

In situ intercomparison exercise on "home-made" DGT for the monitoring of trace metals, mercury and arsenic in surface freshwaters

A. Magnier, L. Lesven, Y. Gao, A. Dabrin, Marina Coquery

▶ To cite this version:

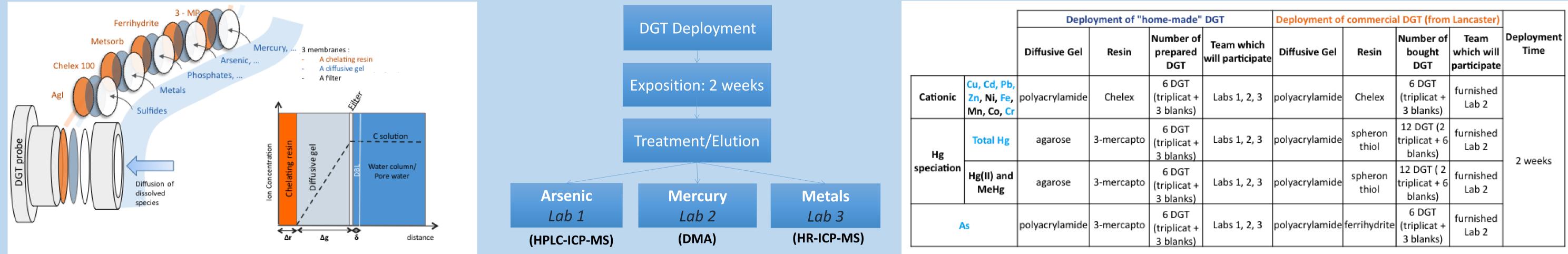
A. Magnier, L. Lesven, Y. Gao, A. Dabrin, Marina Coquery. In situ intercomparison exercise on "home-made" DGT for the monitoring of trace metals, mercury and arsenic in surface freshwaters. DGT Conférence, Sep 2015, San Sebastian, Spain. pp.1, 2015. hal-02601999

HAL Id: hal-02601999 https://hal.inrae.fr/hal-02601999

Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



A. Magnier¹, L. Lesven², Y. Gao³, A. Dabrin¹, M. Coquery¹

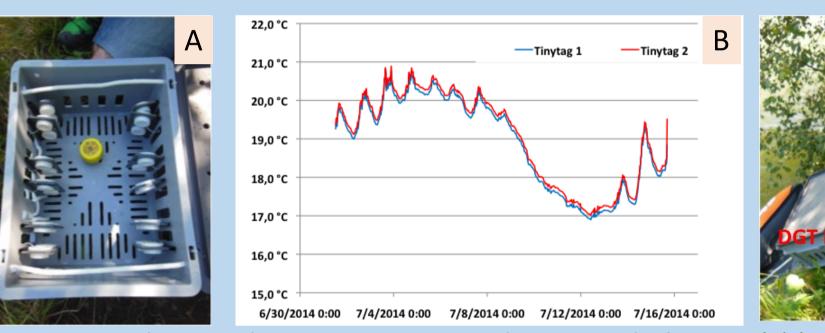
¹ Irstea, UR MALY, 5 rue de la Doua-CS70077, F-69626 Villeurbanne cedex, France ² Laboratoire LASIR (UMR 8516), Equipe Physico-chimie de l'Environnement, Université Lille 1, F-59655 Villeneuve d'Ascq, France ³ Department of Analytical and Environmental Chemistry (ANCH), Vrije Universiteit Brussel (VUB), Brussels, Belgium

Most monitoring programs for surface waters within a legislative framework Directive (WFD) rely on conventional techniques such as spot or automated sampling to determine total dissolved concentration of a target substance. These sampling methods are generally time-consuming, do not take into account temporal variability and could induce samples contamination, loss of analyte or speciation modifications. The Diffusive Gradient in Thin films (DGT) technique is an alternative sampling method to assess a time-weighted average (TWA) metal concentration in surface waters, as it takes into account metal variations during the period of exposure. This tool coupled with different resins adapted to different kind of substances is commercially available but several laboratories are now developing their home-made DGTs. As each laboratory prepares its home-made gel or resin in different working conditions by using different reagents (i.e. purity and/or supplier) and by using different methods to determine diffusive coefficient, the comparison of results obtained with these tools could be not relevant. To answer this question, the objective of our study was to compare commercial and "home-made" DGT performances for cationic metals (Cd, Pb, Cu, Zn), arsenic and total mercury during an *in situ* intercomparison exercise in Deûle River.

Strategy and DGT method

Different kinds of chelating resins using in DGT method. In our study, Chelex 100, 3-MP, spheron thiol and ferrihydrite chelating resins were used.

Analysis of arsenic, total mercury and cationic DGTs performed respectively by Lab 1, 2 and 3. Note that comparison is done between manufacturing of « home-made » chelating *resin+diffusive gel and do not into account treatment + analysis with specific apparatus.*



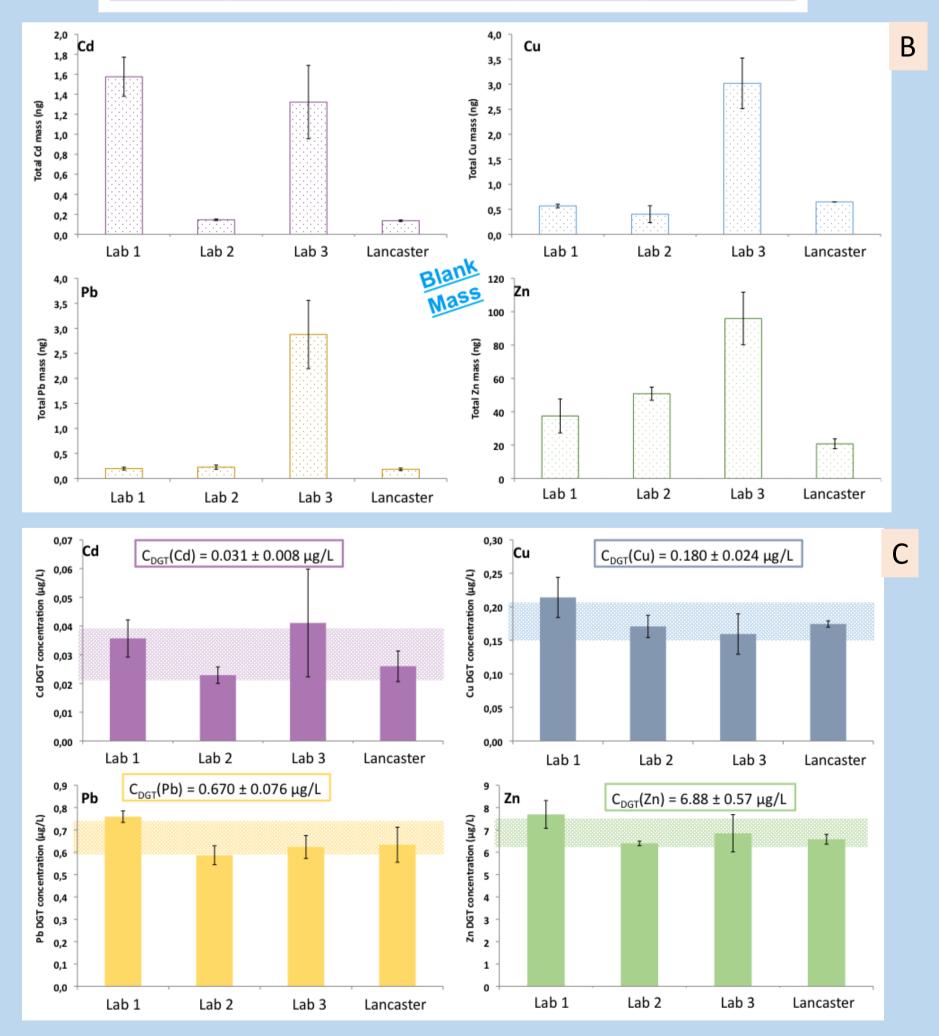
DGT exposition in Deûle river (North of France) near Douai Town. Station situated near Metaeurop, former which has strongly impacted this site until 2003 by metal discharges.

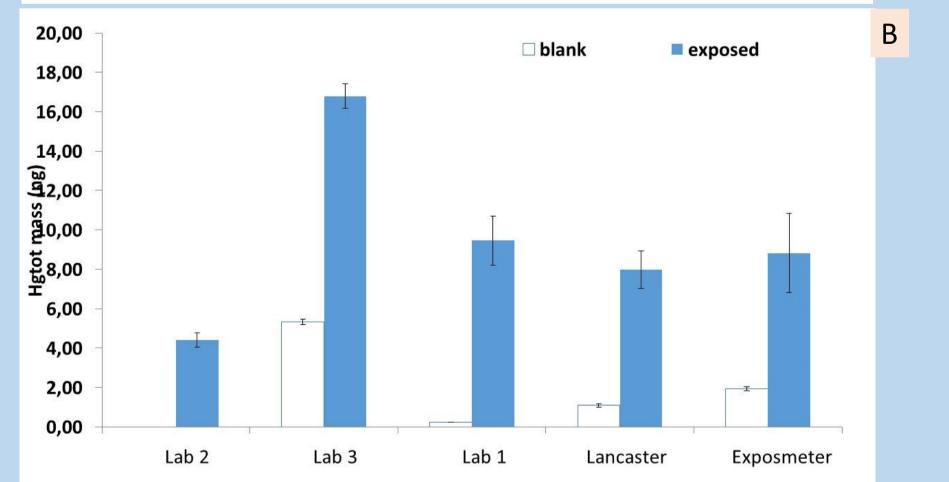
Sampling site

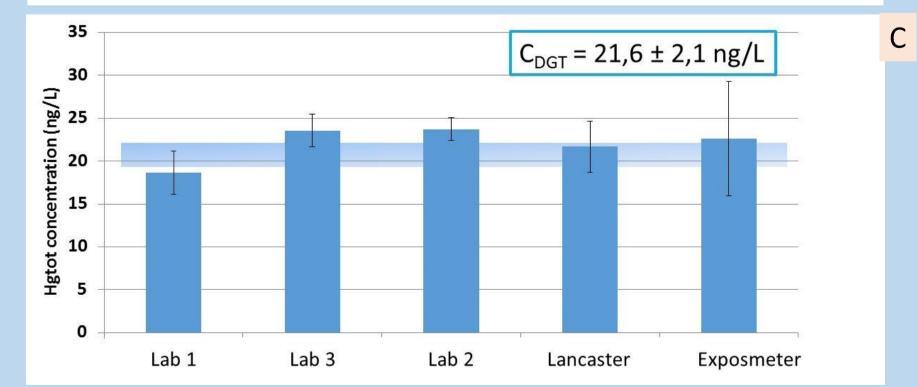
parameter	unit	01/07/2014	15/07/2014
DOC	mg/L	2,45	2,5
NO ₃ ⁻	mg/L	30	27
PO ₄ ³⁻	mg/L	0,3	0,63
HCO ₃ ⁻	mg/L	305	291
Cŀ	mg/L	45	39
SO 4 ²⁻	mg/L	59	54
Ca ²⁺	mg/L	124	111
Mg ²⁺	mg/L	7,4	6,7
Na+	mg/L	24	22,5
K +	mg/L	5,3	5,2

Major parameters measured in the sampling site from the beginning to the end of DGT exposition

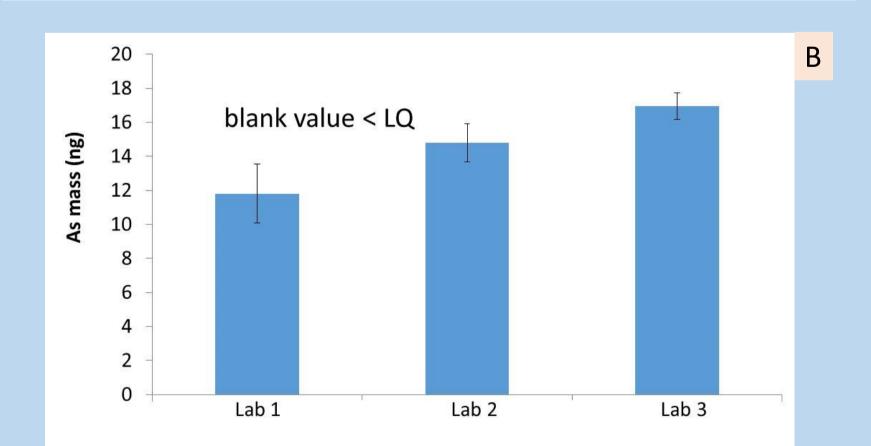
A : Tinytag used to record average temperature during DGT deployment (B) (C: average temperature : 19°C)

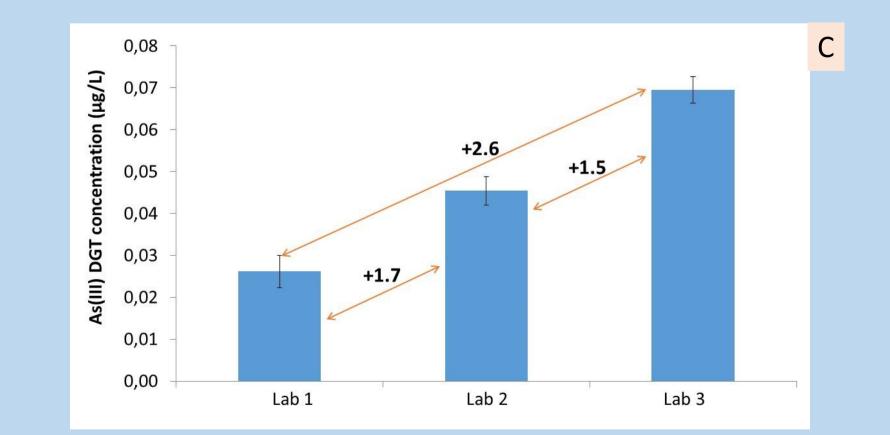

Results and dicusssion


Metals


Team	∆g (diffusive gel) mm	D reference	Thickness filter (mm)	Filter nature
Lab 1	0.80	DGT Research	0.135	Cellulose acetate
Lab 2	0.80	DGT Research	0.18	nitrocellulose
Lab 3	0.80	DGT Research	0.135	cellulose acetate
Lancaster	0.78	DGT Research	0.18	nitrocellulose

Total mercury


	Team	∆g (diffusive gel) mm	D T=18,965° C cm²/s	D reference	Thickness filter (mm)	Filter nature
3-MP	Lab 1	0.50	8.16 10 ⁻⁶	Kinetic exp.	0.135	Cellulose acetate
	Lab 2	0.60	3.57 10 ⁻⁶	Kinetic exp.	0.18	Cellulose nitrate
	Lab 3	0.60	9.31 10 ⁻⁶	Kinetic exp.	0.135	Cellulose acetate
spheron thiol	Lancaster	0.76	7.4 10 ⁻⁶	Docekalova and Divis, 2005	0.135	Cellulose nitrate
	Exposmeter	0.80	7.4 10 ⁻⁶	Docekalova and Divis, 2005	0.135	Cellulose acetate



Arsenic

		Team	∆g (diffusive gel) mm	D (T=18,965 °C) cm²/s	D reference	Thickness filter (mm)	Filter nature	А
	ЗM	Lab 1	0.50	7.45 10 ⁻⁶	Bennett et al., 2011	0.135	Cellulose acetate	
3№		Lab 2	0.70	7.45 10 ⁻⁶	Bennett et al., 2011	0.18	nitrocellulose	
	Lab 3	0.86	6.09 10 ⁻⁶	Kinetic exp.	0.135	cellulose acetate		
ferrhy	drite	Lancaster	0.78	3.45 10 ⁻⁶	???	0.18	nitrocellulose	

 \rightarrow Same diffusive gel thickness for all DGTs : ~0.8 mm (A) \rightarrow Same diffusion coefficient (Lancaster) (A) \rightarrow No difference between mass and concentration variations \rightarrow Metal concentration from home-made DGT close to commercial DGT (B)

 \rightarrow Blank values (B) shown differences imputed to clean room conditions (lab 3 : polarographic environment) \rightarrow Same concentration range (C) for all results \rightarrow Different levels of Hg accumulation on 3-MP resin for each lab (B) due to « home-made » DGT used \rightarrow Calculation of Hg concentration using experimental diffusive coefficient (A)

 \rightarrow Blank values < LQ (B) \rightarrow All arsenic concentrations determined from DGT method are differents (C) \rightarrow Need to characterize own diffusion coefficients for each « home-made » DGT used (A)

Conclusion

 \rightarrow Intercomparison exercise has shown a good fit between the different concentrations of trace metals and total mercury sampled by "home-made" DGT.

Aresults have clearly indicated that diffusion coefficients have to be determined for each "home-made" DGT (chelating resin+diffusive gel+filter) in order to achieve the best suitable results.

 \rightarrow Working conditions from clean lab to polarographic laboratory (using mercury drop electrode) impact blank results

All the teams implicated in this project would like to acknowledge funding support from Aquaref and Onema.

For more informations: Ludovic.lesven@univ-Lille1.fr