot be irrigated are planted in dryland 
crops. Narrow terraces ascending the sides of steep 
valleys are mainly settled/planted with rainfed maize, 
cassava, and beans. The main crops such as maize and 
rice are sown at the beginning of the rainy season 
(between October and December) and harvested at the 
end (from March to May). Some of the plots cover no 
more than a few square meters. The mean size of an 
agricultural field is very small (about 0.03 ha) but 
contiguous fields with the same crop type can often 
result in larger crop patches.  
 

2.2 Ground data2.2 Ground data2.2 Ground data2.2 Ground data    

Fields surveys were conducted in Madagascar during 
the growing peak (end of February) of the 2012-2013 
cropping season in order to characterize the main 
cropping systems. A total of 324 GPS waypoints (247 
cropped and 90 non-cropped) were registered in the 
study area, chosen according to their accessibility and to 
be as well representative of the existing cropping 
systems as possible. The data gathered during the field 
survey concerned farmers’ practices (type of crop, use 
of fertilizers and irrigation). GPS waypoints were also 
registered on different types of natural vegetation to 
obtain data on the non-crop class.  
 
 
 



 

 

Figure 1. Map of the study area around Antsirabe showing the geographic location of the 324 fields sampled  
on the 2013/03/03 SPOT5 image. 

 
 

2.32.32.32.3    Satellite ImagesSatellite ImagesSatellite ImagesSatellite Images    

During the growing season extending from October 
2012 to May 2013, combined acquisitions of SPOT4 
and SPOT5 acquired from SEAS-OI satellite receiving 
station in Reunion Island or from CNES (Centre 
National d’Etudes Spatiales) SPOT4Take5 experiment 
were conducted and allowed us to obtain a time series of 
25 decametric images with an average time repeatability 
of 12 days. These images were corrected geometrically 
and radiometrically (TOA reflectance). A digital 
elevation model (SPOT DEM at 20 m spatial resolution) 
was also acquired in order to extract the location of 
agricultural fields in the toposequence, thus giving 
information on the irrigated or rainfed regime of each 
concerned field. Finally, very high resolution 
PLEIADES images were acquired at the maximum of 
the growing season on our study zone to assist in the 
identification of the fields’ outlines of the ground 
database. 
 

3. METHODS 

3.1 3.1 3.1 3.1 The objectThe objectThe objectThe object----based based based based RemoteRemoteRemoteRemote----sensing (RS) sensing (RS) sensing (RS) sensing (RS) 
method method method method     

This classical remote-sensing method consisted in 
classifying SPOT images in three steps: : i) a 
segmentation of SPOT images in objects, ii) a mask of 
urban/artificial areas and a classification of the 
toposequences based on expert rules, and iii) in each 
toposequence, a crop-non crop supervised classification 
of the objects based on ground data.   
 
Segmentation  
The study area was first segmented so that objects 
represent plots or groups of plots in the cultivated area, 
using SPOT images. Considering that field 
characteristics include a temporal pattern (crop 
seasonality) and a specific structure (human print), we 
assumed that the spatio-temporal variability of NDVI 
and textural indices of SPOT images can be used to 
segment and classify the study area. We used 
eCognition software, and for processing time reasons, 



 

we chose only two contrasted SPOT images free of 
clouds in the available time series (one during the 
vegetation peak on the 3rd of March, one during the dry 
season on the 21th of May) to derive these indicators 
(mean NDVI, mean variance and Euclidian textures). 
We tested varying combinations of segmentation 
parameters (shape and compactness) for optimized 
boundary separation and obtained about 1 300 000 
objects. The average object size is about 0.24 ha, which 
can be considered for the cultivated domain as a “group 
of fields”.  
 
Mask of urban and artificial areas and classification 
of toposequence 
Urban and artificial areas were first isolated thanks to 
expert rules based on thresholds of brightness, euclidian 
texture, and NDVI. 
In Madagascar, the location of the fields in the 
toposequence is an important driver of the cropping 
system as it has a direct impact on the soil quality and 
water conditions. Basically, irrigated rice is grown in 
shallows, whereas rainfed rice or maize are found on 
hills or uplands. To assign a class of toposequence to 
each field or goup of fields thus helps in reducing the 
variability of spectral responses of cropping systems 
used in the following supervised classification step. 
The toposequence was classified in 4 classes (basins or 
shallows, lowlands and lower parts of the hills, hills, 
and uplands) thanks to the use of information extracted 
from the SPOT DEM processing (slopes, hydrological 
network) and thresholds (e.g. uplands objects have a 
slope lower than 3 degrees) or neighborhood rules (e.g. 
shallows objects intersect with water system, objects 
belonging to lower parts of the hills touch objects 
classified as shallows…). 
 
Supervised classification 
Inside each class of toposequence, the objects were 
classified in “crop” or “non crop” using a supervised 
maximum likelihood classification as proposed in 
eCognition software. 
The object-based classification works in the same way 
as a pixel-based classification with the difference that 
we do not classify each pixel but combine all pixels of 
each object and classify them together [14].  In this 
study, we used the mean value of all pixels of an object 
in the four SPOT spectral bands and the mean NDVI 
value of the two selected images, and textural variance 
calculated on the SPOT NDVI image of March image 
(maximum of the season). The maximum likelihood 
classification was conducted thanks to 80% of the 
ground database and the afore-mentioned attributes 
associated.  
 
Accuracy calculation 
The accuracy of the resulting map, referred hereafter as 
RS classification, was assessed thanks to a five-fold 

cross-validation of the classification. A random sample 
of one fifth of the training set was used for validation 
purposes. Thereby, for each fold, 20% of the total GPS 
waypoints were left out, and the supervised 
classification was recalculated using a new training set 
consisting of the remaining 80% of the database. The 
overall accuracies for each fold were recorded and 
averaged to obtain the overall accuracy of the RS 
method. 
 

3.2 3.2 3.2 3.2 Data miningData miningData miningData mining    (DM) method (DM) method (DM) method (DM) method     

A classification model was developed to discriminate 
between cropped and non cropped area using data 
mining process. Our proposal involved three main steps: 
i) satellite-derived metrics were calculated for the 324 
plots corresponding to the ground samples, ii) the 
PrefixSpan data mining algorithm found the frequent 
sequential patterns of cropped and non-cropped plots, 
iii) these frequent patterns were used by data mining 
classification algorithms (Naive Bayes, Random Forest, 
Decision Tree and Support Vector Machine) and thanks 
to its attributes, each plot was affected to “crop” or 
“non-crop” class. 
These three steps are detailed further. 
 
Attributes extraction 
Crops spatial and temporal behaviors can be captured 
through a set of attributes such as vegetation indices, 
intra-plot organization and plot layout in the landscape, 
and vegetation seasonality. These attributes are known 
to be accessible using time series of multispectral 
images. Several metrics were thus calculated and 
associated to each of the 324 plots of the database, 
whose outlines where digitalized thanks to PLEIADES 
50 cm spatial resolution imagery:  

- Static information, such as localization in the 
toposequence, plot size and distance to the river but 
also SPOT Haralick textural indices describing the 
plot “organization” and its place in the landscape 
and calculated at two acquisition dates (March and 
May).  

- Temporal information from the entire SPOT time 
series (reflectance in the four SPOT spectral bands, 
mean and max NDVI per plot for the 25 images). A 
linear interpolation of these temporal variables was 
conducted on the cloudy values.  

 
Extraction of frequent patterns 
To establish the link between the crop or non-crop land 
cover and these various indicators, we used the 
PrefixSpan algorithm [15] to find discriminating 
sequential patterns of the cropped or non cropped plots 
using 80% of the dataset. This algorithm extracts all 
frequent sequential patterns that have a “support” 
greater than a given threshold. A support of a sequential 



 

pattern is the number of objects in which the considered 
pattern appears. 
 
 
Classification process  
The extracted frequent patterns are used to establish 
“classifiers” defining if a plot is more likely to be 
cropped or not according to its static and temporal 
attributes. For this point, several machine learning 
algorithms are available in the WEKA tool; more 
precisely, the following classification techniques were 
applied on the data set: Naive Bayes, Random Forest, 
Decision Tree and Support Vector Machine. We choose 
these data mining models as they span over different 
assumptions and they well cover different families of 
classification algorithms: 

- Naive Bayes [13] is a probabilistic-based algorithm 
that employs the “Bayes principle” in order to make 
its prediction. It assigns a new object to the class that 
maximizes its likelihood. 

- Random Forest [16] is an ensemble learning schema 
that builds a multitude of random decision trees. It 
makes its prediction on a new example as the mode 
of the classes predicted by each individual tree. 

- Decision tree [13] model the training data using a 
tree-shape structure. Internal nodes of the tree 
represent test over description variables while the 
leaves represent class assignments. A new instance 
is classified following a root-leaf path induced 
considering the test in the inner nodes. 

- Support Vector Machine (SVM) is one of the most 
effective and recent classification techniques 
proposed in the machine learning community [17]. 
This approach searches for a set of support vectors 
inducing an hyperplane (in the space in which data 
are represented) able to well separate instances of 
different classes and obtaining, at the same time, as 
much generalization as possible. The decision on a 
test instance is done considering its distance with 
regards to the support vectors. 

 
Accuracy calculation 
These different classification processes were then 
applied to the 20% of the waypoints left, using a five-
fold cross-validation as for the Remote-Sensing method. 
 

3.3 RS and DM 3.3 RS and DM 3.3 RS and DM 3.3 RS and DM approachesapproachesapproachesapproaches    comparisoncomparisoncomparisoncomparison  

The RS and DM classifications obtained after the 5 fold 
cross validation were evaluated through the error 
matrices based on the ground data set (324 GPS 
waypoints). The classification accuracy criteria were: i) 
the fraction of correctly classified pixels, ii) the 
commission and omission errors. In addition, for DM 
classifications, the four DM algorithms were compared 
through their overall accuracies. 
 

4. RESULTS 

The four data-mining classification algorithms gave 
good accuracies (from 79 to 84%) but the most accurate 
classification was derived from the Support Vector 
Machine (SVM) approach (Table 1).  
 

Algorithm Overall accuracy 

NaiveBayes  78% 

Random Forest 82% 

Decision tree 79% 

SVM 84% 

 
Table 1. Overall accuracies for the four classification 
algorithms used in the DM methodology. 
 
The remote sensing and data mining (SVM) approaches 
showed equivalent overall accuracies (82% vs. 84% for 
RS and DM methods respectively). Both methods 
provided stable results for the crop class, that is to say a 
commission of pixels equivalent to the omission (Table 
2). Omission and commission errors were for both 
methods limited for the crop class (between 7 and 16%), 
whereas they were quite important for the non-crop 
class (from 20 to 38%).   
 

    
RS_method DM_method 

CROP 

Omission error 11% 7% 

Producer accuracy 89% 93% 

Commission error 14% 16% 

User accuracy 86% 84% 

NON 
CROP 

Omission error 34% 38% 

Producer accuracy 66% 62% 

Commission error 29% 20% 

User accuracy 71% 80% 

Overall accuracy 82% 84% 

 
Table 2. Accuracy assessment of the Remote Sensing 
(RS) and Data Mining (DM) classification approaches 
based on the 324 GPS waypoints. 
 
Figure 2 shows the spatial distribution of cropland in 
our study area (in this example with the RS approach). 
As expected, the majority of shallows are cultivated, 
and rainfed crops are colonizing gradually the hills 
. 



 

 
 

Figure 2. Crop classification of the study area around Antsirabe using the object-based remote-sensing method. 
 

 
5. DISCUSSIONS AND PERSPECTIVES 

Two approaches were developed and compared for 
mapping cropped areas small growers agricultural 
regions such as in Madagascar. The first method 
(Remote Sensing or RS) involved an object-based 
classification, and the second method was a data mining 
approach (DM). The RS method showed a fraction of 
pixels correctly classified of 82%, against 84% for the 
DM approach. The crop class was for both methods 
better classified than the non-crop class, which is 
certainly due to the number of crop samples higher than 
the non-crop ones (247 cropped vs. 90 non-cropped 
samples).  
Misclassifications per class (crop and non-crop) were 
between 11 and 34% for the RS approach and between 7 
and 38% for the DM approach, which can be explained 
by two main factors: 

- cropped patches/objects too small: i) to be detected 
by SPOT at 10 m resolution,  ii) to be separated 
from the surrounding natural vegetation, iii) to 
extract a pure signal of the sole cropped field when 
mean radiometric values are extracted for DM 
process for example. In this region of Madagascar, 
the mean plot size is 0.03 ha, which represents less 
than 2*2 SPOT pixels.  

-  insufficient reference data collection leading to 
small size training problem. According to [18], 
training samples should be exhaustive and made up 
of samples that completely describe the intra-class 
variability, to encompass all the possible spectral 
signatures in the classes (cropped and non-cropped 
domains in our case). However, our study zone is 
suffering from specific weather conditions resulting 
in high regional variability in terms of natural 
landscapes, agricultural systems and practices. Our 
ground database may not contain samples describing 
all the land-cover classes present in the investigated 
area.  

In both methods, the results could be improved with a 
bigger training dataset, which would also allow the use 
of an independent validation dataset for more rigorous 
statistical results [19]. About the object-based remote-
sensing techniques, using more than two SPOT images 
for the generation of the cropland mask would be one 
solution to further reduce errors in both segmentation 
and field-masking. But this makes the RS method even 
more cumbersome and time-consuming, and the use of a 
calculation server is recommended.  
Whereas they obtained similar classification accuracies, 
these two methods differ widely. Thus, for fair 
comparison of the classifications it is important to note 



 

some specific aspects.  First, from a same data set, the 
RS method used less data than the DM method. The 
object-based RS method being “user-dependent”, we 
chose indicators and SPOT images acquired at given 
interest dates that seemed essential to distinguish crop 
class of non-crop class, so as not to saturate the 
eCognition software with too many images. That is to 
say this method used only 2 SPOT images and 2 textural 
indices, whereas the DM method was based on the 
whole data set (25 SPOT images and their derived 
metrics and more than 60 textural images as an 
example).  
The extraction of frequent patterns step is the highlight 
of the DM method. Unlike conventional method with 
classifiers such as Random Forest [7] or SVM, this 
pretreatment step is used to extract temporal behavior 
that could not be detected otherwise. The advantages of 
this DM approach are also its ability to handle 
quantitative and qualitative data but also dynamic and 
static data and to do so without a priori, in a timely 
manner [20]. In contrast, the RS method is heavy in its 
implementation: it mobilizes a full-time expert for the 
eCognition experts rules to define, and is thus very time 
consuming. Consequently, as confirmed by [21], the 
data mining procedure is generally recommended, 
primarily in studies that mobilize wide datasets. 
Furthermore, to the best of our knowledge, few authors 
have addressed the problem of classifying 
multidimensional temporal data [22,23] and sequential 
pattern mining of remote sensing images has only been 
applied at the pixel level without taking into account 
texture information in the mining process.  
Many of the problems in mapping land cover noted in 
the literature relate to the methods used to extract the 
land cover information from the imagery. This has 
driven a considerable amount of research into 
classification methods and supervised classifications in 
particular [24]. Seeing that their classification accuracy 
is generally the same order of magnitude as that 
obtained with classical classifiers [11], researchers are 
trying to automate methods and to find methods that 
maximize the information extraction from the dataset 
without a priori. Support vector machines (SVM) and 
Random Forest have recently attracted the attention of 
the remote sensing community [7,25-30], as they have 
considerable potential for the classification of remotely 
sensed data. 
The same RS and DM methods are currently being 
developed for cropping systems mapping. Further 
analysis will consist in testing the potential of the future 
mission SENTINEL-2 for crop monitoring and 
estimation of agricultural production. 
 
 
6. CONCLUSION 

This study showed the relevance of the use of data 
mining tools for crop mapping in regions with 

fragmented agriculture, using decametric images. This 
should be even clearer in the future, as the new satellites 
such as Sentinel-2 are expected to generate a large 
volume of data to store and process. This data mining 
techniques appear to be robust enough to be applied to a 
diverse variety of data sets and to be able to integrate 
information extracted at multiple spatial and temporal 
scales. 
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