

Water-stress characterisation factors for future oriented LCA

M. Núñez^{1,2}, S. Pfister³, M. Vargas², A. Antón²

Irstea-UMR ITAP, 361 rue Jean-François Breton BP5095, F-34196 Montpellier, France.

² IRTA Ctra. Cabrils km 2, 08348 Cabrils, Barcelona, Spain

³ ETH Zurich, Institute for Environmental Engineering, 8093 Zurich, Switzerland *Montse.nunez-pineda@irstea.fr*

Fig 1)

Introduction & objectives

- Water stress indicators in LCA often rely on information of water use/consumption and water availability in a specific area
- These indicators are usually applied to predict impacts of future investments, without considering changed water use patterns and climate change. The latter already affecting regional water availability.
- In this context of continuous change, characterisation factors (CFs) should be updated periodically to correctly reflect water stress
- Aim: to provide water stress index (WSI) CFs at the sub-watershed scale for three temporal scenarios in Spain

Materials & methods

- Methodology: Pfister et al. 2009. WSI annual: 0.01 (low stress) to 1 (severe stress)
- Regionalisation units: 117 sub-watersheds (Fig 1), compared to 51 watersheds in Pfister et al. 2009 (Fig 2)
- Temporal scenarios:
 - (i) current situation: current use and availability
 - (ii) Short-term future: projections for 2015
 - (iii) Mid-term future: projections for 2030
- **Data sources**: Watershed management plans and regional reports on potential effects of climate change
- Uncertainty assessment: Latin Hypercube procedure (5,000 runs) with the @Risk software

Fig 2) Duero Ebro Tajo Guadiana Guadalquivii

Regionalisation units to calculate WSI CFs used in: this study (Fig 1); Pfister et al 2009 (Fig 2)

Results & discussion

Conclusions & outlook

- Temporal analysis of the WSI shows a relaxation of water stress over the short-term (Fig 3, 4) followed by a new increase (Fig 5)
- Short-term future: increase in water availability. Mid-term future: increase in water use and reduction in water availability

Fig 3) WSI current situation Fig 4) WSI short-term future Fig 5) WSI mid-term future

VVSI (m ³ /m ³)						
<0.09	0.09-	0.5-	>0.91			

- Uncertainty: The WSIs under consideration of uncertainty were higher than the deterministic result for intermediate WSIs (Fig 6)
- Fig 6

 1

 0.8

 0.6

 0.4

 0.2

 0.9

 Median

 Mean

 WSI deterministic

 WSI deterministic

• Comparison to Pfister et al. WSIs: major differences are noticed (Table 1, see legend Figures 3 to 5).

	WSI [-]				
Watershed	Past	Current	Short-term	Mid-term	
	(Pfister et al.)	situation	future	future	
Duero	0.17	0.19	0.10	0.20	
	(n.a.)	(0.01-1.00)	(0.01-1.00)	(0.01-0.98)	
Guadiana	0.99	0.52	0.53	0.65	
	(n.a.)	(0.01-0.96)	(0.01-0.96)	(0.01-0.98)	
Tajo	0.53	0.31	0.19	0.25	
	(n.a.)	(0.03-1.00)	(0.02-1.00)	(0.10-1.00)	
Guadalquivir	1.00	0.93	0.63	0.72	
	(n.a.)	(0.92-1.00)	(0.17-0.99)	(0.50-1.00)	
Ebro	0.26	0.39	0.38	0.55	
	(n.a.)	(0.02-1.00)	(0.03-1.00)	(0.04-1.00)	

Table 1: Mean WSIs for the largest watersheds in Spain and four temporal scenarios. In brackets WSI data range for the internal sub-watersheds

• Different spatial and temporal resolution results in different CFs. Which is the optimal resolution in connection with the LCI? **Acknowledgements**

Decocel Innpacto project, supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Funds and Industrial Chair ELSA-PACT, funded by Suez Environment, SCP, BRL, Val d'Orbieu-Uccoar, EVEA, ANR, Irstea, CIRAD/ADEME, EMA, ONEMA, and the region Languedoc-Roussillon References