

A multiresidue method to evaluate emerging micropollutants levels in waters

E. Lionard, Fabienne Serveto, F. Desbiolles, A. Daval, Marina Coquery, Cecile

Miege

▶ To cite this version:

E. Lionard, Fabienne Serveto, F. Desbiolles, A. Daval, Marina Coquery, et al.. A multiresidue method to evaluate emerging micropollutants levels in waters. Environmental monitoring and assessment: Challenges and opportunities, Oct 2015, Aarhus, Denmark. pp.1, 2015. hal-02602015

HAL Id: hal-02602015 https://hal.inrae.fr/hal-02602015v1

Submitted on 16 May 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

3rd Science for the Environment Conference October 1-2, 2015 Aarhus, Denmark

A multiresidue method to evaluate emerging micropollutants levels in waters

Lionard E., F. Serveto, A. Daval, F. Desbiolles, M. Coquery, C. Miège Freshwater Systems, Ecology and Pollutions research unit – Irstea, Lyon – France Corresponding author: <u>cecile.miege@irstea.fr</u>

Context and objectives

One of the main issue of the Water Framework Directive (WFD, 2000/60/CE) is to reach good ecological and chemical status of waters bodies. The list of WFD priority substances has been amended in 2013 (2013/39/UE) and 2015 (2015/495/UE) by identifying new substances posing a significant risk to, or via, the aquatic environment. In fact, these new substances, so called "emerging contaminants", including numerous pharmaceuticals and pesticides, are frequently detected in rivers and wastewaters in concentrations from ng/L up to several µg/L. Hence, it is now of crucial importance to monitor wastewater treatment plant (WWTP) effluents since they are known one of the main vector of micropollutants to surface water.

> Our challenge was to develop a reliable analytical method to quantify emerging contaminants at trace level in various types of waters.

Target compounds: typical indicators of urban domestic pollution

Indicator pesticides and pharmaceuticals were selected according to:

- their frequency of quantification in untreated wastewaters, secondary and tertiary wastewater effluents and in receiving rivers;
- their toxic effect in aquatic and terrestrial ecosystems;
- their large range of physico-chemical properties: octanol-water partition coefficient (log Kow), acid dissociation constant (pKa) and chemical classes.

49 selected substances

including 4 priority substances of the WFD and 5 watch-list substances of the WFD daughter directive (2015).

Use	Substances	Abbreviation	$\operatorname{Log} K_{\operatorname{ow}}$	рКа	LOQ (ng/L)
	Atrazine	ATZ	2.61	1.6	0.1
ſ	Dimethoate	DIM	0.77	-	0.1
	Diuron	DIU	2.68	13.6	0.2
Pesticides	Imidaclopride	IMI	0.57	-	0.2
	Isoproturon	IPU	2.87	-	0.2
ľ	Mecoprop*	MCPP	3.13	3.3	N.D.
	Pirimicarb	PIRI	1.70	-	0.4
	Simazine	SMZ	2.18	1.6	0.2
	Azithromycin	AZI	4.02	8.7	N.D.
	Ciprofloxacin	CIPRO	0.28	6.1	N.D.
	Clarithromycin	CLARI	3.16	9.0	0.2
	Clindamycin	CLINDA	2.16	-	0.2
Antibiotico	Erythromycin	ERY	3.06	8.9	0.2
Antibiotics	Metronidazole	METRO	-0.02	2.4	0.1
	Norfloxacin	NORFLO	0.46	6.3/8.7	10
	Ofloxacin	OFLO	-0.39	6.0/9.3	1
	Sulfamethoxazole	SMX	0.89	1.6 / 5.7	0.1
	Trimethoprim	TRIM	0.91	6.6	0.04
Anti-	Amitriptyline	AMI	4.92	9.4	0.4
depressants	Fluoxetine	FLUOX	4.5	-	1
	Acebutolol	ACE	1.71	9.4	0.1
	Atenolol	ATE	0.16	9.6	0.4
Betablokers	Metoprolol	MET	1.88	-	0.1
	Propranolol	PROP	3.48	9.4	0.1
ſ	Sotalol	SOT	0.24	-	0.4

Use	Substances	Abbreviation	Log K _{ow}	рКа	LOQ (ng/L)	
	Acetaminophen	PARA	0.46	9.4	1	
	Diclofenac	DICLO	4.51	4.2	0.1	
Anti- inflammatories	Ketoprofen	KETO	3.12	4.5	0.2	
initalititationes .	Naproxen*	NAPROX	3.18	4.2	0.1	
	Theophylline	THEO	-0.02	8.8	0.4	
	Bezafibrate*	BEZA	4.25	3.3	0.02	
ЦВ	Fenofibrate	FENO	5.19	-	1	
	Fenofibric Acide	AC FENO	4.00	-	0.02	
	Gemfibrozil*	GEMFI	4.77	4.8	0.02	
AC	Cyclophosphamide	CYCLOP	0.63	-	0.4	
AD	Metformine	METFOR	-0.50	12.4	N.D.	
AE	Carbamazepine	CARBA	2.45	13.9	0.2	
BD	Salbutamol	SALBU	0.64	10.3	0.2	
	Alprazolam	APZ	2.12	-	0.1	
Apvialution	Diazepam	DIAZ	2.82	3.4	0.2	
Anxiolytics	Nordiazepam	NDZ	2.93	-	0.1	
	Oxazepam	OXA	2.24	1.5 / 10.9	0.2	
Diuretic	Furosemide*	FURO	2.03	3.0	0.2	
	3,4-Dichloroaniline	DCA	2.69	-	1	
	Acetylsulfamethoxazole	ACSMX	1.21	-	0.1	
Matabalitaa	Carbamazepine-EP	CARBA-EP	1.26	-	0.04	
Wetabolites	Deisopropylatrazine	DIA	1.50	-	0.1	
	Desethylatrazine	DEA	1.51	-	0.2	
	Norfluoxetine	NFLUOX	3.80	-	1	
HP: Hypolipemia	ants; AC: Anticarcinogen; Al	D: Antidiabetic; Al	E: Antiepilept	tic; BD: Broi	nchodilator	

Materials and methods: an efficient multiresidue method

Sample purification: OASIS HLB ® 500 mg, 6 mL Conditioning : 5 mL MeOH, 5 mL H_2O Washing : 5 mL H_2O Elution : 2*5 mL MeOH

Extract dilution according to the matrix and expected concentrations

Analysis: UHPLC-ESI(+/-)-QqQ-MS-MS ® Shimadzu Nexera 2, API 4000 ® ABSciex Column C18 BEH ® Waters (2.1 x 100 mm x 1.7 µm) • Only qualitative analysis for NORFLO, CIPRO, METFOR, AZI, FENO.

Recoveries evaluated on a surface

water spiked at 60 µg/L under

reproducibility conditions (n=7):

 Work in progress for negative ionization compounds.

Validation:

200 ng/L.

Quality controls (QC):

- Laboratory blanks (source water) to check non contamination.
- Spiked samples to check recoveries.
- QC standard solutions at 2 ng/L and 40 ng/L every 6 samples to check accuracy of the analysis and non deviation of instrumental measure. Acceptation criteria for QC standard solution: between 70 and 130 %.

Identification/quantification: MRM mode acquisition Confirmation criteria are described in the EU council decision Internal calibration Use of 22 labelled molecular analogues as internal standards and surrogates

Application to different types of wastewaters: concentration levels

Application to WWTP influent, secondary and tertiary treatment effluents of an ozonation process and to influent and effluent of a Planted Discharge Area.

	WWTP influent		Secondary treatment effluent		Tertiary treatment e
THEO		THEO		THEO	
KETO		KETO		KETO	
		ACE		ACE	
				AC FENO	
SOT		SOT	-	SOT	★
			-	ACSMX	
ACSIVIA		ACSIVIA	-		
		DICLU			
CLARI		CLARI			<u>↓</u>
CARBA		CARBA	-		×
METRO		METRO	-	INIE I RO	
SMX		SMX		SMX	
TRIM		TRIM		TRIM	
PROP		PROP		PROP	▼
OFLOX		OFLOX		OFLOX	
IMI		IMI		IMI	

Conclusions

- This study showed that our multiresidue analytical method is suitable for the quantification of 41 emerging micropollutants from ng/L to 100 µg/L in various water matrices.
- Further work is needed to better appreciate matrix effects on various aqueous matrices.
- This method will be adapted for biota matrices (Gammarus fossarum) and passive samplers extracts (Polar Organic Chemical Integrative Sampler).

Acknowledgments: We thank colleagues for sample collection; and the French National Agency for Water and Aquatic Environments (ONEMA) and the Rhône Méditerranée Corse Water Agency through the MICROPOLIS and ZRV projects for financial support.

