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Abstract

This work proposes to address a lack of conceptual consensus surrounding the concept of

vulnerability, by fostering a minimal de�nition as a measure of potential future harm, and by

basing it on a stochastic controlled dynamical system framework. Harm is de�ned as a normative

judgment on a trajectory. Considering all the possible trajectories from an initial state leads to

the de�nition of vulnerability indicators as statistics derived from the probability distribution of

harm values. This framework 1) promotes a dynamic view of vulnerability by eliciting its temporal

dimension and 2) clari�es the descriptive and normative aspects of a system's representation. As

illustrated by a simple model of lake eutrophication, this work makes vulnerability a precise yet

�exible concept which fosters discussion on trade-o�s between vulnerability sources, and also on

adaptation. Links with economics, with control theory, and with algorithmic methods such as

dynamic programming are highlighted. Keywords: Vulnerability, Indicators, Harm, Robustness-

vulnerability trade-o�s, Adaptation, Lake eutrophication
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1 Introduction

This work proposes an operational de�nition of vulnerability, based on a stochastic dynamical system

framework which accounts for its uncertain evolution and for the actions that may be undertaken to

impact it. Vulnerability is de�ned in a most general way as a measure of potential future harm. It

is an oft-used concept in the literature dealing with the potential negative impacts of natural hazards

and social and environmental change. However, vulnerability concepts and tools originate from several

di�erent communities (Adger, 2006; Eakin and Luers, 2006; Miller et al., 2010). Consequently, there is

a lack of consensus around conceptual de�nitions of the term and this breeds vagueness (Hinkel, 2011).

Thus, despite the existence of similar operational protocols, uni�ed frameworks in or across research

�elds are largely missing (Costa and Kropp, 2012).

This work does not ambition to study vulnerability under all its aspects, nor to review the many

branches of scienti�c literature in which it is a meaningful concept. Rather, it aims at constructing

a formal framework around a very general de�nition of the term, and at connecting it to some of the

existing literature on vulnerability in environmental modeling and social and ecological systems. Mak-

ing such connections seems particularly relevant in a context of global change, in which computational

frameworks to assess vulnerability to various natural hazards have been burgeoning in recent years

(e.g. Balica et al., 2013; Giupponi et al., 2013; Lardy et al., 2014; Martin et al., 2014; Papathoma-Köhle

et al., 2015); yet each of these models relies on a slightly di�erent understanding of what vulnerability

is conceptually .

The minimal de�nition of vulnerability as a measure of potential future harm comes from a formal

analysis of the term (Wolf et al., 2013). It is the lowest common denominator in most vulnerability

de�nitions in the literature (Hinkel, 2011). To our knowledge, our framework constitutes the sec-

ond attempt at mathematically formalizing the concept of vulnerability after that by Ionescu et al.

(2009), who argue that such a formalization is warranted for several reasons, namely making vulner-

ability assessments systematic, clarifying the concepts and their interpretations, avoiding analytical

inconsistencies and practical omissions, and facilitating the development of computational approaches.

These motives stress that formalization is useful regardless of the case at hand, and whether or not a

dynamical system formulation is available.

We propose to start with a very general mathematical formulation, and then to interpret it in

the context of vulnerability literature. We argue that this approach provides both a formal basis and

a great �exibility for the discussion of vulnerability concepts. Indeed, mathematics remain a non-

ambiguous reference for discussing concepts, especially in cases in which they may be interpreted in

several relevant ways. In that sense, �exibility appears as a prerequisite to bridging the gap between

conceptual de�nitions and their many possible operational translations. In the case of vulnerability,

�exibility is sorely needed because of the wide range of �elds that use the concept, as it is present

in the climate change literature (see e.g. Turner II et al., 2003; Adger, 2006; Parry et al., 2007), in

the natural hazards literature (e.g. Birkmann, 2006; Fuchs, 2009; Peduzzi et al., 2009), in the social-

ecological systems (SES) literature (see e.g. Peterson, 2002; Anderies et al., 2007; Rodriguez et al.,

2011; Rives et al., 2012), but also in the development economics literature (see e.g. Christiaensen and

Boisvert, 2000; Hoddinott and Quisumbing, 2003; McCulloch and Calandrino, 2003; Béné et al., 2012).

Besides, a controlled stochastic dynamical system perspective also provides a link between vulnera-
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bility and the capacity to act. This connection is often explicitly highlighted in the literature (Turner II

et al., 2003; Gallopín, 2006; Smit and Wandel, 2006), to the extent that vulnerability is often associated

with a limited ability to act (McCarthy et al., 2001; Adger, 2006; Parry et al., 2007). Furthermore,

the notion of control is associated to vulnerability through so-called robustness-vulnerability trade-o�s

(Anderies et al., 2007; Rodriguez et al., 2011) which arise when increasing robustness to a set of shocks

inevitably leads to increased vulnerability to another set of shocks.

Following this brief presentation on our main motivations for proposing a mathematical approach

to vulnerability de�nition, the rest of this work is as follows. Section 2 presents the dynamical system

framework that we propose, and this starts with a paragraph that completes this introduction by

outlining this framework and showing how available literature backs our choices (Section 2.1). Then,

Section 3 illustrates these concepts using a simple dynamical system model of lake eutrophication

(Carpenter et al., 1999), while Section 4 discusses them; both Sections also illustrate how policy

design and the system's representation dynamically impact one another. Section 5 provides concluding

remarks.

2 A dynamical system framework for vulnerability

2.1 Overview of the framework

Let us imagine a healthy-looking economy or ecosystem right before it crashes, when the unemployment

rate is still low, or biodiversity still high. In such cases, the present situation is good but is about

to deteriorate dramatically. Conducting an assessment of the system based on a single stage in the

present or near future is like taking a snapshot of it: it gives a static view of the system. By contrast,

observing its trajectory over a longer time-frame is more relevant since it gives a dynamic view of it

and may help anticipate its undesirable evolution.

This observation suggests that vulnerability indicators can be more relevant when encompassing an

entire time frame, rather than a single date. Yet, time is only one of four types of variables one needs to

consider within a general stochastic controlled dynamical system formulation. The three other are the

system's state, the actions � called control within the mathematics of control theory � implemented

to manage it, and the uncertainty that a�ects it. Upon interpretation of that formulation in the

context of vulnerability literature, we propose that vulnerability concepts are related to one another

by abstraction over one of these categories of variables, either by aggregation � such as for time � or

by selection. Our presentation of the framework is to start with all four categories of variables, then

abstract them one at a time until only the initial state remains, as detailed in Figure 1 and justi�ed

from the literature in the remainder of this section.

Section 2.2 proposes a starting point through a representation of a system at a given stage t that is

both descriptive and normative. Its descriptive side relies on a general dynamical system formulation

of a single-stage evolution from stage t to t+1. This formulation is very similar to that of Ionescu et al.

(2009) in their attempt at proposing a formal approach for vulnerability, but it explicitly considers the

role of uncertainty as a determinant for the future state of the system, along its present state and the

control actions that are implemented. Section 2.2 also makes the normative side explicit compared to

previous formulations, through the introduction of a single-stage harm function associated to a state
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Figure 1: Schematic representation of the proposed framework, which proceeds through successive
aggregations to de�ne vulnerability concepts. This �gure announces the �ow of Section 2. Light-gray
ellipsoids highlight the variables the elements in dark-gray ellipsoid depend on.
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at stage t.

Then, Section 2.3 aggregates over time to provide a system's representation over the entire period

[0, T ] of interest, whereas Ionescu et al. (2009) mainly base their discussion on vulnerability on evo-

lutions over a single time step. Vulnerability of an entity depends on uncertain dynamics over time

(Wolf et al., 2013), a fact that is often overlooked or kept implicit (Liu et al., 2008), even though vul-

nerability to a natural hazard may be apparent only long after the event's occurrence (Menoni et al.,

2002; Lesno� et al., 2012). As demonstrated by the development economics literature, acknowledging

that vulnerability should be measured over several future periods can help learn about its determinants

(Christiaensen and Boisvert, 2000). For example, a household's trajectory over several periods must be

taken into account in order to measure chronic poverty and vulnerability to poverty (McCulloch and

Calandrino, 2003). Hence the need for a framework centered on the idea of possible future trajectories

to which harm values are associated. Trajectories depend on controls and uncertainty over [0, T ], but

also on the initial state of the system, as illustrated by the concept of path dependence (Preston, 2013).

After that, Section 2.4 considers all the uncertain scenarios over [0, T ] to propose an operational

de�nition of vulnerability. Indeed, each uncertain scenario yields a di�erent trajectory, so one cannot

assess vulnerability from only one of the possible trajectories. Instead, the possible values of future

harm are considered through the occurrence probabilities of these possible trajectories, leading to

obtaining a probability distribution function (pdf) of these harm values. Then, a relevant statistic

derived from this pdf is a measure of potential future harm, in other words vulnerability. Though it

may seem like a strong choice, aggregating harm values from all trajectories into a single vulnerability

indicator is advocated by previous formal analyses of the concept of vulnerability (Ionescu et al., 2009;

Wolf et al., 2013).

Finally, Section 2.5 draws connections between vulnerability indicators and the search of appropri-

ate control policies for vulnerability minimization and avoidance. This is achieved by selecting one or

several control policies among all possible options. Once a policy is chosen, vulnerability only depends

on the initial state. There are two ways of choosing an appropriate policy (Ionescu et al., 2009):

through vulnerability minimization, or by choosing policies that keep vulnerability below a reference

value. In the latter case, that reference value may be chosen to re�ect stakeholder's preferences. It

then explicitly connects vulnerability with the notion of threshold it is often associated to (e.g. Luers

et al., 2003; Luers, 2005; Béné et al., 2011), and it separates what is satisfactory from what is not. Yet,

that reference value may also be related to vulnerability assessed assuming a baseline policy. Then,

�nding a policy that lowers vulnerability compared with this baseline is associated with adaptation

(e.g. Luers et al., 2003; Ionescu et al., 2009; Sandoval-Solis et al., 2011).

2.2 System representation at a single stage

2.2.1 System dynamics

We consider a system and its uncertain and controlled dynamics. This system can for instance be a

SES, but the framework is applicable to any system that evolves with time. For a given current stage

t > 0, the transition to the next stage t+ 1 is given by the following discrete-time equation:

x(t+ 1) = f(t, x(t), u(t), w(t)) (1)
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The time-dependent function f determines the transition between two stages. x(t) is the vector of

state variables describing the system at stage t, and belongs to a state space noted X. Meanwhile, u(t)

is the vector representing the controls that are decided at stage t by stakeholders to in�uence the state.

It is chosen from a set ua(t, x) of available controls. w(t) is the vector representing the uncertainty and

variability that a�ect the system at stage t. It therefore aims at taking into account hazards, shocks

and stresses, whatever their nature.

2.2.2 Single-stage harm

Harm is introduced as a normative judgment on the �badness� of a system's state at a given moment

(Hinkel, 2011). It is intrinsically a subjective notion (Ionescu et al., 2009; Wolf et al., 2013). In other

words, it re�ects a value judgment on a state x(t), so that di�erent stakeholders within a given SES

may have di�erent views on which states ought to be identi�ed as harmful, and to what extent they

are harmful. This leads to de�ning a single-stage harm function h:

(t, x) 7→ h(t, x) (2)

Although it is not a general necessity, it may often be convenient to assume that single-stage harm is a

quantity that is never negative, but can be equal to zero if it can be considered that no harm is being

done to the system.

2.3 System representation over a time horizon

2.3.1 Trajectories

Rather than by a single state transition between two consecutive stages, we are interested in a system's

evolution at a discrete set of stages t = 0, 1, . . . , T − 1, T indexed by integer values. They de�ne a

time frame of interest [0, T ]. Within this time frame, a state trajectory X is the following sequence of

states1:

X = (x(0), x(1), . . . , x(T )) (3)

X shall be more simply called trajectory in the remainder of this work. The approach of assessing

vulnerability using all the states of a system trough its evolution can be associated with the word

�dynamic�, as opposed to the �static� approach of using only a state x(t) at a given stage t.

If X represents an actual sequence of system states, then through equation (1), it depends on the

values u(t) and w(t) at every stage, so de�nitions for sequences of controls and uncertainty vectors

are warranted. Similar to De Lara and Doyen (2008), we call scenario the sequence of events W =

(w(0), w(1), . . . , w(T )). The space of all possible scenarios is noted Ω. Probabilistic assumptions about

uncertainty are needed, and they are detailed in Appendix A. They lead to assume the existence of a

probability P de�ned over Ω. Besides, we assume that this probability has a pdf which we note p(W ).

One should keep in mind that any dynamical representation of a system may not take into account

all the possible scenarios, nor evaluate correctly their probability of occurrence, so that no pdf can be

considered a complete representation of uncertainty (Carpenter et al., 2008). A policy U associates to

1A notation not to be confused with that for a random variable, generally in bold: X.
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At stage t Over the period [0, T ]
Name Notation Name Notation

Control u(t) Policy U
Uncertainty w(t) Scenario W

State x(t) State trajectory X
Single-stage harm h(t, x(t)) Harm H(X)

Table 1: Summary of notations at stage t, and their counterparts taken over the entire period [0, T ].

all stages t and states x a control u(t, x). The set of all the policies U available within a horizon of T

is noted Ua(T ).

Noting x0 = x(t = 0) the initial state, the triplet (x0, U,W ) de�nes, according to equation (1),

a unique sequence of states. Thus, when a trajectory is associated to such a triplet, we note this

trajectory, X(x0, U,W ).

2.3.2 Harm on a trajectory

According to Wolf et al. (2013), harm is de�ned by associating a harm value to an evolution. Therefore,

this work de�nes a harm function H that associates a harm value H(X) to any sequence of states X

� regardless of whether it has been associated to a triplet (x0, U,W ) previously or not. Similar to

single-stage harm, this notion of harm contains the idea that two trajectories can be compared, and it

is both subjective and normative. In fact, the relationship between the harm function H and single-

stage harm which is similar to that between X and x(t): Table 1 summarizes the notations de�ned at

stage t and their counterparts de�ned over [0, T ].

In practice, since harm H(X) along a trajectory may arguably be viewed as a very abstract notion,

it can be convenient to de�ne it directly as a function of (T + 1) single-stage harm values h(t, x(t))

computed on each state along the trajectory. It seems natural to assume that H(X) is an increasing

function of each of the T + 1 single-stage harm values2.

2.3.3 Examples of harm function

There is a virtually in�nite number of ways to build H by aggregating single-stage harm values into

a single scalar value. Yet, here we only show three classical way of aggregating a set of values into a

single one: 1) through average/summation, 2) through a binary assessment with respect to a critical

value or threshold, or 3) through a worst-case approach.

A most straightforward way to assess harm along a trajectory from single-stage harm values

h(t, x(t)) is to sum these values and form the total harm function, analogous to a total cost:

HS(X) =

T∑
t=0

h(t, x(t)) (4)

Then, another classical measure of harm is through a boolean Hθ which value depends on whether

single-stage harm is kept below a threshold level θ at all times. It is more classically expressed as an

2In the sense that for any X1 = (x1) and X2 = (x2), if ∀t ∈ [0, T ], h(t, x1) ≤ h(t, x2), then H(X1) ≤ H(X2).
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indicator of whether the system's trajectory leaves a desirable region at some point:

Hθ(X) =

{
1 if ∃t ∈ [0, T ], x(t) /∈ Kθ(t)

0 if ∀t ∈ [0, T ], x(t) ∈ Kθ(t)
(5)

where Kθ(t) is the set of desirable states, also called constraint set, which regroups states for which

single-stage harm is below θ:

Kθ(t) = {x ∈ X, h(t, x) ≤ θ} (6)

Recall that X was de�ned the state space in Section 2.2.1. Kθ(t) delimits a set of states that can

have any shape. As thus, it generalizes the notion of threshold, which most commonly are hyperplanes

splitting the state space in two. Yet, it keeps the same function as a threshold, since it separates more

desirable states from less desirable ones.

Finally, the worst-case approach consists in measuring harm as the maximal value of single-stage

harm during [0, T ]. This de�nes Hmax, a measure of harm severity along the trajectory:

Hmax(X) = max
t∈[0,T ]

h(t, x(t)) (7)

One example of �eld where the above harm indicators are commonly used is that of water resources

planning and management(Hashimoto et al., 1982; Moy et al., 1986; Loucks, 1997; Kjeldsen and Ros-

bjerg, 2004; Sandoval-Solis et al., 2011). For instance, Hmax would measure the maximal amount by

which a threshold is not met, e.g., the maximum water supply shortage. The only di�erence is that

in the water resources literature, harm severity Hmax is evaluated over a failure period when a per-

formance criteria is not met, rather than over a �xed period [0, T ]. Yet, similar to the present work,

the harm functions this literature de�nes serve as a basis for the de�nition of vulnerability indicators,

which is the focus of the next Section.

2.4 Vulnerability for a given policy

2.4.1 De�nition

For a given harm function H and given initial state x0 and policy U , one gets a pdf of harm values.

We operationally de�ne a vulnerability indicator VH(x0, U) as a statistic on this pdf of harm values.

Indeed, if we consider an initial state x0 and a policy U , then for each scenario W , there is a

unique trajectory X(x0, U,W ), to which a harm value H(X(x0, U,W )) is assigned. Since we de�ne

vulnerability as a measurement of potential future harm, assessing vulnerability for x0 and U supposes

to consider harm from all these trajectories, as well as the probability of occurrence of these trajectories.

The above de�nition virtually leads to the de�nition of an in�nity of vulnerability indicators for

a given system. Trying to enumerate them would be beyond the scope of this work; instead, what

follows focuses on giving examples of families of common vulnerability indicators. Similar to Section

2.3.3, these indicators aggregate a probability distribution of harm values into a statistic through

1) average/summation, 2) a binary assessment with respect to a critical value or threshold, or 3) a

worst-case approach.
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2.4.2 Average or expected vulnerability indicators

Vulnerability may be expressed as the expected (or average) value of future harm, computed over the

probability distribution of harm values. This is the family of expected vulnerability indicators V E :

V EH (x0, U) = E [H(X(x0, U,W ))] (8)

where E is the expectation operator for probability distributions, de�ned over the space Ω of all

scenarios. If the pdf over the scenarios is continuous, then using the density p(W ) equation (8)

becomes:

V EH (x0, U) =

∫
W∈Ω

H(X(x0, U,W )) p(W ) dW (9)

Alternatively, if this pdf is discrete, then p(W ) > 0 only for a discrete set of scenarios Ωd ⊂ Ω, and we

have:

V EH (x0, U) =
∑
W∈Ωd

H(X(x0, U,W )) p(W ) (10)

Aggregation of all the harm values from all the possible scenarios is apparent in the last two equations.

Then, one can form vulnerability indicators by using V EH along with the harm functions de�ned in

Section 2.3.3. For instance, Sandoval-Solis et al. (2011) de�nes water resources vulnerability indicators

as the expected value of HS , Hθ and Hmax. In particular, a classical indicator is the expected value of

the sum of single-stage harms de�ned as HS in equation (4):

V EHS (x0, U) = E

[
T∑
t=0

h(t, x(t))

]
(11)

In fact, V EHS can be thought of as a total expected cost over [0, T ], and is to be called expected cost

henceforth.

2.4.3 Vulnerability as the potential crossing of a threshold

Vulnerability may be de�ned as the probability for harm to cross a threshold ξ. This constitutes

a second family of indicators, which describe the probability of being harmed since they distinguish

between �harmed� and comparatively �unharmed� trajectories, a binary classi�cation used to de�ne

vulnerability in several studies (e.g. Mendoza et al., 1997; Rockström et al., 2012; Kasprzyk et al.,

2013). Such indicators V ξH are de�ned by:

V ξH(x0, U) = P [H(X(x0, U,W )) > ξ] (12)

As for expected vulnerability, the probability of being harmed may be derived from any harm function.

An oft-encountered indicator is obtained using V ξH and the binary harm function Hθ (equation (5)).

Since Hθ is either 0 or 1, by taking ξ = 0 this indicator V 0
Hθ

expresses the probability that single-stage
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harm is 1. This corresponds to the probability for single-stage harm to cross a threshold value θ:

V 0
Hθ

(x0, U) = P [Hθ(X(x0, U,W )) = 1] (13)

= P [∃t ∈ [0, T ], x(t) /∈ Kθ(t)] (14)

The latter arguably constitutes an important subfamily of vulnerability indicators on its own; for

instance, vulnerability as the probability for a system to evolve into a less desirable state has been used

in the context of social-ecological systems (e.g. Peterson, 2002). Indeed, vulnerability can be de�ned

in development economics as the probability now that a relevant quantity � e.g., wealth, food supply �

be lower (greater) than a maximal (minimal) threshold in the future (e.g. Christiaensen and Boisvert,

2000; Hoddinott and Quisumbing, 2003; McCulloch and Calandrino, 2003). A function of the gap or

distance between the measured quantity and the threshold then provides additional poverty measures

(Foster et al., 1984), or, if one is looking at expected value of this function in the future, additional

vulnerability measures (Christiaensen and Boisvert, 2000; Hoddinott and Quisumbing, 2003).

2.4.4 Worst-case approach to vulnerability

Another approach to vulnerability is to consider the worst-case scenario, and vulnerability may then

be expressed as the maximal value of harm over Ω3:

V max
H (x0, U) = max

W∈Ω
{H(X(x0, U,W ))} (15)

Yet, the latter value often corresponds to what might happen in the event of the worst cataclysm,

and therefore may not be relevant because the outcome might then be catastrophic no matter x0 and

U . Thus, it may be more relevant to express vulnerability through high quantiles of the distribution

of harm values. This can be equated with �nding the critical harm value that is not exceeded with

a con�dence level β such as 90%, 95%, 99% or even higher. Let us call critical harm this family of

vulnerability indicators, and note it V βH :

V βH(x0, U) = min
{
z ∈ R+,P [H(X(x0, U,W )) ≤ z] ≥ β

}
(16)

In particular for β = 1, the only harm value that has a 100% chance of not being exceeded is that

of the worst-case scenario, so that V max
H (x0, U) = V 1

H(x0, U). For instance, Loucks (1997) proposes

vulnerability indicators by applying the above formula for V βH along with harm functions HS and Hmax.

2.5 Policy design and vulnerability reduction

2.5.1 Minimizing vulnerability

Let us now make a link between vulnerability and the design of policies that may be devised in order

to reduce or avoid it. A straightforward way to reduce vulnerability is to �nd a policy that minimizes

it, when this is possible. Then, for a given vulnerability indicator VH , we search for a policy U∗ that

minimizes VH(x0, U) for a given initial state x0. When such a policy exists , minimal vulnerability,

3In practice, the maximum is often taken over a representative subset Ω̄ of Ω, e.g., through discretization

10



noted V ∗H , may be expressed as a function of the initial state alone:

V ∗H(x0) = VH(x0, U
∗) = min

U∈Ua(T )
{VH(x0, U)} (17)

2.5.2 Examples of vulnerability minimization

This paragraph presents cases of vulnerability indicators VH for which stochastic dynamic programming

(SDP) is a way to �nd a policy U∗. SDP is an algorithm that recursively computes both the minimal

value of vulnerability from stage t to stage T , and a policy which leads to that minimal value. It does

so by progressing backward from the �nal stage to the initial one. SDP needs the assumption, made

from now on, that for any couple of di�erent dates t1 and t2, the random vectors w(t1) and w(t2) are

statistically independent from each other. There exist a number of methods other than SDP that may

be more appropriate to speci�c situations. Yet, SDP in particular is mentioned in this work for its

ability to �nd policies that minimize vulnerability for di�erent types of common indicators, namely the

expected cost V EHS de�ned by equation (11), and the probability of crossing a threshold of single-stage

harm, V 0
Hθ

(equation (14)).

In the former case, minimizing the expected cost V EHS using SDP amounts to a classical example

of cost minimization (e.g. Loucks and van Beek, 2005; De Lara and Doyen, 2008). Then for an initial

state x0, using equation (17) leads to the de�nition of the minimal expected cost V E∗HS (x0).

In the latter case, the probability of crossing a threshold of single-stage harm can equally be

expressed using the probability of not crossing that threshold:

V 0
Hθ

(x0, U) = 1− P [∀t ∈ [0, T ], x(t) ∈ Kθ(t)] (18)

Vulnerability is minimized when the latter probability is maximized. Maximizing the probability of

staying in a constraint set at each and every stage is a goal of a branch of control theory, namely

stochastic viability theory (De Lara and Doyen, 2008). This theory was used to design sustainable

policies under uncertainty in social-ecological systems such as �sheries (Doyen and Béné, 2003; De Lara

and Martinet, 2009; Doyen et al., 2012) or grassland agro-ecosystems (Sabatier et al., 2010). Doyen

and De Lara (2010) link stochastic viability with SDP, by proposing a SDP algorithm that �nds a

policy U∗ that maximizes the probability of keeping the properties of a system (see Appendix B for

details). Then, U∗ also minimizes V 0
Hθ

. According to equation (17), this leads to the de�nition of the

function V 0∗
Hθ

(x0) which gives the minimal probability of crossing the single-stage harm threshold θ at

the initial state x0.

2.5.3 Other ways of selecting appropriate policies

The search for an optimal policy is often di�cult or even impossible, because one does not know enough

about the system to compute it analytically. This is why Ionescu et al. (2009) contend that a more

general way of deriving appropriate policies is by �nding some of those that keep vulnerability below a

reference level. We distinguish between two ways of de�ning that reference level. In both cases, once a

satisfactory or an adaptive policy U has been selected, vulnerability only depends on the initial state

x0. Note that U can be di�erent for di�erent values of x0.
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On one hand, the reference level can be de�ned as a vulnerability threshold v that stakeholders

would rather not exceed. Then, for x0 a policy U is satisfactory � or acceptable � if:

V (x0, U) ≤ v (19)

This notion of acceptability leads to also labeling policies as either acceptable or not. On the other

hand, the reference level can be de�ned for a given initial state x0 by a reference or baseline policy

U0. Then according to equation (19), we have v = V (x0, U0), and the goal is then to �nd alternative

policies that lower vulnerability, e.g. among a set of prede�ned policy options. A policy that succeeds

in lowering vulnerability may be called adaptive (Luers et al., 2003), and one that increases it may

then be called maladaptive (Burton, 1997; Smit et al., 2000).

3 Application

3.1 A simple lake eutrophication problem

We illustrate the proposed framework with the discrete-time lake eutrophication model by Carpenter

et al. (1999) (C99 thereafter). In what follows, the state at stage t is x(t) = (P (t), L(t)), and it is

assumed that each stage represents a year. P (t) is the phosphorus (Ph) concentration in the lake at

the end of year t, and L(t) is the excess Ph from human activities during year t. All variables are

dimensionless, and the discrete-time evolution of the state reads: P (t+ 1) = P (t) + [L(t) + u(t)] ew(t) − bP (t) +
P (t)q

1 + P (t)q

L(t+ 1) = L(t) + u(t)
(20)

Equation (20) corresponds to the case from C99 with stochastic inputs. The control is u(t), and

choosing its value amounts to a new decision on state L(t). Decisions concerning phosphorus use

in human activities may only be made every Y years, so as to represent inertia in decision-making

(e.g., institutional inertia). Then, any value can be chosen between 0 and Lmax which represents the

value of L beyond which farmers and other Ph users no longer have an incentive for using more Ph

in agriculture. Formally speaking, this amounts to choosing the set of available controls Ua(t, L) as

follows:

Ua(t, L) =

{
[−L,Lmax − L] if ∃k ∈ N, t = k.Y

{0} otherwise
(21)

Uncertainty is represented by w(t). Thus, equation (20) corresponds to the formulation x(t+ 1) =

f(t, x(t), u(t), w(t)) from equation (1). Ph input into the lake is L(t)ew(t); it is stochastic because the

soil stores Ph and acts as a bu�er. w(t) is a realization of a random variable with Student distribution,

with standard deviation σd and df degrees of freedom (dof); the pdf of w(t1) and w(t2) at any two

stages t1 and t2 are independent and identically distributed. The parameter b determines how fast Ph

is eliminated in from the lake, for example as out�ow.

In what follows, we set T = 100, and assess vulnerability from harm over the future period [1, T ].

Parameter values are from Figures 11, 12 and 14 from C99, and are summarized in Table 2; the interval
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Notation Description Value or interval

P Ph concentration [0, 2]
L Excess Ph [0, 0.15]
b lake parameter 0.55
q lake parameter 2
Y lag in decision-making 10
df dof of w(t) 10
σd standard deviation of w(t) 0.25

Table 2: Summary of the parameters for the baseline case of Section 3.

for P is chosen so all Ph dynamics are represented. P and L are discretized over a grid, with resolutions

∆P = 0.01 and ∆L = 0.001.

Ph has been proved to be the main inducer of lake eutrophication (Schindler, 2006; Schindler et al.,

2008). A clear-water lake is called oligotrophic, and it generally has high-quality water as well as a

healthy ecosystem. Eutrophication lowers the value of ecosystem services from a lake, impairing water

quality as well as activities such as �shing or recreation. Therefore, Ph inputs must be controlled

to avoid ecological degradation of lakes (Carpenter, 2008). A lake must be managed to balance Ph-

producing economic activities with its ecological preservation. These trade-o�s are made explicit

through harm functions.

3.2 Trade-o�s in harm evaluation

In the model from C99, harm is associated with 1) being limited in the quantity of Ph that can be

used for economic activities and 2) the presence of Ph in the lake. We choose to reuse the quadratic

utility functions from Equations (4) and (5) from C99, since 1) quadratic utility functions are simple

examples of concave utility functions, and 2) single-stage harm functions can be seen as the opposite

of (single-stage) utility functions. However, compared to C99, we use di�erent numerical coe�cients

when expressing ecological harm hel(P ) and economic harm hen(L):

hel(P ) = P 2 (22)

hen(L) =
4

Lmax
(Lmax − L)2 (23)

Then, single-stage harm h(t, x) is stationary, so that it is more simply noted h(x), and it is expressed

as the weighted sum of ecological harm hel(P ) and economic harm hen(L):

h(x) = λhel(P ) + (1− λ)hen(L) (24)

where λ, comprised between 0 and 1, weighs ecological harm with respect to economic harm; it is

a means to explore potential trade-o�s between both sources of harm, and if and how their relative

importance a�ects decision-making. Coe�cients in equations (22) and (23) have been adjusted from

C99 so as to set both quadratic harm functions hel and hen on an equal footing, which facilitates the

analysis of trade-o�s between vulnerability sources. This is why hel and hen have comparable shape

weights: they range from 0 to 4 over the respective intervals for P and L.

Once single-stage harm has been de�ned, it is used to compute harm over the lake's possible
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trajectories X. This application focuses on two of the ways proposed in Section 2.3 to aggregate

single-stage harm values over a horizon. On one hand, it uses total cost HS(X) de�ned in equation

(4), the sum of single-stage costs. On the other hand, harm is assessed as the fact of leaving a region

de�ned by a single-stage harm threshold h(x)= 1. With the conventions from equations (6) and (5)

respectively, we de�ne the constraint set K1 thanks to this threshold, then the binary harm function

H1(X) which value is 1 if the threshold is crossed at some point during the trajectory, and 0 otherwise.

Figure 2 provides a �rst illustration of the consequences of the choice of the weight λ balancing

ecological and economic harm. Choosing λ naturally a�ects single-stage harm for each state but beyond

that, λ alongside the dynamics determine which policy choices are made. For a given value of L, P

converges towards a stable attractor, such attractors being represented by the continuous lines. The

continuous line for which Ph concentration is low corresponds to an oligotrophic lake, whereas the line

for which it is high corresponds to a eutrophic lake. The existence of two stable attractors for some

values of L makes eutrophication di�cult to reverse. Indeed, there can be an oligotrophic lake for

L= 0.07 for instance, but if for some reason the system were to tip towards a eutrophic state, then L

would have to be lowered below 0.05 for some time to recover the lake's ecological health, hurting the

economy in the process.

In case (a) where λ = 0.5, attractors with lowest single-stage harm are with moderate values of L

and low values of P . They are also the only attractor in the constraint set. Therefore, trajectories X

that remain around these attractors would fare well when evaluated both by the total harm function

HS(X) and the binary harm function H1(X). Even though it also takes into account economic interest,

λ = 0.5 promotes policies that keep the lake oligotrophic. By contrast, case (b) where λ = 0.2 puts a

much heavier weight on the economy, and it is a choice that corresponds to policies promoting a high

level of Ph emissions. These policies lead to eutrophication, yet corresponding trajectories have good

performance when evaluated by both HS and H1.

3.3 Vulnerability analysis of lake eutrophication

Figure 2 only provides a rule of thumb about the policies that may be implemented to re�ect the choice

of λ. Vulnerability indicators enable a quantitative evaluation of the impact of di�erent parameters,

and they take into account how the uncertain dynamics may a�ect the system's trajectory. Since a

control is chosen to determine L(1) independently of the initial value L0, vulnerability only depends

on initial phosphorus concentration P0 and on the chosen policy.

The remainder of Section 3 is to evaluate the impact of the weight λ on both enacted policies and

the resulting vulnerability. The range for λ is from 0 to 1; it is explored with a resolution of 0.05.

For a given value of λ, two types of vulnerability indicators are being used. On one hand, V EHS (P0, U)

de�ned in equation (11) is the expected value of the cost function HS(X) along lake trajectory X.

We also de�ne ecological and economic vulnerability, respectively, as the expected value of the sum of

single-stage ecological and economic harm along a trajectory. Noting Vel(P0, U) ecological vulnerability

14



Figure 2: Single-stage harm for (a) λ = 0.5 and (b), λ = 0.2. The set K1 and attractors of the
dynamic for b = 0.55 are also represented. The continuous lines are stable attractors while the dotted
line represents the unstable ones.
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and Ven(P0, U) its economic counterpart yields:

Vel(P0, U) = E

[
100∑
t=1

hel(P )

]
(25)

Ven(P0, U) = E

[
100∑
t=1

hen(L)

]
(26)

Vel and Ven are vulnerability indicators because they respectively aggregate single-stage ecological and

economic harm, �rst over whole time frame [0, T ], then over all possible scenarios. V EHS (P0, U) is the

sum of both indicators:

V EHS (P0, U) = Vel(P0, U) + Ven(P0, U) (27)

As indicated in Section 2.5.2, the vulnerability-minimizing policy is found by SDP. We will note

U∗c the policy that minimizes expected cost V EHS (P0, U). That optimal policy is determined by the

successive decisions about L(t) depending on P (t) at stages when decisions are taken, and it is

dependent on the chosen value of λ (Figure 3.a). There are two types of optimal decisions. For low

values of λ, heavy emphasis on limiting economic vulnerability leads to decisions which enable high

Ph inputs into the lake no matter the value of P . As a consequence, economic vulnerability is low

while ecological vulnerability is close to maximal (Figure 3.b). To the contrary, for values of λ ≥ 0.4

decisions prioritize the ecological integrity of the lake, and only permit Ph-producing activities as

long as that integrity is not threatened. This leads to high economic vulnerability but low ecological

vulnerability � and since eutrophication is di�cult to reverse, initial Ph concentration P0 has an

in�uence on vulnerability. λ = 0.35 is a critical value, for which the current (initial) state of the lake

determines future decisions. This trade-o� between ecological and economic vulnerabilities Vel and

Ven is inescapable since Figure 3.b features a Pareto front, which means that for the values of P0, it is

impossible to reduce both Vel and Ven below any of the values given by the fronts.

On the other hand, this application uses V 0
H1

(P0, U) de�ned by equation (14), which is the proba-

bility of crossing the threshold of harm h(P (t), L(t)) = 1. Again, SDP yields the minimal probability

of crossing that threshold, and U∗τ is a corresponding policy. Its e�ects can be compared to that of

policy U∗c yielding the minimal expected cost (Figure 4). As expected, U∗τ outperforms U∗c with re-

spect to vulnerability indicator V 0
H1

(P0, U) (Figure 4.a). Conversely, U∗c outperforms U∗τ with respect

to vulnerability indicator V EHS (P0, U) (Figure 4.b): there is a trade-o� between respecting the single-

stage harm threshold of 1, and minimizing the expected cost. For both indicators and both policies,

a lower vulnerability is obtained by conveniently forgoing either ecological (λ close to 0) or economic

(λ close to 1) vulnerability, than by �nding compromise policies that take both vulnerability sources

into account. For a given value of λ, U∗τ tends to lead to the implementation of more ecologically

conservative policies than U∗c , because such policies lower the risk that exceptional values of w(t)

cause the Ph dynamics to drive the system through the threshold h(t, x) = 1. They yield high values

of the expected cost V EHS (P0, U) because economic vulnerability is very high, so that trade-o�s are

between respecting the single-stage harm threshold of 1, and economic vulnerability.
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Figure 3: For di�erent values of λ in the base case b = 0.55, Y = 10, and vulnerability indicator
V EHS (P0, U

∗
c ). (a) Decisions (choices of L(t) as a function of P (t) every Y years) optimally re�ecting

preferences and (b) Pareto front of ecological vs. economic vulnerability for di�erent values of P0.
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Figure 4: Comparison of policies U∗c and U∗τ depending on λ for P0 = 0.3, regarding their e�ects on (a)
the probability V 0

H1
(P0, U) of crossing the harm threshold K1, and (b) the expected cost V EHS (P0, U).

3.4 Change in the lag Y between two controls

A reduction of the lag Y between two controls may re�ect improved system monitoring and governance.

It is expected to enable the implementation of better optimal policies with respect to a given indicator.

Figure 5 shows how the optimal policy for the total expected cost V EHS (P0, U) is impacted by this

reduction at P0 = 1. The total cost is only reduced λ = 0.4 and above, a range where policy decisions

prioritize keeping the lake in a clear water state. In that range, the greater part of vulnerability is

economic (Figure 3), so that vulnerability reductions essentially correspond to reductions in economic

vulnerability. Therefore, when policies prioritize lake conservation, Ph consumers that reject excess

Ph into the lake bene�t from more reactive policy-making. Conversely, if policies prioritize economic

interests at the expense of lake ecology, more reactive policy-making is inconsequential for V EHS (P0, U),

and the variations in economic vulnerability Ven observed for λ < 0.4 are insigni�cant, because Ven is

close to 0.

3.5 Change in Ph out�ow parameter b

Global change can potentially a�ect a lake in a number of ways (e.g. Beklioglu et al., 2007; Schindler

et al., 2008; Jeppesen et al., 2009). This section focuses on the impacts of possible modi�cations

of the rainfall regime. Lower precipitation may a�ect the out�ow from the lake, which lowers Ph

out�ow b, but also the Ph inputs if it is accompanied of rainfall events of lower intensity (Schindler

et al., 2008). However, Ph is disproportionately released from the soil into the lake by important

runo� events (Sharpley et al., 2008; Rodríguez-Blanco et al., 2013), and more extreme precipitation

is expected (Jeppesen et al., 2009), so that more extreme events may balance the lower quantity of

total precipitation when it comes to releasing Ph into the lake. As a result, we simply explore the

consequences of a shift in b, namely a 10% decrease. Therefore, the rest of this section asssumes
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Figure 5: Percentage of vulnerability reduction by reducing the lag Y between two controls, from Y =
10. For P0 = 1 (a) total vulnerability, (b) ecological vulnerability only and (c) economic vulnerability
only.
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Figure 6: Same as Figure 3 but with Ph lake out�ow b = 0.495.

b = 0.495. All else is the same as in Section 3.3 and in particular, the lag Y is 10.

With b = 0.495, attractors change and eutrophication is now irreversible (Figure 6.a). Indeed,

there is no value of L(t) for which the only attractor has a low Ph concentration, therefore the lake is

poised to remain close to a eutrophic attractor after it gets near one. As a result, there are two types

of decisions in Figure 6.a. For a low value of λ (< 0.3), preference for economic outcomes leads to

decisions that make the lake eutrophic. This is similar to the baseline case b = 0.55, with the exception

that this decision now becomes irreversible. For λ = 0.35 and higher, decisions aim at keeping the

lake in a clear-water state as long as this is possible; otherwise, they choose a eutrophic attractor that

re�ects the choice of λ. The higher λ, the higher the priority on the lake's ecological health, and the

more cautious the chosen policy for low values of P (t).

Practical consequences of irreversible eutrophication also translates into trade-o�s between ecolog-
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Figure 7: Comparison of ecological vulnerability Vel and economic vulnerability Ven with b = 0.55
and b = 0.495, under the optimal policy U∗c for the indicator V EHS (P0, U). For P0 = 0.3, and di�erent
values of λ.

ical and economic vulnerability that are di�erent for b = 0.55 (Figure 3.b) and b = 0.495 (Figure 6.b).

While in the former case, there was only a quantitative dependence of the Pareto Front on the initial

Ph concentration P0, in the latter case, there is a qualitative di�erence for high values of P0. Since

the lake is then bound to become and stay eutrophic, there is no policy guaranteeing low ecological

vulnerability.

One can also assess the consequences of b = 0.495 in comparison with b = 0.55, for instance for

P0 = 0.3 (Figure 7). Then for b = 0.495, ecological vulnerability Vel and economic vulnerability

Ven can be decomposed into two entities. On one hand, there is vulnerability with b = 0.55, which

corresponds to vulnerability before the change in b occurs. On the other hand, additional vulnerability

can be interpreted as vulnerability to the change in b. Thus, vulnerability to a speci�c event may be

computed by comparing the value of a vulnerability indicator before and after that event.

4 Discussion

The proposed formal framework for vulnerability is meant to accommodate a wide range of �eld- or

case-speci�c de�nitions, since it relies on the largest possible de�nition of the term as a measure of

possible future harm. It uses a discrete-time stochastic controlled dynamical system representation

which is well-suited to the de�nition of vulnerability and related concepts through successive abstrac-

tion. Starting from one-step discrete-time dynamics, a �rst abstraction through aggregation over a

period [0, T ] leads to the de�nition of harm over a trajectory. Then, a second abstraction aggregates

harm values over all trajectories into vulnerability indicators. Finally, a third abstraction consists in

choosing a policy that is appropriate in the sense that it minimizes or limits the chosen vulnerability

indicator. Examples show how the framework applies to a variety of indicators, as also illustrated
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by simple case of lake eutrophication. This application also showcases how this framework is also

appropriate to discuss the trade-o�s that may exist between sources of vulnerability in many systems.

The remainder of this section is to discuss how the proposed formalization relates to various topics

encountered in the literature and related to the concept of vulnerability.

The proposed perspective assumes that the probability distribution of the scenariosW is known. In

reality, major hazard events are by de�nition extreme and rare, so that the estimation of their return

period can be very uncertain and heavily dependent on the pdf used to approximate them (Esteves,

2013); and it has been shown that providing such estimates is far more perilous in the context of a

changing climate (Felici et al., 2007a,b). In general, many authors acknowledge that the probability

of occurrence of some hazards cannot be quanti�ed, and they then qualify as unknown unknowns

(Swanson et al., 2010; Beck and Kropp, 2011), �uncertainty and surprise� (Folke et al., 2002, 2004;

Adger et al., 2005), or as uncomputable uncertainty (Carpenter et al., 2008). Similar to Section

3.5, vulnerability to such hazards can be quanti�ed by comparing vulnerability in their presence to

vulnerability in their absence. Exploring the consequences from the occurrence of extreme events then

falls under the umbrella of �scenario planning� (Allen et al., 2011; Cobb and Thompson, 2012), because

the proposed framework enables assessing vulnerability to events de�ned by such �scenarios�.

The application to lake eutrophication shows how vulnerability indicators can be adept at describing

trade-o�s between vulnerability sources, e.g., ecological and economic. This relates to the idea that

reducing vulnerability to some stressors or shocks in some part of a system may be at the expense

of increasing vulnerability to other stressors or other shocks in some other part of the same system.

This may seem relatively straightforward when investigating ecological vs. economic vulnerability

in the simple case of Section 3, but in some cases the negative impacts of reducing vulnerability to

certain well-identi�ed shocks may be felt across di�erent space or time scales (Anderies and Hegmon,

2011; Rodriguez et al., 2011; Schoon et al., 2011). Such e�ects have been studied under the name

of robustness-vulnerability trade-o�s, whereby increasing robustness to a set of shocks can increase

vulnerability to another set of shocks (Anderies et al., 2007). The idea that reduced vulnerability

somewhere in a system often comes at a price is a call for integrated assessment, as it encourages one

to understand and assess what this price is before implementing shortsighted policies.

The literature on robustness-vulnerability trade-o�s is also related to robust control (Doyle et al.,

1990; Zhou and Doyle, 1998) where feedbacks are designed to make a valued property of a system robust

to a given set of shocks. Similarly, this paper links vulnerability with another branch of control theory:

viability theory (Aubin, 1991; De Lara and Doyen, 2008), which in its stochastic version, also aims at

designing adaptive feedback policies to avoid the crossing of a threshold. These links are natural since

control theories can relate to policy design, and their use must be kept in mind when de�ning policy-

relevant indicators. Besides, confrontation of vulnerability-related concepts with methods and notions

from such theories is promising. For instance, the stochastic viability kernel (Doyen and De Lara,

2010) is the set of initial states such that the probability of crossing a threshold during a given period

is below a set number. It has been used in the de�nition of concepts such as robustness and resilience

(Martin, 2004; De�uant and Gilbert, 2011; Rougé et al., 2013). Some frameworks (e.g. Turner II et al.,

2003) rather use the concept of resilience to describe the capacity of a system to cope and adapt. In

reality, resilience in its own is a long-standing concept (Holling, 1973), which has given way to a large
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body of literature in many �elds (Brand and Jax, 2007). Vulnerability and resilience, due to their

distinct disciplinary origins, conceptual center of interests, and methodological approaches, seem to be

strongly complementary concepts (Miller et al., 2010).

Besides, this work draws strong connections between vulnerability and economic analyses, beyond

the poverty literature cited earlier on. Thus, single-stage harm may in general be de�ned as the contrary

of a utility function, such as in the lake eutrophication case (3.2). Moreover, some indicators given as

examples throughout this work have economic interpretations. Expected cost V EHS is self-explanatory

in that regard, but the probability V 0
Hθ

of crossing a threshold is related to so-called economic viability

analysis (e.g. Doyen et al., 2012), and V βH de�ned by equation (16) de�nes what is called value-at-risk,

a term coming from the economics and �nance literature and applied to environmental risk analysis

(Webby et al., 2007).

Finally, Sections 2 and 3 show complimentary aspects of the relationship between vulnerability

and adaptive capacity. Luers et al. (2003) de�nes adaptive capacity as the vulnerability reduction

caused by a policy change. As suggested by Section 3.4, this change can come from a better choice

among available policies, but as illustrated by Section 3.4, it can also spring from a change in the set

of available policies � a reduction in the lag in decision-making. In both cases however, the adaptive

potential of a policy change can only be evaluated through proper vulnerability indicators. Other

frameworks de�ne instead adaptive capacity based on its determinants (Yohe and Tol, 2002), or as

the inventory of the resources that can be allocated to adaptation (Nelson et al., 2007; McDowell and

Hess, 2012). These evaluation criteria are complimentary, since the former focuses on potential results

while the latter emphasizes the causes that make adaptations possible. Additionally, it seems relevant

to express adaptive capacity both in terms of absolute vulnerability reduction, but also in terms of

relative decrease � similar to Figure 5.

5 Conclusions and perspectives

Hinkel (2011) contends that vulnerability indicators are mainly �t for identifying who may be vulner-

able and where. A dynamical systems perspective on the matter may transcend this grim diagnosis by

fostering the development of fully dynamic indicators that explicitly consider probabilistic outcomes.

These indicators can inform and even guide policy choices, so that they truly are at the interface

between the representation of social-ecological system and its management. Further, we contend that

the vulnerability framework exposed in this paper is helpful regardless of the existence of a dynamical

system formulation, for reasons enumerated hereafter.

(1) It ties the de�nition of vulnerability indicators to the de�nition of future trajectories within a time

frame of interest, as well as that of associated harm values and occurrence probabilities.

(2) It clari�es the descriptive and normative aspects of vulnerability. Even though they come from

models whose complete objectivity can inevitably be questioned, trajectories and their associated

occurrence probabilities are the descriptive part. Assigning a harm value to a trajectory is the

normative part.

(3) In fact, the choice of the type of indicator itself is also normative. Indeed, conclusions on the same
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case may be di�erent if the assessment focuses on vulnerability as expected cost or consider the

consequences of the worst possible trajectories. For this reason, a study that uses several di�erent

vulnerability indicators may be more objective.

(4) Even in the absence of closed-form dynamics, the scope of a vulnerability assessment is related

to T , the state space X, the available policies Ua(T ), and the space Ω of all scenarios W . For

instance, this tells which management policies, or which hazards and uncertainty sources, are

being considered.

(5) A fully dynamic framework is a prerequisite to integrating the impact of policies in the assessment

of vulnerability indicators, so as to understand how to best cope with a given situation. Even

though a closed set of equations, let alone a way to optimize the implemented policy, may not

be available often in practice, it should be kept in mind that implemented policies and adaptive

actions dynamically in�uence vulnerability.
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A Probabilistic assumptions

Let us assume that at each stage, w(t) ∈ Rq, so that the scenario space Ω is a subset of (Rq)T , since
a scenario W is the (T + 1)−uplet (w(0), w(1), . . . , w(T )). The �rst probabilistic assumption is to

assume that Ω is equipped with a σ-�eld σ(Ω) and a probability P. Thus, the triplet (Ω, σ(Ω),P) is a

probability space.

The second assumption consists in the possibility to de�ne measurable and integrable probability

distribution functions (pdf) over this probability space. Any pdf introduced in this work will be

assumed to be measurable and integrable.

B Viability maximization

In what follows, for simplicity we discretize the state space into a discrete set which we note Xd. Thus,
we can de�ne the transition probability from any state x to any state y given the control u. We note

this function p(x, y|u).

Let us haveKθ(t) as de�ned in equation (6), SDP works using a value function G which is initialized

at the �nal date T , then recursively updated backwards from T to the initial date 0. Initialization

reads:

G(T, x) =

{
1 if x ∈ Kθ(T )

0 if x /∈ Kθ(T )
(28)

and the recursive transition equation is:

∀t ∈ [0, T − 1], G(t, x) = max
u∈ua(t,x)

 ∑
y∈Kθ(t)

p(x, y|u) G(t+ 1, y)

 (29)

Doyen and De Lara (2010) prove that G(0, x) is the maximal probability for the system to remain

within Kθ(t) at all dates during [0, T ].
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