

Photodégradation de micropolluants organiques dans les eaux usées traitées

B. Mathon, J.M. Choubert, Cecile Miege, Marina Coquery

▶ To cite this version:

B. Mathon, J.M. Choubert, Cecile Miege, Marina Coquery. Photodégradation de micropolluants organiques dans les eaux usées traitées. [Rapport de recherche] irstea. 2015, pp.32. hal-02602375

HAL Id: hal-02602375 https://hal.inrae.fr/hal-02602375v1

Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Partenariat 2013 - 2015 – Domaine : L'eau en espace urbanisé Action 46 : Les Zones de Rejet Végétalisées (ZRV) Sous-action 3 : Les ZRV de type « bassin » : suivi du site de Marguerittes (30)

Photodégradation de micropolluants organiques dans les eaux usées traitées

Rapport bibliographique

Rapport final

Baptiste MATHON, Jean-Marc CHOUBERT, Cécile MIEGE et Marina COQUERY (Irstea Centre de Lyon-Villeurbanne)

Septembre 2015

Contexte de programmation et de réalisation

Ce travail a été réalisé dans le cadre de l'action Irstea-Onema n°46 « les Zones de Rejet Végétalisées (ZRV) », domaine « L'eau en espace urbanisé ». Il fait partie de la sous-action 3 qui porte sur la ZRV de Marguerittes (30) de type « bassin » associant différentes profondeurs, ainsi que des zones d'eau libre ou végétalisées.

La sous-action 3 de l'action ZRV implique Irstea Lyon-Villeurbanne (Stéphanie Prost-Boucle, Sandrine Papias, Catherine Boutin, Clément Crétollier, Vincent Bourgeois, Adeline François, Olivier Geffard, Lysiane Dherret, Philippe Bados, Amandine Roussel-Galle, Josselin Panay, Jérémy Aubert, Matthieu Masson, Baptiste Mathon, Jean-Marc Choubert, Cécile Miège, Marina Coquery), Irstea Bordeaux (Vincent Bertrin), Irstea Rennes (Anne-Marie Pourcher, Anne-Laure Vivant) et Nîmes métropole (Sabine Martin, Carine Higuinen).

• **AUTEURS**

Baptiste MATHON, Doctorant (Irstea, centre de Lyon-Villeurbanne), baptiste.mathon@irstea.fr **Jean-Marc CHOUBERT**, Ingénieur de l'agriculture et de l'environnement (Irstea, centre de Lyon-Villeurbanne), jean-marc.choubert@irstea.fr

Cécile MIEGE, Ingénieur de recherche, Irstea de Lyon-Villeurbanne, cecile.miege@irstea.fr Marina COQUERY, Directrice de recherche, Irstea de Lyon-Villeurbanne, marina.coquery@irstea.fr

• CORRESPONDANTS

Céline LACOUR, Direction de l'Action Scientifique et Technique de l'Onema, celine.lacour@onema.fr Estérelle VILLEMAGNE, Direction de l'Action Scientifique et Technique de l'Onema, esterelle.villemagne@onema.fr

Catherine BOUTIN, Irstea Centre de Lyon-Villeurbanne, catherine.boutin@irstea.fr

<u>Référence du document</u> : Mathon B., Choubert, J.-M., Miège, C., Coquery M. (2015). Photodégradation de micropolluants organiques dans les eaux usées traitées. Rapport bibliographique. Irstea-Onema, 32 p.

Droits d'usage : Accès restreint (avant publication) Niveau géographique : National Couverture géographique : International Niveau de lecture : Professionnels, experts, praticiens, chercheurs Nature de la source : Document final

Photodégradation de micropolluants organiques dans les eaux usées traitées – Rapport bibliographique Rapport final B. MATHON, J.-M. CHOUBERT, C. MIEGE, M. COQUERY

RESUME

Les stations de traitement des eaux usées éliminent une grande partie des micropolluants organiques par volatilisation, sorption et/ou biodégradation. Néanmoins, les effluents traités contiennent de nombreuses molécules pharmaceutiques et phytosanitaires, à des concentrations faibles, mais atteignant parfois quelques microgrammes par litre. Plusieurs de ces molécules sont photoactives en raison de leurs structures chimiques capables de se modifier sous l'action des rayons ultraviolets (photolyse directe). D'autres molécules sont attaquées par des intermédiaires chimiques très réactifs produits à partir de la matière organique, ou des nitrates, en présence de rayons ultraviolets (photolyse indirecte).

Ce rapport porte sur la transformation de micropolluants organiques contenus dans les eaux en présence de lumière naturelle (photodégradation). Il rassemble les connaissances existantes extraites d'une synthèse bibliographique approfondie. Nous présentons tout d'abord les différents mécanismes de photodégradation possibles. Puis, nous détaillons les capacités de photodégradation pour 10 molécules pharmaceutiques et 3 pesticides fréquemment quantifiés dans les effluents traités par les stations de traitement des eaux usées. Les 66 publications scientifiques analysées ont permis de compiler 349 données de temps de demi-vie, paramètres cinétiques et/ou rendements d'élimination, ainsi que 140 produits de dégradation. Ces informations ont été consolidées grâce à la collecte des conditions expérimentales comme la composition de l'eau (i.e. concentrations en nitrates, en matière organique dissoute, en micropolluants) et les caractéristiques d'exposition à la lumière (i.e. localisation géographique du site étudié, période de l'année, nature du rayonnement lumineux appliqué).

Les données recueillies sont relativement nombreuses pour 3 des 13 molécules étudiées. Ainsi, le diclofénac, le propranolol et la carbamazépine sont classés, respectivement, comme facilement, moyennement et difficilement photodégradables. Leur élimination complète par photodégradation naturelle nécessiterait, respectivement, quelques jours, plusieurs mois et plusieurs années d'ensoleillement. Les données disponibles sont moins nombreuses pour 8 autres micropolluants, et un classement de leur capacité de photodégradation a également été proposé. Enfin, la photodégradation de 2 micropolluants est insuffisamment documentée dans la littérature (érythromycine et roxithromycine). La présence de nitrates et/ou de matière organique dissoute en faible concentration semble accélérer la photodégradation de la majorité des micropolluants organiques étudiés, sans toutefois modifier fortement leurs temps de demi-vie. Les sous-produits de photodégradation sont multiples et documentés pour 10 des 13 molécules étudiées ; leur génération a principalement été étudiée dans des conditions d'eau pure (photolyse directe).

Ce travail ouvre de nombreuses perspectives avec notamment la réalisation d'une série d'expériences à mener au laboratoire et sur le terrain. Elles permettront d'évaluer la contribution de la photodégradation par la lumière naturelle en zone de rejet végétalisée comprenant un compartiment d'eau libre. Une quarantaine de molécules et une sélection de produits de dégradation seront étudiés.

• MOTS CLES (THEMATIQUE ET GEOGRAPHIQUE)

Photodégradation, micropolluants organiques, base de données, produits de dégradation, traitement des eaux usées, temps de demi-vie, zone de rejet végétalisée de type bassin

Photodégradation de micropolluants organiques dans les eaux usées traitées – Rapport bibliographique Rapport final B. MATHON, J.-M. CHOUBERT, C. MIEGE, M. COQUERY

• TITLE

Photodegradation of organic micropollutants contained in secondary effluents: bibliographic overview

• **ABSTRACT**

Wastewater treatment plants usually remove a significant amount of micropollutants by volatilization, sorption and/or biodegradation. Nevertheless, secondary effluents still contain various pharmaceutical compounds and pesticides at very low concentrations up to few micrograms per liter. Most of these compounds are photoactive, either due to their chemical structure able to absorb UV irradiation, or due to a reaction with intermediates (metabolites) formed after reactions with organic matter and nitrates, under UV irradiation.

This technical report deals with the transformation of organic micropollutants under sun light exposure. A literature review was carried out to identify the main mechanisms, their equations, parameters and influencing variables. Then, the work presents the capacity to be photodegraded for 10 pharmaceutical compounds and 3 pesticides that are usually measured in secondary effluents. A database was created with the data found in 66 publications, containing 349 data of half-life, kinetic parameters and/or removal efficiencies, and also 140 by-products. This information was consolidated with the help of the experimental conditions like the chemical composition of water (concentration for nitrates, dissolved organic matter, micropollutants) and the characteristics of light exposure (position, period of the year, type of light).

The information found in literature is relatively abundant for 3 micropollutants (among 13). Diclofenac, propranolol and carbamazepine could be classified as easily, medium and hardly photodegradable respectively. Their full removal from secondary effluent by photodegradation would require a few days, several months and several years of sun exposure, respectively. Fewer data were available in literature for 8 other micropollutants; nonetheless a classification of their photodegradation capacity was also proposed. The photodegradation of 2 micropollutants was not documented at all in the literature (erythromycine and roxithromycine). This work also suggests that lower half-life values are reached in the presence of nitrates and organic matter for most of the studied micropollutants. A lot of information was found for by-products released during photodegradation experiments; although they were mostly related to pure water conditions.

This work has also led to various perspectives. We designed laboratory and on-site experimental studies to investigate the contribution of photodegradation process occurring in the water column of discharged planted areas. About fourty of organic micropollutants and a selection of by-products will be studied.

• KEY WORDS (THEMATIC AND GEOGRAPHICAL AREA)

Photodegradation, organic micropollutants, database, by-products, wastewater treatment, planted discharged area with water column

• SOMMAIRE

1.	Introductio	on et contexte	5		
2.	Objectifs et périmètre de l'étude 6				
3.	Principes	de la photodégradation	8		
	3.1.	La lumière solaire			
	3.2.	La photolyse directe			
	3.3.	La photolyse indirecte	10		
4.	Constituti	on d'une base de données	11		
5.	Bilan des	expérimentations référencées dans la base de données	12		
	5.1.	Des données en nombre variable selon les micropolluants	12		
	5.2.	Des données acquises dans des conditions variées, très diffé	erentes		
		des conditions environnementales	13		
6.	Temps de	demi-vie des 13 micropolluants étudiés	15		
7.	Sous-proc	luits issus de la photodégradation	17		
8.	Conclusio	n et perspectives	19		
9.	Bibliograp	hie	20		
10.	Sigles & A	bréviations	23		
11.	Table des	illustrations	24		

12. Annexe 1 : Liste des publications ayant permis de compléter la base de données dédiée aux paramètres cinétiques de photodégradation25
13. Annexe 2 : Produits de photodégradation référencés dans la littérature28

1. Introduction et contexte

La directive cadre sur l'eau (2000/60) a pour objectif d'atteindre le bon état chimique et écologique des eaux superficielles et souterraines sur tout le territoire européen. La directive 2013/39/UE a récemment révisé la liste des substances « prioritaires », et a introduit en plus une liste dite « de vigilance » (CE, 2015) qui contient des substances chimiques dont les connaissances sur l'exposition et la dangerosité sont à documenter (p. ex. diclofénac, ou bien deux hormones). Ces mesures réglementaires nécessiteront, à terme pour certains micropolluants, soit une réduction à la source, soit un traitement des rejets, voire une combinaison des deux actions.

Les stations de traitement des eaux usées (STEU) domestiques actuelles (i.e. traitement secondaires nitrifiant dans leur majorité, en France) n'ont pas été conçues pour éliminer les micropolluants. Si elles en éliminent une grande partie, de nombreux micropolluants sont encore présents dans les eaux traitées avec, par exemple, certains pesticides comme le diuron, des alkylphénols (nonyl- ou octyl-phénol ou l'un de leur produit de dégradation comme l'acide phénoxyacétique), et plusieurs produits pharmaceutiques comme la carbamazépine, le diclofénac, le sotalol, le propranolol (Choubert et al., 2011). Plusieurs procédés de traitement complémentaires intensifs ont récemment été étudiés dans le cadre du projet ARMISTIQ de façon à déterminer leur capacité à éliminer certains micropolluants. Ainsi, l'oxydation par l'ozone ou par le peroxyde d'hydrogène, et l'adsorption sur charbon actif présentaient des rendements supérieurs à 70% pour la majorité des pesticides et des pharmaceutiques étudiés (Besnault et al., 2014). Ces bons rendements d'élimination impliquent cependant des coûts estimés entre 0,05 à 0,4 \in /m³ avec une consommation énergétique importante (Besnault et al., 2014).

Pour les petites collectivités, les procédés de traitement complémentaire sont parfois implantés en vue de protéger la qualité des milieux récepteurs : lagunes de finition, ou bien, aménagements dans l'espace disponible entre le rejet de station et le milieu naturel dénommés "zones de rejet végétalisée" (Prost-Boucle et Boutin, 2013). Certains de ces procédés mettent en œuvre une exposition de la colonne d'eau à la lumière solaire (Cf. Figure 1). Plusieurs auteurs rapportent une élimination de certains micropolluants organiques. Gabet-Giraud et al. (2010) rapportent que 4 micropolluants (sotalol, diclofénac, aténolol, propranolol) sont partiellement éliminés (~ 50%) en lagune de finition fonctionnant avec un temps de séjour de 15 jours en hiver, ceci probablement par phototransformation en raison de leur temps de demi-vie (compris entre 4 et 20 h) nettement plus faible que le temps de séjour hydraulique. Schuehmacher et al. (2013) rapportent une élimination de nombreux médicaments en zone de rejet comprenant des bassins à faibles profondeurs fonctionnant avec un temps de séjour de 38 jours. En revanche, d'autres micropolluants quantifiés en entrée ont été très faiblement éliminés (< 30%) comme le diuron et l'AMPA, l'octyl- le nonylphénol, la simazine (Gabet-Giraud et al., 2010 ; Schuehmacher et al., 2013), probablement car les temps de demi-vie de ces molécules (compris entre 300 à 600 h) sont très élevés par rapport au temps de séjour.

Figure 1 : Photographie d'une zone de rejet végétalisée de type bassin (photo Irstea)

De nombreux micropolluants organiques s'avèrent être photoactifs en raison des noyaux aromatiques, des hétéroatomes ou d'autres fonctions chimiques qui constituent leur structure, et leur confèrent la capacité d'absorber les rayons ultra-violets (UV). La photodégradation par la lumière solaire, notamment via la contribution des rayons UV-B, engendre l'élimination des micropolluants organiques (Yang et al., 2014). Nous proposons d'étudier ce mécanisme plus en détails dans ce rapport, ceci en vue d'évaluer à terme le potentiel d'élimination des micropolluants par des aménagements de type « zone de rejet végétalisée (ZRV) ».

2. Objectifs et périmètre de l'étude

Le principal objectif de ce travail a été d'acquérir des connaissances sur le rôle de la photodégradation par la lumière naturelle (solaire) et d'expliquer les principaux mécanismes, ceci afin de mieux comprendre et prévoir le devenir des micropolluants (et la formation de sous-produits éventuels) dans le contexte d'une ZRV de type bassin. Dans ce but, nous avons créé une base de données regroupant toutes les informations disponibles relatives aux études portant sur la photodégradation de micropolluants ciblés.

Le choix des molécules a été réalisé à partir des résultats du projet AMPERES sur l'occurrence et les concentrations des micropolluants en sortie de traitement secondaires et les rendements d'élimination (Coquery et al., 2011 ; Soulier et al., 2011 ; Choubert et al., 2011). Nous nous sommes intéressés aux molécules susceptibles d'être présentes en sortie de traitements secondaires, et avons sélectionné les molécules de cette étude selon les critères suivants :

► molécule bien éliminée en STEU, mais présente à de forte concentration (> 1 µg/L) dans les eaux usées brutes : un bétabloquant (ex. aténolol) ;

- > molécules réfractaires aux traitements secondaires (rendement d'élimination inférieur à 30%) comme :
 - 3 pesticides (simazine, diuron et isoproturon) ;
 - 2 antibiotiques (roxithromycine et érythromycine) ;
 - 2 antidépresseurs (carbamazépine et diazépam) ;
 - un anti-inflammatoire (diclofénac) ;
 - 4 bétabloquants (métoprolol, propranolol, sotalol, timolol).

Les propriétés physico-chimiques des 13 molécules retenues pour cette étude sont détaillées dans le Tableau 1, avec notamment la masse moléculaire, la solubilité, la constante d'acidité (pKa), et le coefficient de partage octanol-eau (Log Kow). Ce tableau indique également la longueur d'onde à laquelle leur absorbance est maximale (λ_{max}) et leur rendement quantique (Φ). Ces deux derniers paramètres sont définis ci-après dans le chapitre 3 qui rappelle brièvement les principes des mécanismes de la photodégradation.

Tableau 1 : Propriétés physico-chimiques des 13 molécules (familles) sélectionnés dans cette étude et paramètres liés à la photodégradation.

Molécules	Formule semi- développée	Formule chimique	Masse moléculaire (g.mol ⁻¹)	Solubilité dans l'eau à 25°C (mg.L ⁻¹)	рКа	Log Kow	λ _{max} (nm)	Rendement quantique Φ (-, ou en mol.E ⁻¹ si spécifié)
Aténolol (bétabloquant)	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	$C_{14}H_{22}N_2O_3$	266	13300	9,6	0,16	274	3,6.10 ⁻² mol.E ⁻¹
Carbamazépine (anti-dépresseur)		C ₁₅ H ₁₂ N ₂ O	236	17,7	-	2,45	285	2.10 ⁻⁶
Diazépam (anti-dépresseur)		C ₁₆ H ₁₃ CIN ₂ O	285	50	3,4	2,82	285	2,94.10 ^{.6}
Diclofénac (anti-inflammatoire)		$C_{14}H_{11}CI_2NO_2$	296	2,37	4,15	4,51	276	1,8.10 ⁻¹
Diuron (pesticide)	(1) = (1) + (1)	$C_9H_{10}CI_2N_2O$	233	49	13,55	2,68	250	3,4.10 ⁻²
Erythromycine (antibiotique)	$\begin{array}{c} \begin{array}{c} & & & \\ & & $	C ₃₇ H ₆₇ NO ₁₃	734	2000	8,88	3,06	285	P.I.
Isoproturon (pesticide)	H ₃ C OH ₃ N CH ₃ CH ₃ CH ₃ CH ₃	$C_{12}H_{18}N_2O$	206	70	-	2,87	245	2,9.10 ⁻³
Métoprolol (bétabloquant)	Hc~, , , , , , , , , , , , , , , , , , ,	$C_{15}H_{25}NO_3$	267	16900	-	1,88	274	8,91.10 ⁻² mol.E ⁻¹
Propranolol (bétabloquant)		$C_{16}H_{21}NO_2$	259	61,7	9,42	3,48	289	2,22.10 ⁻³
Roxithromycine (antibiotique)	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$	$C_{41}H_{76}N_2O_{15}$	837	0,0189	9,08	1,7	285	P.I.
Simazine (pesticide)	HgC HJ CH3	$C_7H_{12}CIN_5$	202	6,2	1,62	2,18	265	8,3.10 ⁻²
Sotalol (bétabloquant)		C ₁₂ H ₂₀ N ₂ O ₃ S	272	5510	-	0,24	228	P.I.
Timolol (bétabloquant)	S N CH ₉ CH H CH ₉	C ₁₃ H ₂₄ N ₄ O ₃ S	316	269	9,21	1,83	230	P.I.

P.I. : pas d'information disponible

3. Principes de la photodégradation

3.1. La lumière solaire

La lumière solaire qui pénètre dans l'environnement aquatique est composée de rayons UV-B (280-320 nm), de rayons UV-A (320-400 nm) et de la lumière visible (400-800 nm). Les rayons UV-C sont arrêtés par l'atmosphère. Dans la gamme du rayonnement solaire, l'énergie des photons est comprise entre 150 et 428 kJ.mol⁻¹, selon la longueur d'onde, et est donnée par l'équation 1.

$$E = \frac{h.c}{\lambda}$$
 (Eq. 1) Avec E : énergie d'un photon, h : constante de Planck,
c : vitesse de la lumière, λ : longueur d'onde

Plusieurs études ont démontré que les réactions photochimiques contribuent aux transformations de pesticides et de molécules pharmaceutiques dans les compartiments d'eau libre exposés au rayonnement solaire (Burrows et al., 2002 ; Fatta-Kassinos et al., 2011). Ces transformations se font par une réaction chimique appelée photolyse, dans laquelle une molécule photosensible est décomposée par la lumière. Deux types de mécanismes sont impliqués :

- La photolyse directe qui consiste en une action directe d'UV sur les molécules organiques, et
- ► La **photolyse indirecte** qui consiste en l'action d'intermédiaires chimiques très oxydants avec les molécules organiques, créés sous l'action d'UV.

La Figure 2 propose une représentation schématique de l'action des rayons lumineux sur des molécules organiques contenues dans l'eau.

Figure 2 : Représentation schématique de l'action de rayons lumineux sur des molécules organiques photosensibles contenues dans l'eau

La vitesse de disparition par ces transformations s'exprime généralement à l'aide d'une cinétique d'ordre 1 (équation 2) pour laquelle un temps de demi-vie est défini par l'équation 3 :

$$-\frac{d[MP]}{dt} = k.[MP]$$
 (Eq. 2) $t_{1/2} = \frac{Ln 2}{k}$ (Eq. 3)

avec : [MP] : concentration dans l'eau d'un micropolluant, k : constante cinétique de photolyse (directe + indirecte), t_{1/2} : temps de demi-vie du micropolluant (i.e. durée nécessaire pour que la concentration soit réduite de moitié).

3.2. La photolyse directe

La photolyse directe implique l'absorption directe de photons lumineux par les micropolluants donnant lieu à des réactions chimiques (Zepp and Cline, 1977). **Cette absorption est possible si le micropolluant possède des fonctions chimiques capables d'absorber un photon**, comme par exemple les fonctions carbonyle (>C=O), thiocarbonyle (>C=S), nitro (-N=O ou -N-OH). Ces fonctions chimiques sont appelées groupes chromophores.

Lorsque l'on compare l'énergie acquise par un photon à l'énergie de dissociation d'une liaison chimique (Blanksby et al., 2003), la photolyse directe pourrait entrainer la dissociation de plusieurs liaisons chimiques comme phényle-Cl ; phényle-OH; CH₃-NH₂ ; CH₃S-H, ... Ces liaisons se retrouvent par exemple dans le sotalol, le diazépam ou le diuron.

Pour caractériser la capacité d'une molécule à se transformer suite à l'absorption d'un photon, il est important de connaitre son rendement quantique $\Phi i(\lambda)$, qui est déterminé à partir de l'équation 4 (Schwarzenbach et al., 2005) :

$$\Phi_{i}(\lambda) = \frac{\text{nombre de molécules i photodégradées}}{\text{nombre total de photons (pour une longueur d'onde }\lambda) absorbés par le composé i} \quad (Eq. 4)$$

Ce paramètre n'est cependant pas disponible pour toutes les molécules organiques de cette étude.

Si la photolyse directe est régie en partie par la structure chimique d'une molécule, il est également influencé par les caractéristiques du milieu dans lequel il a lieu. Bartels et Von Tümpling (2007) ont observé une diminution de l'efficacité de l'élimination du diclofénac par photolyse directe selon la profondeur de l'eau d'un lac, de 100 % à 20 cm de profondeur jusqu'à 34 % à 1 m de profondeur pour un temps d'exposition de 16 jours. Cette diminution de l'efficacité de la photolyse directe peut être attribuée à l'effet d'écran à la lumière induit par certains constituants comme les matières en suspension (Linden et al., 1998), le phytoplancton (Laurion et al., 2000) et/ou la matière organique dissoute (MOD) (Vasseur et al., 2003). Ainsi, Chen et al., (2009) ont démontré que les acides fulviques ont un effet écran supérieur aux acides humiques, en raison de la présence d'un nombre plus important de groupements chimiques chromophores dont ils sont constitués.

La photolyse directe n'est vraisemblablement pas le mécanisme principal expliquant l'élimination de micropolluants dans une colonne d'eau car les longueurs d'onde d'absorption des molécules organiques présentes dans l'eau couvrent faiblement le spectre de la lumière solaire (Burrows et al., 2002; Peuravuori et al., 2009).

- La photolyse directe dans l'eau transforme certaines molécules organiques, et conduit probablement à la formation de sous-produits;
- La photolyse directe n'est pas le mécanisme principal qui permet d'expliquer l'élimination de micropolluants dans une colonne d'eau sous l'action de la lumière solaire. La photolyse indirecte complète la voie directe ;
- La photolyse directe se mesure en l'absence d'intermédiaires oxydants, et donc en eau pure.

3.3. La photolyse indirecte

La photolyse indirecte se produit lorsqu'une espèce photosensibilisatrice (autre qu'un micropolluant) absorbe la lumière et devient excitée électroniquement. Ces intermédiaires chimiques très réactifs réagissent ensuite directement avec certaines molécules organiques, ou favorise la formation d'autres intermédiaires réactifs qui dégradent certains micropolluants.

On connait quatre intermédiaires chimiques fortement réactifs :

I'oxygène singulet (¹O₂)

La MOD absorbe le rayonnement solaire et transfère l'énergie acquise à une molécule d'oxygène qui va se retrouver sous sa forme excitée : l'oxygène singulet (${}^{1}O_{2}$) selon Canonica et al. (2008) et Dell'Arciprete et al. (2010).

 $3MOD^* + O_2 \rightarrow {}^1O_2$

l'état triplet excité de la matière organique (³MOD^{*})

La MOD peut absorber le rayonnement solaire et se retrouver à des états excités triplets qui agissent comme oxydants puissants selon leurs structures et peuvent entraîner la formation de radicaux hydroxyles (Canonica et al., 2008 ; Zeng et al., 2012). La forte réactivité de ces états est due à la présence de deux électrons non appariés. Il existe trois mécanismes d'actions des états triplets excités de la MOD (ici assimilé à l'acide humique HA) sur un micropolluant (P) (Nelieu et al., 2011) :

- Transfert d'énergie au micropolluant P : ${}^{3}HA^{*} + P \rightarrow HA + {}^{3}P$
- Transfert de proton : ${}^{3}HA^{*} + PH \rightarrow HA(H)^{\bullet} + P^{\bullet}$ et ${}^{3}HA^{*} + H2O \rightarrow HA(H)^{\bullet} + OH^{\bullet}$
- Transfert d'électron : ${}^{3}HA^{*} + P \rightarrow HA^{\bullet-} + P^{\bullet+}$

le radical hydroxyle (OH[•])

Le spectre d'absorption des nitrates révèle une longueur d'onde maximale λ_{max} =302 nm absorbant les rayons solaires (UV-B). Une photolyse des nitrates est possible, sous l'action d'un photon (hv), selon la réaction suivante, entraînant la formation du radical hydroxyle :

•
$$NO_3^- + H_2O + hv \rightarrow NO_2^- + OH^- + OH^-$$

La formation du radical OH• est également possible en présence de nitrites réagissant :

•
$$NO_2^- + H_2O + hv \rightarrow NO_2^- + OH_2^- + OH_2^-$$

Le radical hydroxyle est extrêmement oxydant (Chen et al., 2009 ; Mabury et Crosby, 1996) : ainsi, il attaque les molécules organiques selon 3 mécanismes principaux (Hickel, 2000) :

- Arrachement d'un atome d'hydrogène à une molécule organique. Ce mécanisme mène à la rupture d'une liaison carbone-hydrogène (C-H) ;
- Fixation du radical sur une double liaison C=C ou sur un cycle aromatique (benzène et dérivés) ;
- Arrachement d'un électron à la molécule, qui conduit à une ionisation de la molécule (mécanisme qui reste relativement rare).

Grâce à la génération de radicaux OH• à partir de la matière organique, certains micropolluants sont dégradés plus rapidement dans une eau naturelle que dans une eau pure (Yang et al., 2014).

 \blacktriangleright du radical carbonate (CO₃^{-•})

Le radical carbonate est le plus souvent produit lors du piégeage du radical hydroxyle par des ions carbonates (Lam et al., 2003 ; Wu et al., 2010) :

 $OH \bullet + CO_3^{2}/HCO_3^{-} \rightarrow CO_3^{-} \bullet/HCO_3^{-}$

Ce radical réagit plus lentement que le radical hydroxyle sur les molécules organiques aromatiques, mais il est plus sélectif (Huang, 2000), c'est-à-dire que son action concerne quelques liaisons chimiques seulement.

- Grâce à la génération d'intermédiaires chimiques très réactifs générés à partir de la matière organique, des nitrates ou des carbonates, certains micropolluants sont dégradés par photolyse indirecte. La voie indirecte conduit, comme la voie directe, à la formation de sous-produits de photodégradation ;
- La vitesse de la photolyse indirecte est plus élevée que celle de la photolyse directe (Yang et al., 2014);
- La photolyse indirecte est compatible avec les conditions rencontrées en traitement complémentaire extensif comprenant une colonne d'eau (i.e. lagunes de finition, ZRV), sous réserve que le développement du végétal n'empêche pas la pénétration de la lumière. C'est une voie d'élimination du diclofénac (Zhang et al., 2014);

Pour approfondir le sujet, les propriétés cinétiques directe et indirecte (temps de demi-vie, constantes cinétiques et/ou rendements d'élimination) de 13 micropolluants fréquemment quantifiés dans les rejets de STEU ont été recensées dans la littérature, et ont été rassemblées dans une base de données.

4. Constitution d'une base de données

Dans ce travail nous avons conçu, construit et alimenté une base de données réunissant, de manière la plus complète possible, les informations techniques relatives aux études portant sur la photodégradation des 13 micropolluants (Cf. Tableau 1). Le but était, tout d'abord de synthétiser les valeurs existantes pour les propriétés cinétiques de photodégradation (directe et indirecte) ; puis, d'estimer *in-fine* l'efficacité de la photodégradation vis-à-vis des micropolluants ciblés.

Ces informations ont été recueillies grâce à l'analyse approfondie de 66 publications scientifiques parues entre 1977 et 2013, et dont la liste est présentée en annexe (paragraphe 12). Pour obtenir les publications scientifiques, les bases documentaires internationales Scopus et Web of Science ont été utilisées. Les requêtes entrées étaient les termes : « photodegradation » ou « photolysis » ou « phototransformation » associés au nom de chaque molécule.

Les temps de demi-vie $(t_{1/2})$, les constantes cinétiques directe et indirecte $(k_{direct}, k_{indirect})$, et/ou les rendements d'élimination ont été choisis comme paramètres saisis dans la base de données. Ainsi, l'entrée d'une ligne de données correspond à une valeur de l'un de ces trois paramètres trouvée dans la littérature scientifique. Lorsque le temps de demi-vie n'était pas disponible, nous avons calculé sa valeur à partir des constantes cinétiques et de l'équation 3. En complément, nous avons compilé les conditions expérimentales associées aux propriétés cinétiques disponibles dans les publications.

Au total nous avons recherché 27 descripteurs des conditions expérimentales, et nous les avons regroupés en 4 catégories :

► La lumière : un rayonnement solaire ou simulé (type de lampe, puissance), la gamme de longueur d'onde, l'intensité lumineuse ;

► Les conditions expérimentales : la localisation géographique, la date de l'expérience, la durée d'exposition au soleil, le matériau du réacteur utilisé et son volume, la hauteur de la colonne d'eau, la méthode d'analyse (avec la limite de détection et la limite de quantification) ;

► La matrice aqueuse : le type d'eau (ex. déminéralisée, effluent traité, rivière, …) ; la composition en nitrates, nitrites, carbone organique, halogénures, carbonates ; la température ; le type de matière organique (ex. substances humiques) ;

► Le micropolluant : le nom et la formule de la molécule, les groupes chromophores qui la constituent, la concentration initiale lors des expérimentations de laboratoire, les sous-produits de photodégradation détectés, le rendement quantique (ceci en plus des propriétés cinétiques de photodégradation, c'est-àdire le rendement d'élimination, le temps de demi-vie et la constante cinétique de photodégradation).

Nous avons choisi d'écarter les expériences réalisées dans des conditions où le pH était inférieur à 5 ou supérieur à 9, c'est-à-dire qui n'étaient pas dans la plage caractéristique des eaux usées domestiques. Nous avons également exclu les résultats obtenus en présence de catalyseurs (ex. TiO₂, H₂O₂...), ceci afin de collecter des informations qui se rapprochent le plus du comportement possible en milieu naturel.

Suite à ce travail approfondi de collecte et de bancarisation de données, la base est finalement constituée de 349 lignes de données, comportant chacune 49 colonnes réunissant les descripteurs des 4 catégories précitées (lumière, conditions expérimentales, matrices aqueuses, micropolluant).

5. Bilan des expérimentations référencées dans la base de données

5.1. Des données en nombre variable selon les micropolluants

La première observation que l'on peut extraire de la base de données est l'hétérogénéité des informations disponibles pour les 13 micropolluants étudiés. La Figure 3 présente le pourcentage de données disponibles pour chacun des 13 micropolluants :

► 72 données ont été trouvées pour les 3 pesticides sélectionnés. Le diuron est le pesticide le plus renseigné ;

▶ 277 données ont été trouvées pour les molécules pharmaceutiques. La carbamazépine, le diclofénac et le propranolol sont les plus renseignées. Ces 4 micropolluants regroupent à eux seuls 70% des informations contenues dans la base : la carbamazépine (76 lignes de données), le diclofénac (60 lignes de données), le propranolol (61 lignes de données) et le diuron (45 lignes de données).

► 4 micropolluants représentent moins de 10 lignes de données chacun. Le timolol, le sotalol, le diazépam et la roxithromycine ;

Nous n'avons trouvé aucune information sur l'érythromycine suivant nos critères de sélection.

Il est donc difficile de conclure sur l'efficacité de la photodégradation pour toutes les molécules sélectionnées, en particulier celles pour lesquelles un nombre de propriétés cinétiques limité a été trouvé dans la littérature.

Figure 3 : Proportion de propriétés cinétiques disponibles dans la base de données pour les 13 micropolluants étudiés (aucune donnée sur l'érythromycine)

5.2. Des données acquises dans des conditions variées, très différentes des conditions environnementales

Les résultats disponibles dans la littérature ont été acquis dans des conditions très différentes des conditions environnementales, avec le plus souvent l'utilisation d'eau déminéralisée dopée en micropolluants et/ou de lumière solaire simulée. **Seules trois études se rapprochent des conditions environnementales** : l'une porte sur la photodégradation du diclofénac étudiée en flacons de quartz immergés dans un lac en Juillet (Bartels and von tümpling, 2007) ; les deux autres études portent sur la photodégradation du diuron et du sotalol exposés au rayonnement solaire en photoréacteurs non-immergés, en eau synthétique ou superficielle respectivement (Shankar et al., 2008 ; Kunkel and Radke 2012).

Les conditions expérimentales sont assez peu documentées dans les articles scientifiques, avec en moyenne, 10 descripteurs expérimentaux renseignés sur les 27 recherchés (9 à 15 critères selon les publications). Les descripteurs renseignés sont (i) le niveau de concentration en micropolluants, (ii) le type de source lumineuse et (iii) le type d'eau utilisée. Par conséquent, ce sont ces 3 descripteurs que nous avons conservé dans la suite de l'analyse de données.

La première observation concerne le <u>niveau de concentration en micropolluants</u> : les résultats de la littérature ont été majoritairement obtenus grâce à l'utilisation d'eaux dopées en micropolluants à des concentrations élevées par comparaison à celles que l'on rencontre usuellement dans les effluents traités, de l'ordre du μ g.L⁻¹. En effet, les concentrations référencées dans la base sont comprises entre 0,061 et 200 000 μ g.L⁻¹, et, un peu plus de la moitié sont comprises entre 1 000 et 10 000 μ g.L⁻¹. De fortes concentrations sont utilisées car les méthodes analytiques employées ne permettaient pas de quantifier des concentrations faibles. Il semble en revanche primordial d'utiliser une solution dopée à des concentrations le plus proche possible de celles retrouvées en conditions réelles afin d'obtenir des informations les plus représentatives possibles, car Shankar et al. (2007) a montré que le temps de demi-vie était divisé par 4 (passant de 83 à 21 h) lors de l'augmentation de la concentration initiale en diuron d'un facteur 100 (de 10 000 à 100 μ g.L⁻¹).

La seconde observation concerne le <u>type de rayonnement lumineux</u> appliqué : 58 % des publications ont utilisé un rayonnement simulé à l'aide de lampes à mercure ou au xénon, contre 42% des publications qui ont utilisé un rayonnement naturel (solaire). Il semble donc que les études sur réacteurs fermés, en conditions de laboratoire, soit privilégiées car moins contraignantes et moins dépendantes des conditions météorologiques. Ce qui s'avère un avantage du point de vue contrainte expérimentale est en fait un réel désavantage concernant la transposition des données obtenues pour la mise en place d'un traitement tertiaire utilisant la photodégradation. En effet, l'intensité du rayonnement solaire (λ = 280-800 nm) varie au cours de la journée, et elle est influencée par les perturbations météorologiques (passages nuageux, pluies, ...). De plus, les lampes utilisées au laboratoire émettent souvent une longueur d'onde unique. Certes, il existe des simulateurs solaires qui couvrent une amplitude de longueurs d'ondes recouvrant largement le spectre de la lumière solaire, mais leur intensité lumineuse est souvent élevée, ce qui ne permet pas d'appliquer les résultats aux conditions environnementales, car **ils entrainent une surestimation des propriétés cinétiques de photodégradation mesurées**.

Enfin, la dernière observation porte sur la <u>nature de la matrice « eau »</u> utilisée lors des expériences de photodégradation. Les publications parues ont utilisé majoritairement de l'eau déminéralisée ou de l'eau ultra-pure (75% des lignes de données) comme le présente la Figure 4Erreur ! Source du renvoi introuvable.. Quelques essais ont été réalisés avec des eaux superficielles (14 à 21% des lignes de données). Quelques rares études (< 5%) ont travaillé avec d'autres types d'eau (eau du robinet, souterraine, eau de mer, rejet de STEU).

PESTICIDES (n = 72)

PHARMACEUTIQUES (n = 277)

Figure 4 : Proportion de propriétés cinétiques disponibles dans la base de données en fonction du "type d'eau" pour les pesticides et les molécules pharmaceutiques

Les eaux déminéralisée ou ultra-pure (ne contenant ni matières en suspension ni phytoplancton) sont donc un moyen d'étudier la photodégradation avec une pénétration optimale de la lumière dans la colonne d'eau. Elles ne contiennent cependant pas de photosensibilisateurs (ex : nitrates, carbonates), donc, les propriétés cinétiques déterminées en laboratoires sont attribuées principalement à la photodégradation directe. Les mesures des propriétés cinétiques de la littérature ne semblent donc pas représentatives des voies directe et indirecte de la photodégradation qui existent en milieu naturel.

A partir des temps de demi-vie de la carbamazépine et du diuron (Andreozzi et al., 2002 ; Shankar et al., 2008), obtenus en laboratoire dans des conditions voisines de celles mesurées en lagune de finition, nous avons calculé les rendements d'élimination pour 120 h d'ensoleillement (équations 2 et 3). Les résultats ainsi obtenus ont été comparés à ceux d'une lagune de finition soumise à un temps de séjour de 15 jours et à la même durée d'ensoleillement (Martin Ruel et al., 2011). Les résultats sont présentés Tableau 2.

Tableau 2 : Temps de demi-vie et rendements d'élimination obtenus à l'échelle du laboratoire* et à l'échelle d'un procédé réel de type lagune de finition

Micropolluant	t _{1/2} laboratoire (h)	Rendement d'élimination supposant 120 h de soleil (%)	Rendement d'élimination mesuré ^(c) pour une lagune de finition (%)
Diuron	25 ^(a)	96	65
Carbamazépine	69 ^(b)	70	31

* Réacteurs en verre exposés au rayonnement solaire, et contenant de l'eau déminéralisée dopée en micropolluants et en nitrates à des concentrations voisines de celles mesurées en lagune de finition

** Rendements d'élimination calculés à partir des équations 2 et 3 pour 120 h d'ensoleillement ;

(a) Shankar et al., 2008 ; (b) Andreozzi et al., 2002 ; (c) Martin Ruel et al., 2011

Le rendement d'élimination mesuré sur une lagune de finition est de 65% pour le diuron et de 31% pour la carbamazépine, alors que les mesures à l'échelle du laboratoire aboutissent à des rendements de 96% et 70% respectivement. Ces différences importantes pourraient être dues à l'absence de matières en suspension, d'algues et de matières organiques dans le cas des expérimentations en laboratoire ; une autre explication possible pourrait être la hauteur d'eau efficace à considérer pour calculer le rendement lié à la photodégradation.

Ce travail suggère donc de mettre en place quelques expérimentations ciblées afin d'identifier si la photodégradation est réellement efficace dans les conditions environnementales, notamment dans celles rencontrées en ZRV de type « bassin ».

6. Temps de demi-vie des 13 micropolluants étudiés

Pour les 13 micropolluants étudiés, nous avons calculé les valeurs moyennes des temps de demi-vie en distinguant les eaux ne contenant pas d'espèces chimiques photosensibilisatrices (photolyse directe), et le cas des eaux contenant des nitrates ou de la matière organique dissoute (photolyse indirecte). Les résultats sont regroupés dans le Tableau 3.

Nous avons classé les micropolluants selon leurs capacités de photodégradation directe, car c'est la voie la plus documentée. Trois groupes ont été constitués, avec pour chacun un micropolluant représenté par un grand nombre de données (> 30), et d'autres micropolluants représentés par un nombre de données plus faible (1 à 15).

- Le groupe 1 comprend 5 micropolluants facilement photodégradables : simazine, isoproturon, timolol, diclofénac et sotalol ; 33 données ont été collectées pour le diclofénac. Le temps de demi-vie moyen de ces molécules est inférieur à 8 h, ce qui correspond théoriquement à 1 journée d'ensoleillement. Une très bonne élimination (> 90%) de ces micropolluants nécessiterait jusqu'à 5 jours d'ensoleillement ;
- Le groupe 2 comprend 2 micropolluants moyennement photodégradables : diazépam et propranolol ; 48 données ont été collectées pour le propranolol. Le temps de demi-vie moyen de ces molécules est compris entre 8 et 168 h, c'est-à-dire jusqu'à 21 jours d'ensoleillement. Une très bonne élimination nécessiterait entre 1 mois et 1 année d'ensoleillement ;
- Le groupe 3 comprend 4 micropolluants difficilement photodégradables : diuron, aténolol, carbamazépine et métoprolol ; 35 valeurs ont été collectées pour la carbamazépine. Le temps de demivie moyen de ces molécules est supérieur à 168 h. Une très bonne élimination nécessiterait 3 à 8 ans d'ensoleillement.

Deux micropolluants (érythromycine et roxithromycine) n'ont pas pu être classés, car aucune expérience de photodégradation directe n'a été trouvée dans la littérature selon nos critères de recherche.

Tableau 3 : Temps de demi-vie ($t_{1/2}$) obtenus par photodégradation direct et indirecte sous rayonnement solaire pour 13 micropolluants (moyenne [Min ; Max] (nombre de données))

	PHOTODEGRADATIO (sans NO ₃ ⁻ ni M	N DIRECTE IOD)	PHOTODEGRADATION INDIRECTE		
Molécules	t _{1/2} (h)	Efficacité de photodégra- dation	t _{1/2} (h) avec NO ₃ ⁻	t _{1/2} (h) avec MOD	Efficacité de photodégra- dation
Simazine	0,08 [0,03 ; 0,13] (n=3)	++	1392 [696 ; 2424] (n=3)	1392 [696 ; 2424] (n=3)	-
Isoproturon	2,5 [1,4 ; 5] (n=4)	++	P.I.	P.I.	P.I.
Timolol	4,3 (n=1)	++	P.I.	2,6 [0,6 ; 4,6] (n=4)	++
Diclofénac	4,9 [0,005 ; 47] (n=33)	++	2,0 [0,012 ; 5,2] (n=5)	3,7 [0,002 ; 18,4] (n=5)	++
Sotalol	6 (n=1)	++	P.I.	P.I.	P.I.
Diazépam	28 [3 ; 103] (n=5)	+	P.I.	13 [3 ; 28] (n=4)	++
Propranolol	66 [0,3 ; 408] (n=48)	+	19 [3 ; 37] (n=3)	12 [0,07 ; 27] (n=4)	++
Diuron	521 [4 ; 3192] (n=8)	+	25 [3 ; 84] (n=19)	P.I.	+
Aténolol	1248 [0,1 ; 3984] (n=13)	-	4,4 [0,05 ; 11,4] (n=10)	4,2 [0,1 ; 10,8] (n=7)	++
Carbamazépine	2625 [17 ; 12600] (n=35)	-	284 [6 ; 1227] (n=16)	1775 [0,06 ; 12154] (n=7)	-
Métoprolol	3572 [29 ; 11632] (n=14)	-	656 [526 ; 786] (n=2)	6,5 [0,2 ; 12,8] (n=4)	+
Erythromycine	P.I.	P.I.	P.I.	P.I.	P.I.
Roxithromycine	P.I.	P.I.	361 [1,6 ; 720] (n=2)	1,6 (n=1)	+

(++) : Facilement photodégradable ($t_{1/2}$ moyen inférieur à 8 h) ; (+) : Moyennement photodégradable ($t_{1/2}$ moyen compris entre 8 et 168 h ; (-) : Lentement photodégradable ($t_{1/2}$ moyen supérieur à 168 h) MOD : Motière erranique disserte : NO : : Nitratos : PL : Pas d'information : t : Tomps de domi vie

MOD : Matière organique dissoute ; NO_3 : Nitrates ; P.I. : Pas d'information ; $t_{1/2}$: Temps de demi-vie

Cette <u>classification en 3 groupes</u>, sur la base des valeurs moyennes des temps de demi-vie, est un moyen simple permettant d'évaluer si la photodégradation directe pourrait expliquer l'élimination d'un micropolluant pour un temps d'ensolleillement donné. Elle ne donne cependant qu'une première tendance, puisque les variabilités des données (autour de leurs moyennes) sont relativement importantes, que le nombre de données disponibles est faible pour certains micropolluants, et que l'information concernant le rendement quantique est rarement disponible dans les publications. En outre, il serait intéressant de disposer aussi d'une telle classification pour la photodégradation indirecte qui se déroule dans les conditions environnementales.

La <u>variabilité des données</u> est relativement importante, y compris lorsqu'on limite l'analyse aux données de photolyse directe : jusqu'à 88% pour les 3 micropolluants les plus documentés (carbamazépine, diclofénac, propranolol), et jusqu'à 155% (90% en moyenne) tous micropolluants confondus. Cette variabilité reflète les conditions variées appliquées lors des différentes expériences considérées dans ce travail (localisation géographique, période de l'année, hauteur de la colonne d'eau, échantillon étudié dans un réacteur en verre ou bien directement dans le milieu d'étude, etc...).

Concernant <u>les temps de demi-vies moyens de photodégradation directe et indirecte</u>, nous constatons que les micropolluants facilement photodégradables par voie directe le sont également par la voie indirecte, à l'exception de la simazine (Navarro et al., 2004). Cependant, le temps de demi-vie de la simazine a été obtenu en présence de concentrations importantes de matières en suspension. Pour le propranolol, classé comme moyennement photodégradable par voie directe, les temps de demi-vie moyens sont inférieurs à 20 h en présence de nitrates ou de MOD, rendant le propranolol plus rapidement photodégradable par voie indirecte. Chen et al. (2009) ont été montré que la présence de substances humiques augmentait le temps

de demi-vie du propranolol, tandis qu'en présence d'acides fulviques le temps de demi-vie diminuait. Des observations similaires ont été faites pour la photodégradation du diazépam (Calisto et al., 2011). Les acides fulviques semblent favoriser a photodégradation indirecte, car ils sont composés d'un plus grand nombre de groupes chromophores et génèrent donc plus de radicaux hydroxyles que l'acide humique (Guerard et al., 2009). Pour la carbamazépine, classée comme difficilement photodégradable par voie directe, les temps de demi-vie moyens sont plus faibles par voie indirecte. Mais les valeurs restent élevées : la présence de nitrates favoriserait la dégradation de la carbamazépine (t_{1/2} = 284 h), alors qu'au contraire la présence de MOD aurait un effet d'écran et augmenterait le temps de demi-vie (Andreozzi et al., 2002 ; Carlos et al., 2012). Le rôle de la MOD reste à préciser, car les observations sont contradictoires selon les auteurs. Pour tous les autres micropolluants, et en raison de la variabilité des données disponibles, il semble difficile de conclure sur la modification de leur capacité à être photodégradés différemment en présence d'espèces photosensibilisatrices.

7. Sous-produits issus de la photodégradation

La photodégradation conduit à des ruptures de certaines liaisons chimiques, entraînant la formation de sous-produits. Le nombre important de sous-produits à rechercher, leurs compositions chimiques très diverses, et les très faibles niveaux de concentrations, rendent très complexe leur détermination. Ainsi, seulement 30 publications donnent une information sur les sous-produits, pour un total de 117 lignes de données de la base de données (i.e. 33 %). Ces informations concernent 10 des 13 micropolluants étudiés, car aucune information n'a été trouvée pour le timolol, le sotalol et l'érythromycine lors de nos recherches. Au total 140 sous-produits de photodégradation ont été recensés, et 10 d'entre eux ont été régulièrement rapportés dans les publications.

Les informations sur les sous-produits de dégradation sont synthétisées dans la Figure 5 pour les 13 micropolluants étudiés, et la liste complète des sous-produits est fournie en annexe (paragraphe 13).

PESTICIDES (n = 72)

PHARMACEUTIQUES (n = 277)

Figure 5 : Proportion de données concernant les produits de photodégradation disponibles dans la base de données, et sous-produits majeurs, pour les micropolluants étudiés

Plusieurs publications se sont intéressées à la génération des sous-produits de photodégradation de la carbamazépine, et les auteurs proposent des mécanismes réactionnels précis. Cinq sous-produits ont été détectés, dont l'acridine et l'acridone, et leur toxicité est plus importante que celle de la carbamazépine (Donner et al., 2013). Mais, certains des sous-produits de photodégradation subissent également la photodégradation. Cet exemple montre qu'il est essentiel de suivre la formation des sous-produits, et également d'étudier leur comportement face à la photodégradation. Dans d'autres cas, comme pour le propranolol, les produits de dégradation formés sont plus facilement biodégradables et moins toxiques que la molécule mère (Dantas et al., 2010).

71% des sous-produits répertoriés dans les publications concernent la photodégradation directe, alors que 29% concernent la photodégradation indirecte, réalisée en présence de nitrates ou de MOD de différente nature. La carbamazépine et le propranolol sont les 2 seuls micropolluants pour lesquels les sous-produits de photodégradation ont été étudiés pour les deux voies. La photodégradation indirecte de la carbamazépine (réalisée en présence de nitrates ou d'acides humiques) conduit au même sous-produit majeur qu'avec la photodégradation directe, l'acridine. Le sous-produit mineur diffère, car l'acridone est détectée dans le cas de la photodégradation directe, et la dihydroxycarbamazépine est détectée dans le cas de la photodégradation indirecte (Chiron et al., 2006). Pour le propranolol, les voies directe et indirecte (réalisée en présence de nitrates, d'acides humiques ou fulviques) ont également généré un sous-produit identique, le naphtalen-1-ol (Calisto et al., 2011).

Il semblerait donc qu'il n'y a pas de différence entre les sous-produits de photodégradation générés par voie directe et indirecte, pour la carbamazépine et le propranolol ; néanmoins, compte tenu du peu de données disponibles, et de la diversité des mécanismes d'action sur les micropolluants, il serait nécessaire d'approfondir ce point, en réalisant des expériences spécifiques, au laboratoire et sur le terrain.

8. Conclusion et perspectives

Ce travail avait pour objectif de dresser un état des lieux des connaissances disponibles en matière de photodégradation de micropolluants organiques contenus dans les eaux usées traitées, lors d'une exposition à la lumière solaire. Il a porté sur 13 micropolluants, pharmaceutiques et phytosanitaires, fréquemment retrouvés dans les rejets de stations de traitement des eaux usées, et a rassemblé 349 propriétés cinétiques extraites de 66 publications (1977-2013). Nous avons ainsi évalué la capacité de ces micropolluants à être éliminés par action directe d'UV, ou plus indirectement par création d'intermédiaires chimiques très oxydants (eux-mêmes créés sous l'action d'UV). Ces réactions entraînent la transformation des micropolluants en sous-produits.

Les données recueillies sont relativement nombreuses pour 3 des 13 micropolluants étudiés (diclofénac, propranolol, carbamazépine) ; les temps de demi-vie de ces 3 molécules sont donc appréhendés avec plus de confiance. Les micropolluants étudiés ont été classés en 3 groupes : Le diclofénac (de même que la simazine, l'isoproturon, le timolol et le sotalol) est facilement photodégradable, et son élimination à 90 % nécessiterait jusqu'à 5 jours d'ensoleillement. Le propranolol (et le diazépam) est moyennement photodégradable, et son élimination nécessiterait plusieurs mois d'ensoleillement ; La carbamazépine (et aussi le diuron, l'aténolol et le métoprolol) est plus difficilement photodégradable, et son élimination nécessiterait plusieurs de temps de demi-vie sont dispersées en raison des conditions expérimentales différentes selon les études.

La présence de nitrates et/ou de matière organique dissoute semblent diminuer les temps de demi-vie de la majorité des micropolluants organiques étudiés, et donc, accélèrent la photodégradation ; cependant, cela ne change pas le groupe auquel les molécules appartiennent.

La plupart des 140 sous-produits de photodégradation recensés dans la littérature sont attribués à la photodégradation directe. La carbamazépine et le propranolol sont les deux seuls micropolluants pour lesquels les sous-produits de photodégradation ont été étudiés pour les voies directe et indirecte, et ces deux voies conduisent aux mêmes sous-produits majeurs (acridine et naphtalen-1-ol respectivement).

Dans la suite de ce travail, nous évaluerons la contribution de la photodégradation naturelle à l'élimination de micropolluants contenus dans les eaux usées traitées, et nous déterminerons la hauteur d'eau efficace. Des photoréacteurs seront exposés dans la ZRV-bassin de Marguerittes à différentes profondeur et à différentes saisons. En parallèle, des photoréacteurs seront exposés au laboratoire et serviront de témoin. Ce travail permettra de documenter les paramètres de photodégradation pour des micropolluants peu renseignés dans la littérature comme l'érythromycine, la roxithromycine, le timolol, le sotalol, l'aténolol, le métoprolol, le diazépam, la simazine, l'isoproturon ou le diuron. Il permettra également de documenter d'autres molécules fréquemment quantifiées dans les effluents secondaires, en particulier certains antibiotiques. Ce travail permettra également de document les sous-produits de photodégradation générés par voies directes et indirectes.

9. Bibliographie

Andreozzi R., Marotta R., Pinto G. & Pollio A. (2002). Carbamazepine in water: Persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Research 36, 2869-2877.

Bartels P. & von Tümpling Jr W. (2007). Solar radiation influence on the decomposition process of diclofenac in surface waters. Science of the Total Environment 374, 143-155.

Blanksby S.J. & Ellison G.B. (2003). Bond dissociation energies of organic molecules. Accounts of Chemical Research 36, 255-263.

Besnault S., Martin S., Baig S., Budzinski H., Le Menach K., Esperanza M., Noyon N., Gogot C., Miège C., Dherret L., Roussel-Galle A. & Coquery M. (2014), Réduction des micropolluants par les traitements complémentaires : procédés d'oxydation avancée, adsorption sur charbon actif. Rapport SUEZ-Irstea-ONEMA, 71 p., http://armistiq.irstea.fr

Boutin C., Iwema A. & Lagarrigue C. (2010). Point sur les zones de dissipation végétalisées : vers une protection supplémentaire du milieu récepteur de surface, Rapport EPNAC, 12p., http://epnac.irstea.fr

Burrows H.D., Canle L.M., Santaballa J.A. & Steenken S. (2002). Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology 67, 71-108.

Calisto V., Domingues M.R.M. & Esteves V.I. (2011). Photodegradation of psychiatric pharmaceuticals in aquatic environments - Kinetics and photodegradation products. Water Research 45, 6097-6106.

Canonica S., Wenk J. & Laubscher H.U. (2009). Matière organique, lumière et dégradation des polluants. Eawag News 66f : 16-18.

Carlos L. Martire D.O., Gonzalez M.C., Gomis J., Bernabeu A., Amat, A. M. & Arques, A. (2012). Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Research 46, 4732-4740.

CE (2015). Décision d'exécution (UE) 2015/495 de la commission du 20 mars 2015 établissant une liste de vigilance relative aux substances soumises à surveillance à l'échelle de l'Union dans le domaine de la politique de l'eau en vertu de la directive 2008/105/CE du Parlement européen et du Conseil. Journal officiel de l'Union européenne L 78/40. N°C(2015) 1756. 3 p.

CE (2013). Directive 2013/39/UE du parlement européen et du conseil du 12 août 2013 modifiant les directives 2000/60/CE et 2008/105/CE en ce qui concerne les substances prioritaires pour la politique dans le domaine de l'eau, Journal officiel de l'Union européenne, L 226, 17 p.

Chen Y., Hu C., Hu X. & Qu J. (2009). Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight. Environmental Science and Technology 43:2760-2765.

Chiron S., Minero C. & Vione D. (2006). Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters. Environmental Science and Technology 40, 5977-5983.

Choubert J.M., Martin Ruel S., Budzinski H., Miège C., Esperanza M., Soulier C., Lagarrigue C. & Coquery M. (2011). Évaluer les rendements des stations d'épuration : apports méthodologiques et résultats pour les micropolluants en filières conventionnelles et avancées. Techniques Sciences Méthodes 1-2:44-62.

Coquery, M., Pomiès, M., Martin Ruel, S., Budzinski, H., Miège, C., Esperanza, M., Soulier, C., Choubert, J.M. (2011). Concentrations et flux de micropolluants dans les eaux usées brutes et les rejets de stations d'épuration : méthodologie et principaux résultats du projet AMPERES. Techniques Sciences et Méthodes, 1/2, 25-43.

Dantas R.F., Rossiter O., Teixeira A.K.R., Simões A.S.M. & da Silva V.L. (2010). Direct UV photolysis of propranolol and metronidazole in aqueous solution. Chemical Engineering Journal 158, 143-147.

Dell'Arciprete M. L., Santos-Juanes L., Arques A., Vercher R. F., Amat A. M., Furlong J.P. & Gonzalez M. C. (2010). Reactivity of neonicotinoid pesticides with singlet oxygen. Catalysis Today, 151(1), 137-142.

Donner E., Kosjek T., Qualmann S., Kusk K.O., Heath E., Revitt D.M. & Andersen, H.R. (2013). Ecotoxicity of carbamazepine and its UV photolysis transformation products. Science of the Total Environment, 443, 870-876.

Fatta-Kassinos D., Vasquez M.I. & Kümmerer K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes - Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85, 693-709.

Gabet Giraud V., Miège C., Choubert J.M., Martin Ruel S. & Coquery M. (2010). Occurrence and removal of estrogens and beta blockers by various processes in wastewater treatment plants. Science of The Total Environment 408, 4257-4269.

Guerard J.J., Miller P.L., Trouts T.D. & Chin Y.P. (2009). The role of fulvic acid composition in the photosensitized degradation of aquatic contaminants. Aquatic Sciences 71, 160-169.

Hickel B. La radiolyse de l'eau. CLEFS CEA 43, 23-25 (2000).

Huang J. (2000). Carbonate Radical in Natural Waters. Thesis Department of Chemistry. University of Toronto. 169 p.

Lam M.W., Tantuco K. & Mabury S.A. (2003). PhotoFate: A New Approach in Accounting for the Contribution of Indirect Photolysis of Pesticides and Pharmaceuticals in Surface Waters. Environmental Science & Technology 37, 899-907.

Laurion I., Ventura M., Catalan J., Psenner R. & Sommaruga R. (2000). Attenuation of ultraviolet radiation in mountain lakes: Factors controlling the among- and within-lake variability. Limnology and Oceanography 45, 1274-1288.

Linden K.G. & Darby J.L. (1998). Ultraviolet disinfection of marginal effluents: Determining ultraviolet absorbance and subsequent estimation of ultraviolet intensity. Water Environment Research 70, 214-223.

Mabury, S.A. & Crosby, D.G. (1996). Pesticide reactivity toward hydroxyl and its relationship to field persistence. Journal of Agricultural and Food Chemistry 44, 1920-1924.

Martin Ruel S., Choubert J.M., Esperanza M., Miège C., Madrigal P.N., Budzinski H., Le Menach K., Lazarova V. & Coquery M. (2011). On-site evaluation of the removal of 100 micro-pollutants through advanced wastewater treatment processes for reuse applications. Water Science and Technology 63 (11), 2486-2497.

Navarro S., Vela N., José Giménez M. & Navarro G. (2004). Persistence of four s-triazine herbicides in river, sea and groundwater samples exposed to sunlight and darkness under laboratory conditions. Science of the Total Environment 329, 87-97.

Nelieu S., Mernier J. & Repinçay C. (2011). Photodégradation du chlorotoluron induite par des constituants du sol. 4^e séminaire d'écotoxicologie de l'INRA, Saint Lager (FR), 7 au 9 novembre 2011, http://prodinra.inra.fr/record/216855

Peuravuori J. & Pihlaja K. (2009). Phototransformations of selected pharmaceuticals under low-energy UVA-vis and powerful UVB-UVA irradiations in aqueous solutions-the role of natural dissolved organic chromophoric material. Analytical and Bioanalytical Chemistry 394, 1621-1636.

Schwarzenbach R.P., Gschwend P.M. & Imboden D.M. (2005). Environmental organic chemistry. Wiley-Interscience, Hoboken, New Jersey, 0-471-35053-2 (cl).

Schuehmacher J., Blin E., Jordi J. & Paoletti E. (2013). Zone Libellule© du SIVOM La Palus (34) : Evaluation des capacités épuratrices et étude de l'évolution de la biodiversité du site. Rapport d'étude sept. 2009 – sept. 2012, 273 p.

Shankar M.V., Nélieu S., Kerhoas L. & Einhorn J. (2007). Photo-induced degradation of diuron in aqueous solution by nitrites and nitrates: Kinetics and pathways. Chemosphere 66, 767-774.

Shankar M.V., Nélieu S., Kerhoas L. & Einhorn J. (2008). Natural sunlight NO3 - / NO2 --induced photodegradation of phenylurea herbicides in water. Chemosphere 71, 1461-1468.

Soulier, C., Gabet, V., Lardy, S., Lemenach, K., Pardon, P., Esperanza, M., Miege, C., Choubert, J.M., Martin Ruel, S., Bruchet, A., Coquery, M., Budzinski, H. (2011). Zoom sur les substances pharmaceutiques : présence, partition, devenir en station d'épuration. Techniques Sciences et Méthodes, 1/2, 63-77.

Vasseur C., Mostajir B., Nozais C., Denis M., Fouilland Ã.r., Klein B. & Demers S. (2003). Effects of biooptical factors on the attenuation of ultraviolet and photosynthetically available radiation in the North Water Polynya, northern Baffin Bay: ecological implications. Marine Ecology Progress Series 252, 1-13.

Yang W., Zhou H. & Cicek N. (2014). Treatment of organic micropollutants in water and wastewater by UVbased processes: a literature review. Critical Reviews in Environmental Science and Technology, 44, 1443-1476.

Wu C. & Linden K.G. (2010). Phototransformation of selected organophosphorus pesticides: Roles of hydroxyl and carbonate radicals. Water Research 44, 3585-3594.

Zeng C., Ji Y., Zhou L., Zhang Y. & Yang X. (2012). The role of dissolved organic matters in the aquatic photodegradation of atenolol. Journal of Hazardous Materials 239-240, 340-347.

Zepp R.G. & Cline D.M. (1977). Rates of direct photolysis in aquatic environment. Environmental Science and Technology 11, 359-366.

Zhang D., Gersberg R.M., Ng W.J. & Tan S.K. (2014). Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review. Environmental Pollution, 184, 620-639.

10. Sigles & Abréviations

AMPERES :	Analyse de micropolluants prioritaires et émergents dans les rejets et les eaux superficielles (projet ANR PRECODD 2006-2009 coordonné par Irstea et réalisé avec l'université de Bordeaux et Suez-Environnement) http://projetamperes.cemagref.fr/
ARMISTIQ :	Amélioration de la réduction des micropolluants dans les stations de traitement des eaux usées domestiques (projet ONEMA 2010-2013 coordonné par Irstea et réalisé avec l'université de Bordeaux et Suez-Environnement http://armistiq.irstea.fr/armistiq/
k _{direct} :	Constante cinétique pour la photodégradation directe
k _{indirect} :	Constante cinétique pour la photodégradation indirecte
LQ :	Limite de quantification
MOD :	Matière organique dissoute
NQE :	Normes de qualité environnementale
P.I. :	Pas d'information
STEU :	Station de traitement des eaux usées
t _{1/2} :	Temps de demi-vie
UV :	Ultra-violet
ZRV :	Zone de rejet végétalisée

11. Table des illustrations

Figures

Figure 1 : Photographie d'une zone de rejet végétalisée de type bassin (photo Irstea)	5
Figure 2 : Représentation schématique de l'action de rayons lumineux sur des molécules organiques photosensibles contenues dans l'eau	8
Figure 3 : Proportion de propriétés cinétiques disponibles dans la base de données pour les 13 micropolluants étudiés (aucune donnée sur l'érythromycine)	13
Figure 4 : Proportion de propriétés cinétiques disponibles dans la base de données en fonction du "type d'eau" pour les pesticides et les molécules pharmaceutiques	14
Figure 5 : Proportion de données concernant les produits de photodégradation disponibles dans la base de données, et sous-produits majeurs, pour les micropolluants étudiés 1	18

Tableaux

Tableau 1 : Propriétés physico-chimiques des 13 molécules (familles) sélectionnés dans cette étude et paramètres liés à la photodégradation.	7
Tableau 2 : Temps de demi-vie et rendements d'élimination obtenus à l'échelle du laboratoire* et à l'échelle d'un procédé réel de type lagune de finition	15
Tableau 3 : Temps de demi-vie (t1/2) obtenus par photodégradation direct et indirecte sous rayonnement solaire pour 13 micropolluants (moyenne [Min ; Max] (nombre de données))	16

12. Annexe 1 : Liste des publications ayant permis de compléter la base de données dédiée aux paramètres cinétiques de photodégradation

Aguera A., Estrada L.A.P., Ferrer I., Thurman E.M., Malato S., Fernandez-Alba A.R. (2005) Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. Journal of Mass Spectrometry 40:908-915.

Andreozzi R., Raffaele M., Nicklas P. (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50:1319-1330.

Andreozzi R., Marotta R., Pinto G., Pollio A. (2002) Carbamazepine in water: Persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Research 36:2869-2877.

Andrisano V., Gotti R., Leoni A., Cavrini V. (1999) Photodegradation studies on Atenolol by liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis 21:851-857.

Bartels P., von Tümpling Jr W. (2007) Solar radiation influence on the decomposition process of diclofenac in surface waters. Science of the Total Environment 374:143-155.

Benitez F.J., Real F.J., Acero J.L., Garcia C. (2006) Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters. Journal of Hazardous Materials 138:278-287.

Buser H.R., Poiger T., Müller M.D. (1998) Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake. Environmental Science and Technology 32:3449-3456.

Calisto V., Domingues M.R.M., Esteves V.I. (2011a) Photodegradation of psychiatric pharmaceuticals in aquatic environments - Kinetics and photodegradation products. Water Research 45:6097-6106.

Calisto V., Domingues M.R.M., Erny G.L., Esteves V.I. (2011b) Direct photodegradation of carbamazepine followed by micellar electrokinetic chromatography and mass spectrometry. Water Research 45:1095-1104.

Canonica S., Meunier L., von Gunten U. (2008) Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Research 42:121-128.

Carlos L., Mártire D.O., Gonzalez M.C., Gomis J., Bernabeu A., Amat A.M., Arques A. (2012) Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Research 46:4732-4740.

Chen Y., Hu C., Hu X., Qu J. (2009) Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight. Environmental Science and Technology 43:2760-2765.

Chen Y., Li H., Wang Z.P., Li H.J., Tao T., Zuo Y.G. (2012) Photodegradation of selected beta-blockers in aqueous fulvic acid solutions: Kinetics, mechanism, and product analysis. Water Research 46:2965-2972.

Chen Y., Liang Q., Zhou D., Wang Z., Tao T., Zuo Y. (2013) Photodegradation kinetics, products and mechanism of timolol under simulated sunlight. Journal of Hazardous Materials 252-253:220-226.

Chiron S., Minero C., Vione D. (2006) Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters. Environmental Science and Technology 40:5977-5983.

Chiron S., Minero C., Vione D. (2007) Photodegradation of xenobiotic compounds relevant to estuarine waters. Annali di Chimica 97:135-139.

Dantas R.F., Rossiter O., Teixeira A.K.R., Simões A.S.M., da Silva V.L. (2010) Direct UV photolysis of propranolol and metronidazole in aqueous solution. Chemical Engineering Journal 158:143-147.

De la Cruz N., Dantas R.F., Giménez J., Esplugas S. (2013) Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: Solar and artificial light. Applied Catalysis B: Environmental 130-131:249-256.

Doll T.E., Frimmel F.H. (2003) Fate of pharmaceuticals - Photodegradation by simulated solar UV-light. Chemosphere 52:1757-1769.

Donner E., Kosjek T., Qualmann S., Kusk K.O., Heath E., Revitt D.M., Ledin A., Andersen H.R. (2013) Ecotoxicity of carbamazepine and its UV photolysis transformation products. Science of the Total Environment 443:870-876.

Dureja P., Walia S., Sharma K.K. (1991) Photolysis of isoproturon in aqueous solution. Toxicological and Environmental Chemistry 34:65-71.

Evgenidou E., Fytianos K. (2002) Photodegradation of triazine herbicides in aqueous solutions and natural waters. Journal of Agricultural and Food Chemistry 50:6423-6427.

Farran A., Ruiz S. (2004) Application of solid-phase extraction and micellar electrokinetic capillary chromatography to the study of hydrolytic and photolytic degradation of phenoxy acid and phenylurea herbicides. Journal of Chromatography A 1024:267-274.

Felis E., Miksch K. (2009). Removal of analgesic drugs from the aquatic environment using photochemical

methods, Water Science & Technology 60(9):253-2259.

Galichet F., Mailhot G., Bonnemoy F., Bohatier J., Bolte M. (2002) Iron(III) photo-induced degradation of isoproturon: Correlation between degradation and toxicity. Pest Management Science 58:707-712.

Ibáñez M., Sancho J.V., Pozo Ó.J., Hernández F. (2004) Use of Quadrupole Time-of-Flight Mass Spectrometry in Environmental Analysis: Elucidation of Transformation Products of Triazine Herbicides in Water after UV Exposure. Analytical Chemistry 76:1328-1335.

Ji Y., Zeng C., Ferronato C., Chovelon J.M., Yang X. (2012) Nitrate-induced photodegradation of atenolol in aqueous solution: Kinetics, toxicity and degradation pathways. Chemosphere 88:644-649.

Kim I., Tanaka H. (2009) Photodegradation characteristics of PPCPs in water with UV treatment. Environment International 35:793-802.

Kim I., Yamashita N., Tanaka H. (2009) Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere 77:518-525.

Kiss A., Rapi S., Csutoras C. (2007) GC/MS studies on revealing products and reaction mechanism of photodegradation of pesticides. Microchemical Journal 85:13-20.

Kunkel U., Radke M. (2012) Fate of pharmaceuticals in rivers: Deriving a benchmark dataset at favorable attenuation conditions. Water Research 46:5551-5565.

Lai M.S., Jensen J.N., Weber A.S. (1995) Oxidation of simazine - ozone, ultraviolet, and combined ozone ultraviolet oxidation. Water Environment Research 67:340-346.

Lam M.W., Mabury S.A. (2005) Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquatic Sciences 67:177-188.

Lam M.W., Young C.J., Brain R.A., Johnson D.J., Hanson M.A., Wilson C.J., Richards S.M., Solomon K.R., Mabury S.A. (2004) Aquatic persistence of eight pharmaceuticals in a microcosm study. Environmental Toxicology and Chemistry 23:1431-1440.

Lányi K. (2003) Study of the photodegradation of urea-type herbicides by capillary gas chromatography. Chromatographia 57:S235-S241.

Lekkerker-Teunissen K., Benotti M.J., Snyder S.A., van Dijk H.C. (2012) Transformation of atrazine, carbamazepine, diclofenac and sulfamethoxazole by low and medium pressure UV and UV/H2O2 treatment. Separation and Purification Technology 96:33-43.

Lester Y., Mamane H., Avisar D. (2012) Enhanced Removal of Micropollutants from Groundwater, Using pH Modification Coupled with Photolysis. Water Air and Soil Pollution 223:1639-1647.

Lin A.Y.C., Reinhard M. (2005) Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental Toxicology and Chemistry 24:1303-1309.

Liu Q.T., Williams H.E. (2007) Kinetics and degradation products for direct photolysis of β -blockers in water. Environmental Science and Technology 41:803-810.

Liu Q.T., Williams T.D., Cumming R.I., Holm G., Hetheridge M.J., Murray-Smith R. (2009) Comparative aquatic toxicity of propranolol and its photodegraded mixtures: Algae and rotifer screening. Environmental Toxicology and Chemistry 28:2622-2631.

Matamoros V., Duhec A., Albaigés J., Bayona J.M. (2009) Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17α-ethinylestradiol in fresh and seawater. Water, Air, and Soil Pollution 196:161-168.

Meite L., Szabo R., Mazellier P., De Laat J. (2010) Kinetics of phototransformation of emerging contaminants in aqueous solution. Cinétique de phototransformation de polluants organiques émergents en solution aqueuse diluée 23:31-39.

Navarro S., Vela N., José Giménez M., Navarro G. (2004) Persistence of four s-triazine herbicides in river, sea and groundwater samples exposed to sunlight and darkness under laboratory conditions. Science of the Total Environment 329:87-97.

Okamura H. (2002) Photodegradation of the antifouling compounds Irgarol 1051 and Diuron released from a commercial antifouling paint. Chemosphere 48:43-50.

Oller I., Malato S., Sánchez-Pérez J.A. (2011) Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination — A review. Science of The Total Environment 409:4141-4166.

Othmen K., Boule P. (1999) Photochemical behaviour of dichloroanilines in water and formation of aminochlorophenoxazones. Journal of Photochemistry and Photobiology A: Chemistry 121:161-167.

Packer J.L., Werner J.J., Latch D.E., McNeill K., Arnold W.A. (2003) Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquatic Sciences 65:342-351.

Pereira V.J., Linden K.G., Weinberg H.S. (2007a) Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water. Water Research 41:4413-4423.

Pereira V.J., Weinberg H.S., Linden K.G., Singer P.C. (2007b) UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm. Environmental Science and Technology 41:1682-1688.

Peuravuori J., Pihlaja K. (2009) Phototransformations of selected pharmaceuticals under low-energy UVAvis and powerful UVB-UVA irradiations in aqueous solutions-the role of natural dissolved organic chromophoric material. Analytical and Bioanalytical Chemistry 394:1621-1636.

Piram A., Salvador A., Verne C., Herbreteau B., Faure R. (2008) Photolysis of β-blockers in environmental waters. Chemosphere 73:1265-1271.

Poiger T., Buser H.-R., Müller M.D. (2001) Photodegradation of the pharmaceutical drug diclofenac in a lake: Pathway, field measurements, and mathematical modeling. Environmental Toxicology and Chemistry 20:256-263.

Qin M., Yang H., Chen S., Xie H., Guan J. (2012) Photochemical characteristics of diclofenac and its photodegradation of inclusion complexes with β-cyclodextrins. Quimica Nova 35:559-562.

Rivas F.J., Beltrán F.J., Encinas A. (2012) Removal of emergent contaminants: Integration of ozone and photocatalysis. Journal of Environmental Management 100:10-15.

Salgado R., Pereira V.J., Carvalho G., Soeiro R., Gaffney V., Almeida C., Cardoso V.V., Ferreira E., Benoliel M.J., Ternes T.A., Oehmen A., Reis M.A.M., Noronha J.P. (2013) Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater. Journal of Hazardous Materials 244:516-527.

Sanches S., Barreto Crespo M.T., Pereira V.J. (2010) Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Research 44:1809-1818.

Shankar M.V., Nélieu S., Kerhoas L., Einhorn J. (2007) Photo-induced degradation of diuron in aqueous solution by nitrites and nitrates: Kinetics and pathways. Chemosphere 66:767-774.

Shankar M.V., Nélieu S., Kerhoas L., Einhorn J. (2008) Natural sunlight NO3 - / NO2 --induced photodegradation of phenylurea herbicides in water. Chemosphere 71:1461-1468.

Šojić D., Despotović V., Orčić D., Szabó E., Arany E., Armaković S., Illés E., Gajda-Schrantz K., Dombi A., Alapi T., Sajben-Nagy E., Palágyi A., Vágvölgyi C., Manczinger L., Bjelica L., Abramović B. (2012) Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes: Kinetics, degradation intermediates and toxicity. Journal of Hydrology 472–473:314-327.

Tanaka F.S., Hoffer B.L., Wien R.G. (1986) Photolysis of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (diuron) in dilute aqueous-solution. Toxicological and Environmental Chemistry 11:261-269.

Vione D., Feitosa-Felizzola J., Minero C., Chiron S. (2009) Phototransformation of selected human-used macrolides in surface water: Kinetics, model predictions and degradation pathways. Water Research 43:1959-1967.

Vogna D., Marotta R., Napolitano A., Andreozzi R., d'Ischia M. (2004) Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Research 38:414-422.

Wang L., Xu H., Cooper W.J., Song W. (2012) Photochemical fate of beta-blockers in NOM enriched waters. Science of The Total Environment 426:289-295.

West C.E., Rowland S.J. (2012) Aqueous phototransformation of diazepam and related human metabolites under simulated sunlight. Environmental Science and Technology 46:4749-4756.

Zeng C., Ji Y., Zhou L., Zhang Y., Yang X. (2012) The role of dissolved organic matters in the aquatic photodegradation of atenolol. Journal of Hazardous Materials 239-240:340-347.

Zepp R.G., Cline D.M. (1977) Rates of direct photolysis in aquatic environment. Environmental Science & Technology 11:359-366.

13. Annexe 2 : Produits de photodégradation référencés dans la littérature

Molécule mère	Type de photolyse	Masse moléculaire (g/mol)	Formule chimique	Référence
Isoproturon	Direct	P1= 208 P2= 222 P3= 206 P4= 220	P1= C11H16N2O2 P2= C12H18N2O2 P3= C11H14N2O2 P4= C12H16N2O3	Galichet et al. 2002
Isoproturon	Direct	P1= 266 P2= 135 P3= 192 P4= 282 P5= 220 P6= 151 P7= 222 P8= 178 P9= 296 P10= 354 P11= 222	P1= C18H22N2 P2= C9H13N P3= C11H16N2O P4= C18H22N2O P5= C12H17N2O2 P6= C9H13NO P7= C12H18N2O2 P8= C10H14N2O P9= C19H24N2O P10= C20H26N4O2 P11= C12H18N2O2	Dureja et al. 1991
Diclofénac	Direct	P1= 225 P2= 259,5 P3= 241	P1= C14H11NO2 P2= C14H10CINO2 P3= C14H11NO3	Poiger et al. 2001
Diclofénac	Direct	P1= 127,5 P2= 162 P3= 163 P4= 278 P5= 231,5 P6= 252 P7= 195 P8=229,5 P9=264	P1=C6H6CIN P2= C6H5Cl2N P3= C6H4Cl2O P4= C14H9Cl2NO P5= C13H10CINO P6= C13H11Cl2N P7= C13H9NO P8=C13H8CINO P9=C13H7Cl2NO	Bartels and von Tümpling Jr 2007
Diclofénac	Direct	P1= 259,5	P1= C14H10CINO2	Qin et al. 2012
Diclofénac	Direct	P1= 225 P2= 259,5	P1= C14H11NO2 P2= C14H10CINO2	Buser et al. 1998
Diclofénac	Direct	P1= 255 P2= 280 P3= 256 P4= 326 P5= 227 P6= 259,5	P1= C14H9NO4 P2= C13H7Cl2NO2 P3= C14H10NO4 P4= C14H9Cl2NO4 P5= C14H13NO2 P6= C14H10ClNO2	Salgado et al. 2013
Diclofénac	Direct	P1= 259,5 P2= 241 P3= 256 P4= 215,5 P5= 211	P1= C14H10CINO2 P2= C14H11NO3 P3= C14H10NO4 P4= C13H10NCI P5= C13H9NO2	Lekkerkerker- Teunissen et al. 2012
Diclofénac	Direct	$\begin{array}{l} P1=259,5\\ P2=243\\ P3=231\\ P4=229\\ P5=201\\ P6=241\\ P7=257\\ P8=252\\ P9=266\\ P10=231,5\\ P11=203,5\\ P12=282\\ P13=247 \end{array}$	P1= C14H10CINO2 P2= C14H10CINO P3= C13H10CINO P4= C13H8CINO P5= C12H8CIN P6= C14H11NO3 P7= C14H11NO4 P8= C13H11CI2N P9= C13H9CI2NO P10= C13H10CINO P11= C12H10CIN P12=C13H9CI2NO2 P13=C13H10CINO2	Aguera et al. 2005

Diazépam	Direct	P1= 245,5 P2= 243,5 P3= 231,5 P4= 229,5	P1= C14H12CINO P2= C14H10CINO P3= C13H10CINO P4= C13H8CINO	West and Rowland 2012
Diazépam	Indirect	P1= 223 P2= 227,5 P3= 243,5 P4= 245,5	P1= C15H13NO P2= C14H10CIN P3= C15H14CIN P4= C14H12CINO	Calisto et al. 2011
Propranolol	Direct	P1= 144	P1= C10H8O	Chen et al. 2009
Propranolol	Indirect	P1= 144	P1= C10H8O	Chen et al. 2009
Propranolol	Direct	P1= 264 P2= 292	P1= C15H21NO3 P2= C16H21NO4	Liu and Williams 2007
Diuron	Direct	P1= 198,5 P2= 164	P1= C9H11CIN2O P2= C9H12N2O	Farran and Ruiz 2004
Diuron	Indirect	P1= 249 P2= 247 P3= 163 P4= 214,5 P5= 214,5 P6= 249 P7= 263 P8=278 P9=264 P10= 259,5	P1=C9H10Cl2N2O2 P2= C9H8Cl2N2O2 P3= C8H8Cl2N2O P4= C9H11ClN2O2 P5= C9H10Cl2N2O2 P6= C9H10Cl2N2O2 P7= C9H8Cl2N2O3 P8=C9H9Cl2N3O3 P9=C8H7Cl2N3O3 P10=C9H10ClN3O4	Shankar et al. 2007
Diuron	Direct	P1= 88 P2= 74 P3= 88 P4= 212 P5= 350	P1= C3H8N2O P2= C2H6N2O P3= C3H8N2O P4= C9H12N2O4 P5= C13H8Cl4N2O	Lanyi 2003
Diuron	Direct	P1= 247 P2= 249 P3= 198,5 P4= 214,5 P5= 214,5 P6= 394	P1= C9H8Cl2N2O2 P2= C9H10Cl2N2O2 P3= C9H11ClN2O P4= C9H11ClN2O2 P5= C9H11ClN2O2 P6= C18H19Cl3N4O2	Tanaka et al. 1986
Aténolol	Indirect	P1= 281 P2= 266 P3= 250 P4= 133 P5= 279	P1= C14H21N2O4 P2= C14H20NO4 P3= C14H20NO3 P4= C6H15NO2 P5= C14H19N2O4	Salgado et al. 2013
Aténolol	Indirect	P1= 222	P1= C11H14N2O3	Chen et al. 2012
Aténolol	Indirect	P1= 133 P2= 167 P3= 266 P4= 281	P1= C6H15NO2 P2= C8H9NO3 P3= C14H20NO4 P4= C14H21N2O4	Ji et al. 2012
Aténolol	Direct	P1= 151 P2= 236	P1= C8H9NO2 P2= C13H20N2O2	Andrisano et al. 1999
Carbamazépine	Direct	P1=254 P2= 223 P3= 179 P4= 195	P1= C15H14N2O2 P2= C14H9NO2 P3= C13H9N P4= C13H9NO	Chiron et al. 2006
Carbamazépine	Indirect	P1=254 P2= 223 P3= 179 P4= 268	P1= C15H14N2O2 P2= C14H9NO2 P3= C13H9N P4= C15H12N2O3	Chiron et al. 2006

1				
Carbamazépine	Direct	P1= 179 P2= 195	P1= C13H9N P2= C13H9NO	Donner et al. 2013
Carbamazépine	Direct	P1=207 P2= 179 P3= 195 P4= 268	P1= C14H9NO P2= C13H9N P3= C13H9NO P4= C15H12N2O3	Calisto et al. 2011
Carbamazépine	Indirect	P1= 252	P1= C15H12N2O2	Lam and Mabury 2005
Carbamazépine	Direct	P1= 252 P2=207 P3= 179 P4= 223	P1= C15H12N2O2 P2= C14H9NO P3= C13H9NO P4= C14H9NO2	Lekkerkerker- Teunissen et al. 2012
Métoprolol	Direct	P1= 133 P2= 237 P3= 239 P4= 253 P5= 281 P6= 251 P7= 348	P1=C6H15NO2 P2= C13H19NO3 P3= C13H21NO3 P4= C14H23NO3 P5= C15H23NO4 P6= C15H25NO2 P7= C20H30NO4	Šojić et al. 2012
Roxithromycine	Indirect	P1 = 826	P1=C39H74N2O16	Vione et al. 2009

Irstea

1, rue Pierre Gilles de Gennes CS 10030 92761 Antony 01 40 96 61 21 *www.irstea.fr*

Onema

Hall C – Le Nadar 5, square Félix Nadar 94300 Vincennes 01 45 14 36 00 www.onema.fr