

Étude d'impact de l'utilisation des nouveaux indicateurs biologiques et physicochimiques pour l'évaluation de l'état écologique des plans d'eau

Maxime Logez, P.A. Danis, V. Roubeix, Christine Argillier

▶ To cite this version:

Maxime Logez, P.A. Danis, V. Roubeix, Christine Argillier. Étude d'impact de l'utilisation des nouveaux indicateurs biologiques et physicochimiques pour l'évaluation de l'état écologique des plans d'eau. [Rapport de recherche] irstea. 2014, pp.130. hal-02602605

$\begin{array}{c} {\rm HAL~Id:~hal\text{-}02602605} \\ {\rm https://hal.inrae.fr/hal\text{-}02602605v1} \end{array}$

Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Etude d'impact de l'utilisation des nouveaux indicateurs biologiques et physicochimiques pour l'évaluation de l'état écologique des plans d'eau

Maxime Logez¹
Pierre-Alain Danis²
Vincent Roubeix¹
Christine Argillier¹

Février 2014

 Irstea, UR HYAX, Pôle Onema-Irstea Hydroécologie plans d'eau
 Onema, Pôle Onema-Irstea Hydroécologie plans d'eau

ONEMA Office national de feau et des milieux aoustiques

Partenariat 2013 Impact nouveaux indicateurs

Contexte de programmation et de réalisation

Les auteurs

Maxime Logez
Ingénieur de recherche
maxime.logez@irstea.fr
Irstea - Unité HYAX, pôle Onema/Irstea hydroécologie plans d'eau
3275 route Cézanne (RD17 au Tholonet)
CS 40061 13182 Aix-en-Provence Cedex 5

Pierre-Alain Danis Ingénieur de recherche pierre-alain.danis@onema.fr Pôle Onema/Irstea hydroécologie plans d'eau 3275 route Cézanne (RD17 au Tholonet) CS 40061 13182 Aix-en-Provence Cedex 5

Vincent Roubeix
Ingénieur de recherche
vincent.roubeix@irstea.fr
Irstea - Unité HYAX, pôle Onema/Irstea hydroécologie plans d'eau
3275 route Cézanne (RD17 au Tholonet)
CS 40061 13182 Aix-en-Provence Cedex 5

Christine Argillier
Directrice de recherche
christine.argillier@irstea.fr
Irstea - Unité HYAX, pôle Onema/Irstea hydroécologie plans d'eau
3275 route Cézanne (RD17 au Tholonet)
CS 40061 13182 Aix-en-Provence Cedex 5

Les correspondants

Onema: Yorick Reyjol, chargé de mission Onema DAST, yorick.reyjol@onema.fr

Irstea: Christine Argillier, Directeur de recherches Irstea, christine.argillier@irstea.fr

Droits d'usage : Libre

Couverture géographique : France

Niveau géographique : National,

Niveau de lecture : Professionnels, experts

Nature de la ressource : Document

T

Sommaire

Sommaire	2
Table des illustrations	4
Liste des tableaux	6
Introduction	8
Données mobilisées pour l'étude d'impact	8
L'évaluation 2010	9
Les éléments de l'évaluation	9
Agrégation des informations pour l'évaluation 2010	9
Les éléments de l'évaluation disponibles en 2013	10
Les éléments biologiques	10
La physico-chimie soutenant la biologie	11
Cas des Nitrates	15
Cas des Phosphates : valeurs-seuils et pertinence	17
Les polluants spécifiques (PSP)	19
Principes généraux de l'étude d'impact	19
Résultats de l'étude d'impact sur les plans d'eau à l'échelle nationale	21
État biologique	21
État physico-chimique	22
État écologique 2013	25
État écologique Mixte (Physico-chimie 2010 et Biologie 2013)	30
Association physico-chimie biologie	34
Résultats de l'étude d'impact sur les plans d'eau du bassin Adour Garonne	36
État biologique	37
État physico-chimique	38
État écologique 2013	39
État écologique Mixte (Physico-chimie 2010 et Biologie 2013)	41
Résultats de l'étude d'impact sur le bassin Artois Picardie	44
État biologique	4 4
État physico-chimique	45
État écologique 2013	46
État écologique Mixte (Physico-chimie 2010 et Biologie 2013)	47
Résultats de l'étude d'impact sur le bassin Loire Bretagne	48
État biologique	48
État physico-chimique	49

État écologique 2013	5 I
État écologique Mixte (Physico-chimie 2010 et Biologie 2013)	53
Résultats de l'étude d'impact sur le bassin Rhin Meuse	56
État biologique	56
État physico-chimique	57
État écologique 2013	59
État écologique Mixte (Physico-chimie 2010 et Biologie 2013)	61
Résultats de l'étude d'impact sur le bassin Rhône Méditerranée et Corse	64
État biologique	64
État physico-chimique 2013	65
État écologique 2013	67
État écologique Mixte (Physico-chimie 2010 et Biologie 2013)	69
Résultats de l'étude d'impact sur le bassin Seine Normandie	74
État biologique	74
État physico-chimique 2013	75
État écologique 2013	76
État écologique Mixte (Physico-chimie 2010 et Biologie 2013)	77
Comparaison des versions anciennes et actuelles des indicateurs phytoplancton	80
Conclusions et perspectives	82
Annexe: Seuils physico-chimiques pour la transparence	85
Annexe: Seuils physico-chimiques pour le phosphore total (P)	94
Annexe : Seuils physico-chimiques pour orthophosphates (PO ₄ ³ -)	103
Annexe : Seuils physico-chimiques pour l'ammonium (NH_4^+)	104
Annexe : Seuils physico-chimiques pour les nitrates (NO_{3-})	113
Annexe : Jeu de données utilisé pour l'étude d'impact	122

Table des illustrations

Figure I : Valeurs de la métrique MBA (cercles noirs à gauche, i.e. concentration en cholorophylle a) et de la métrique MCS (cercles noirs à droite) représentées en fonction de la profondeur moyenne. Les cercles rouge correspondent aux distributions "bootstrap" respectives des valeurs de référence prédites pour le plan d'eau d'Anterne (74)	
Figure 2 : Transposition des limites de classe des métriques en limite de classes des paramètres physicochimiques. Exemple de la limite Bon-Moyen pour le phosphore total (valeur médiane des mesures annuelles e zone euphotique). Les points rouges représentent la distribution "bootstrap". Pour la métrique MBA (à gauche les limites de classe sont issues de l'intervalle de prédiction et sont donc fixes pour l'ensemble des simulations "bootstrap". Pour la métrique MCS (à droite), l'incertitude sur le modèle de référence est propagée dans le modèle de pression	en e), s
Figure 3 : Distribution des valeurs-limites de classes physico-chimiques pour chacune des métriques : exemple de la limite Bon-Moyen pour le phosphore total. La ligne discontinue rouge représente le centile 66 qui constitue la limite de classe Bon-Moyen du phosphore total. La ligne continue bleue indique la valeur médiane de phosphore total observé en 2007 dans le lac d'Anterne (74)	<u> </u>
Figure 4 : Application du principe de l'élément le plus déclassant aux résultats des deux métriques, exemple d lac d'Anterne. Pour chacune des métriques, la concentration en phosphore total se situe en-dessous de la concentration-limite Bon-Moyen (i.e. correspond à un état situé au-dessus de la classe Bon-Moyen). Les deux métriques sont concordantes pour dire que le plan d'eau est au moins dans l'état Bon. En considérant la limite Très Bon-Bon, on constate en fait que la métrique la moins sévère, i.e. ici MCS, classe le plan d'eau en état Tr Bon (à droite) pour le phosphore total. L'application du principe de l'élément le plus déclassant aux résultats des deux métriques conduit finalement à classer le plan d'eau en état Bon	e rès
Figure 5 : Relation entre la concentration maximale en nitrates (NO3max en $\mu g/L$) dans les plans d'eau et le pourcentage d'agriculture sur leur bassin-versant (source : Corine Land Cover) ; quelque soit le type de plan d'eau (lacs naturels ou d'origine anthropique). Les points rouges sont les plans d'eau naturels de référence et les points roses sont les retenues de référence. La ligne oblique rouge est le modèle de régression linéaire (r^2 est le coefficient de détermination ajusté). Les lignes horisontales pointillées et des valeurs associées	2
représentent les valeurs-seuils des classes d'état (voir texte pour détail)	à
détermination ajusté). Les lignes horizontales pointillées et les valeurs associées représentent les valeurs-seuil des classes d'état (voir texte pour détail).	ls 17
Figure 7 : Dés que les conditions sont favorables à la croissance des végétaux, les phosphates de la colonne sont absorbés par les végétaux et incorporés dans la matière organique. La teneur du PE en phosphore risque donc d'être sous-évaluée par la simple mesure des phosphates dans l'eau à cause du stockage du phosphore dans la biomasse. L'analyse du phosphore total (minéral+organique) évite ce risque et permet de mieux d'appréhender le niveau trophique d'un plan d'eau. Les phosphates sont restitués à la colonne d'eau suite à la mort des organismes lors de la décomposition et minéralisation de la matière organique, processus plus long que la biosynthèse. Les constantes de temps pour la biosynthèse par le phytoplancton et le recyclage sont de	
l'ordre de 2 et 10 jours (Officer and Ryther, 1980)	
Figure 8 : Classification biologique des plans d'eau avec les anciens et les nouveaux indicateurs	
Figure 10: Classification physicochimique des plans d'eau avec les indicateurs 2010 et 2013.	
Figure 11: Classification physicochimique des plans d'eau avec les indicateurs 2013 et 2013SP	25
Figure 12 : Classification écologique des plans d'eau avec les indicateurs 2010 et 2013SP.	
Figure 13 : Classification écologique des plans d'eau avec les indicateurs 2010 et 2013	
Figure 14: Classification écologique des plans d'eau avec les indicateurs 2013SP et 2013	
Figure 15 : Classification écologique des plans d'eau avec les indicateurs 2010 et Mixte (Phy 2010 & Bio 2013)). วเ

	ification écologique des p				
Figure 17 : Class	ification écologique des p			1ixte (Phy 2010 & Bio 2	,
Figure 18 : Class	ification biologique des pl				
	ification physicochimique				
	ification écologique des p				
	ification écologique des p				
	ification écologique des p				
•				` '	,
	ification biologique des pl				
	ification physicochimique				
	ification écologique des p				
	ification biologique des pl				
	ification physicochimique				
	ification écologique des p				
	ification écologique des p				
Figure 30 : Class	ification écologique des p	lans d'eau avec les	indicateurs 2013SP e	t Mixte (Phy 2010 & Bio)
	ification biologique des pl				
	ification physicochimique				
	ification écologique des p				
	ification écologique des p				
	::::				
	ification écologique des p				
	ification biologique des pl				
	ification physicochimique				
	ification écologique des p				
Figure 39 : Class	ification écologique des p				
	ification écologique des p	lans d'eau avec les	indicateurs 2013SP e	t Mixte (Phy 2010 & Bio)
Figure 41 : Class	ification écologique des p	lans d'eau avec les	indicateurs 2013 et N	1ixte (Phy 2010 & Bio 2	2013).
	ification biologique des pl				
	ification physicochimique				
	ification écologique des p				
-	ification écologique des p				,
Figure 46 : Class	ification écologique des p	lans d'eau avec les	indicateurs 2013SP e	t Mixte (Phy 2010 & Bio)
2013)					80
Figure 47: Evalu	ation biologique des plans	d'eau avec l'IPL e	t l'IPLAC		81

Liste des tableaux

Tableau I: Valeurs seuils en mg/L pour les nitrates en fonction de la profondeur moyenne théorique d'eau	
Tableau 2 : Détail des données pour les plans d'eau à l'échelle nationale	
Tableau 3 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs	21
Tableau 4 : Comparaison des états physicochimiques 2010 et 2013SP	23
Tableau 5 : Comparaison des états physicochimiques 2010 et 2013	
Tableau 6 : Comparaison des états physicochimiques 2013SP et 2013	
Tableau 7 : Comparaison des états écologiques 2010 et 2013SP	
Tableau 8 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013SP	26
Tableau 9 : Comparaison des états écologiques 2010 et 2013	28
Tableau 10 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013	28
Tableau II: Comparaison des états écologiques 2013SP et 2013	29
Tableau 12 : Comparaison des éléments déterminant de l'état écologique 2013SP et 2013	29
Tableau 13 : Comparaison des états écologiques 2010 et 2013	31
Tableau 14 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013	31
Tableau 15 : Comparaison des états écologiques 2013SP et Mixte.	32
Tableau 16 : Comparaison des éléments déterminant de l'état écologique 2013SP et Mixte	32
Tableau 17 : Comparaison des états écologiques 2013 et Mixte	34
Tableau 18 : Comparaison des éléments déterminant de l'état écologique 2013 et Mixte	
Tableau 19: Comparaison des états biologiques et physico-chimiques 2010	35
Tableau 20 : Comparaison des états biologiques et physico-chimiques 2013 sans phosphates	35
Tableau 21 : Comparaison des états biologiques et physico-chimiques 2013 avec phosphates	36
Tableau 22 : Distribution des discordances entre les évaluations physico-chimiques et biologiques	36
Tableau 23 : Distribution des discordances entre les évaluations physico-chimiques et biologiques	36
Tableau 24 : Détail des données pour les plans d'eau d'Adour Garonne	
Tableau 25 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateur	·s37
Tableau 26 : Comparaison des états physicochimiques 2010 et 2013SP.	38
Tableau 27: Comparaison des états physico-chimiques 2013 sans et avec phosphates	
Tableau 28 : Comparaison des états écologiques 2010 et 2013	40
Tableau 29 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013	40
Tableau 30 : Comparaison des états écologiques 2010 et Mixte	42
Tableau 31 : Comparaison des éléments déterminant de l'état écologique 2010 et Mixte	42
Tableau 32 : Comparaison des états écologiques 2013 et Mixte	
Tableau 33 : Comparaison des éléments déterminant de l'état écologique 2013 et Mixte	43
Tableau 34 : Détail des données pour les plans d'eau d'Artois Picardie	44
Tableau 35 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateur	·s45
Tableau 36 : Comparaison des états physicochimiques 2010 et 2013SP.	
Tableau 37 : Comparaison des états écologiques 2010 et 2013	
Tableau 38 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013	
Tableau 39 : Détail des données pour les plans d'eau de Loire Bretagne	48
Tableau 40 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateur	
Tableau 41 : Comparaison des états physicochimiques 2010 et 2013SP.	
Tableau 42 : Comparaison des états physicochimiques 2013 sans et avec phosphates	
Tableau 43 : Comparaison des états écologiques 2010 et 2013SP	
Tableau 44 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013SP	52
Tableau 45 : Comparaison des états écologiques 2010 et Mixte	53
Tableau 46 : Comparaison des éléments déterminant de l'état écologique 2010 et Mixte	
Tableau 47 : Comparaison des états écologiques 2013SP et Mixte.	
Tableau 48 : Comparaison des éléments déclassant de l'état écologique 2013SP et Mixte	
Tableau 49 : Détail des données pour les plans d'eau Rhin Meuse.	
Tableau 50 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateur	
Tableau 51 : Comparaison des états physicochimiques 2010 et 2013SP	57

Tableau 52 : Comparaison des états physicochimiques 2013SP et 2013	58
Tableau 53 : Comparaison des états physicochimiques 2010 et 2013	59
Tableau 54 : Comparaison des états écologiques 2010 et 2013SP	59
Tableau 55 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013SP	60
Tableau 56 : Comparaison des états écologiques 2013 sans et avec phosphates	61
Tableau 57 : Comparaison des états écologiques 2010 et Mixte	
Tableau 58 : Comparaison des éléments déterminant de l'état écologique 2010 et Mixte	62
Tableau 59 : Comparaison des états écologiques 2013SP et Mixte.	63
Tableau 60 : Comparaison des éléments déterminant de l'état écologique 2013SP et Mixte	63
Tableau 61 : Détail des données pour les plans d'eau Rhône Méditerranée Corse	64
Tableau 62 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs	64
Tableau 63 : Comparaison des états physicochimiques 2010 et 2013SP.	66
Tableau 64 : Comparaison des états physicochimiques 2013 sans et avec phosphates	67
Tableau 65 : Comparaison des états physicochimiques 2010 et 2013 avec phosphates	67
Tableau 66 : Comparaison des états écologiques 2010 et 2013SP	68
Tableau 67 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013SP	68
Tableau 68 : Comparaison des états écologiques 2013 avec et sans phosphates	69
Tableau 69 : Comparaison des états écologiques 2010 et Mixte	
Tableau 70 : Comparaison des éléments déterminant de l'état écologique 2010 et Mixte	
Tableau 71 : Comparaison des états écologiques 2013SP et Mixte.	
Tableau 72 : Comparaison des éléments déterminant de l'état écologique 2013SP et Mixte	
Tableau 73 : Comparaison des états écologiques 2013 et Mixte	73
Tableau 74 : Comparaison des éléments déterminant de l'état écologique 2013SP et Mixte	
Tableau 75 : Détail des données pour les plans d'eau Seine Normandie	
Tableau 76 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs	
Tableau 77 : Comparaison des états physicochimiques 2010 et 2013SP.	75
Tableau 78 : Comparaison des états écologiques 2010 et 2013SP	77
Tableau 79 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013SP	77
Tableau 80 : Comparaison des états écologiques 2010 et Mixte	78
Tableau 81 : Comparaison des éléments déterminant de l'état écologique 2010 et Mixte	
Tableau 82 : Comparaison des états écologiques 2013SP et Mixte.	
Tableau 83 : Comparaison des éléments déclassant de l'état écologique 2013SP et Mixte	80
Tableau 84 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs	
Tableau 85 : Proportions de sites dégradés ou non selon les évaluations anciennes et actuelles	82
Tableau 86 : Elément déterminant de l'état écologique selon les règles d'évaluation	82

ONEMA Office national de Peau

Partenariat 2013 Impact nouveaux indicateurs

Introduction

Sous l'impulsion de la Directive Cadre européenne sur l'Eau (DCE), de nombreux indicateurs à la fois biologiques et physico-chimiques ont été développés pour définir l'état écologique des masses d'eau. Depuis le précédent rapportage de l'état écologique des plans d'eau à l'Union Européenne, de nouveaux indicateurs biologiques ont été développés pour des éléments de qualités biologiques (EQB) qui n'étaient pas pris en compte. C'est le cas de l'indice ichtyofaune lacustre (IIL), de l'indice biologique macrophytique en lac (IBML) et de l'indice phytoplancton lacustre pour les lacs (IPLAC). Ce dernier était déjà disponible mais sous une autre forme (IPL).

L'objectif de cette étude est donc d'évaluer les conséquences de l'utilisation des nouveaux indicateurs biologiques et/ou physico-chimiques sur l'évaluation de l'état écologique des plans d'eau français, par rapport aux indicateurs précédemment utilisés et dont l'utilisation était préconisée dans l'arrêté d'évaluation du 25 janvier 2010. Nous comparerons donc, sur la base des données disponibles, les évaluations pour chaque élément de qualité (EQ) séparément (physico-chimie et biologie) et sur l'évaluation globale de l'état écologique.

Données mobilisées pour l'étude d'impact

Conformément aux recommandations du guide d'évaluation actuel, l'ensemble des données milieux disponibles ont été mobilisées pour l'établissement du diagnostic en vue du rapportage 2010. Ces dernières comprenaient des données collectées dans le cadre des réseaux (de référence, de contrôle de surveillance et de contrôle opérationnel), mais également parfois des données issues d'études antérieures (en particulier pour construire l'expertise).

Néanmoins, un grand nombre de nouvelles données ont été acquises sur la période 2010-2012. Ainsi, suite à des échanges avec nos correspondants des Agences, il nous a semblé opportun d'élargir cette étude en incluant les données récentes.

Ainsi, cette étude d'impact a été réalisée à partir de données collectées sur les périodes suivantes:

- 2008 2011 pour Seine Normandie
- 2009 2011 pour Adour Garonne
- 2005 2012 pour RM&C
- 2005 2012 en Loire Bretagne,
- 2007 2012 pour Artois Picardie
- 2007 2011 pour Rhin Meuse.

Dans la suite du document, nous appellerons "évaluation 2010", l'évaluation réalisée avec les éléments biologiques, physicochimiques et les polluants spécifiques définis dans le guide d'évaluation actuel. L'évaluation 2013 correspond au diagnostic réalisé avec les nouveaux éléments et seuils définis à ce jour.

L'évaluation 2010

Les éléments de l'évaluation

Éléments biologiques : en l'absence d'indices autres que l'indice phytoplancton c'est ce compartiment qui a servi de base à l'établissement du diagnostic. L'indice phytoplancton tel que décrit dans la diagnose rapide (IPL) et la chlorophylle a (chloro a) sont les deux métriques utilisées pour les lacs naturels; pour les retenues, seule la chloro a, a été utilisée. Les indices "mollusques" (IMOL) et oligochètes (IOBL), bien que disponibles sur une bonne partie des lacs des réseaux et notés comme pouvant être pris en compte à titre complémentaire dans le guide d'évaluation, ont rarement été utilisés dans le diagnostic sauf à titre indicatif.

Evaluation 2010 des lacs naturels : IPL + chloro a Evaluation 2010 des MEFM et MEA : chloro a

Physico-chimie soutenant la biologie : les paramètres physico-chimiques entrant dans l'évaluation de l'état écologique des plans d'eau sont ceux du SEQ-PE de 2003 à savoir N minéral maximal (NH4+NO3), Ptot, PO4 maximal et transparence moyenne estivale. Les seuils utilisés pour définir les classes d'état sont aussi ceux du SEQ-PE. Néanmoins, selon le guide technique, ces limites étaient à adapter en fonction du type de plans d'eau. La désoxygénétion de l'hypolimnium pouvait aussi être utilisée pour affiner le diagnostic ce qui a été fait sur quelques bassins, mais probablement pas systématiquement.

Polluants spécifiques : neufs substances sont également à considérer avec les éléments physicochimiques pour rendre compte de l'état écologique des plans d'eau classés en Bon et Très Bon état. Ces substances sont listées en annexe 5 du guide d'évaluation mais il semblerait qu'elles soient assez peu discriminantes.

Agrégation des informations pour l'évaluation 2010

Cette étape est difficile à décrire de manière générale. En effet, selon la quantité et qualité des données disponibles et le niveau de connaissance des milieux, différentes règles ou "procédures" ont été mises en œuvre dans les différentes agences et les données restituées sont assez hétérogènes.

Etape I : analyse de la biologie

Le principe du critère déclassant a été quasiment toujours appliqué entre la Chloro a et l'IPL. Néanmoins, sur certains lacs de Loire Bretagne, l'IPL n'a pas été pris en compte car les résultats n'étaient pas en cohérence avec ceux résultant de la mesure de la Chloro a et/ou de l'expertise. De même l'IPL n'a pas été jugé pertinent, et donc non utilisé, pour les plans d'eau peu profonds d'Artois-Picardie. Dans le cas où plusieurs mesures étaient disponibles sur le phytoplancton, soit la moyenne a été utilisée pour établir le diagnostic (Rhin Meuse par exemple), soit celle-ci a été faite via la synthèse des données disponibles qui venait appuyer la note finale donnée à titre d'expert (cas de Loire Bretagne par exemple). Dans le dernier cas il s'agissait de "moyenner" les classes d'état et non les valeurs brutes des indices et/ou éléments de qualité pour obtenir la moyenne pluriannuelle des classifications.

Dans le cas où le lac était classé en Moyen, Médiocre ou Mauvais, ce classement effectué sur la base de la ou des métriques du phytoplancton constituait la note de qualité écologique du lac.

L'IOBL a été utilisé à titre indicatif. Il venait au mieux conforter la note obtenue avec l'élément phytoplancton. L'IMOL ne semble pas avoir été utilisé.

Etape 2 : analyse de la physico-chimie

ONEMA

Partenariat 2013 Impact nouveaux indicateurs

Dans le cas d'une évaluation en état Bon ou Très Bon par le phytoplancton, les critères physicochimiques et les polluants spécifiques ont été utilisés pour définir l'état écologique.

Les limites de classes des éléments physico-chimiques sont celles du SEQ-PE ; les limites de classes des polluants spécifiques sont données dans l'arrêté. Sur l'ensemble de ces éléments, c'est le principe du paramètre déclassant qui devait être utilisé. Toutefois, des exceptions typologiques ont été identifiées (cas des plans d'eau peu profonds par exemple) ainsi qu'un certain nombre de données aberrantes, et les possibilités d'ajustement des seuils physico-chimiques offertes par le guide ont été régulièrement utilisées.

Dans quasiment tous les cas de classement Bon ou Très Bon par la biologie, l'évaluation basée sur les mesures physico-chimiques a été confronté à une expertise milieu qui est venue conforter ou pas les résultats de l'application des principes définis par l'arrêté. Le niveau de confiance des mesures venait parfois appuyer le choix de la classification finale en cas de résultats discordants entre physico-chimie et biologie. Au final, pour l'ensemble de ces plans d'eau, la note finale résulte de cette double analyse, les résultats de l'expertise étant privilégiés dans la plupart des cas.

Etape 3 : prise en compte des polluants spécifiques

Dans le cas d'une évaluation en état Bon ou Très Bon par la biologie, ces polluants ont été pris en compte pour valider ou pas cet état. Dans les faits, ces polluants spécifiques se sont avérés peu discriminants.

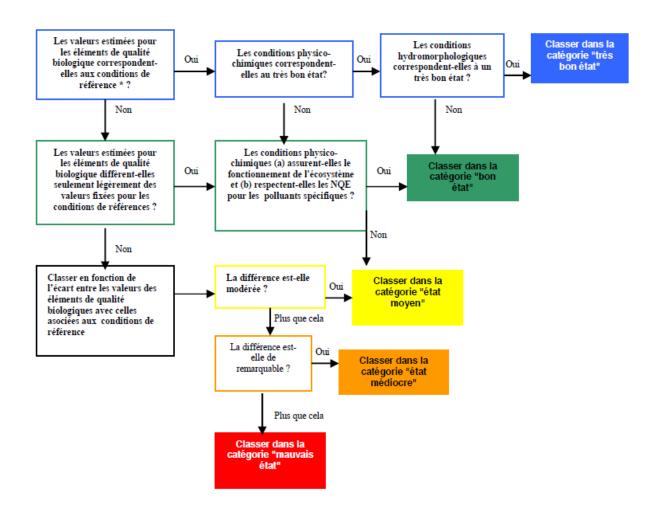
Cette démarche en trois étapes a été identique pour les lacs naturels et les plans d'eau d'origine anthropique sauf que l'IPL n'a pas été utilisé dans ce dernier cas. Les règles d'agrégation des éléments de qualités pour définir l'état écologique sont illustrées par le schéma issu du guide technique d'évaluation de décembre 2012 (voir page suivante).

L'expertise conduite notamment en cas d'exceptions typologiques n'apparait pas dans ce schéma. Elle a pourtant, rappelons-le, été mise en œuvre :

- pour définir l'état biologique en cas de non pertinence des résultats de l'IPL (lorsque ceux-ci n'étaient pas en cohérence avec les valeurs de Chloro a en particulier),
- pour définir l'état écologique des plans d'eau classés en Bon ou Très Bon par la biologie en cas de non pertinence d'une ou plusieurs valeurs associées aux paramètres physico-chimiques (cas des lacs peu profonds par exemple).

Les éléments de l'évaluation disponibles en 2013

Les éléments biologiques


Trois indices ont été développés et sont prêts à intégrer le nouveau système d'évaluation de l'état des plans d'eau. Il s'agit de :

- l'IPLAC, nouvel indice phytoplancton lacustre résultant de l'agrégation des deux métriques, l'une d'abondance (MBA) identique à la précédente (chloro a), l'autre de composition (MCS);
- l'IBML, indice constitué d'une seule métrique basée sur les compositions et abondances de macrophytes; Notons toutefois que cet élément de qualité biologique n'a pas été considéré comme pertinent sur l'ensemble des plans d'eau et qu'il ne rentre donc dans le système d'évaluation que sur un nombre limité de lacs.
- l'IIL, indice ichtyofaune lacustre constitué de trois métriques, deux d'abondance et une de composition. Là encore, cet indice n'est pas pertinent pour tous les lacs (notamment ceux situés à très haute altitude) et il ne rentre pas systématiquement dans la définition de l'état des lacs. Cet indicateur n'est pas adapté à l'évaluation des masses d'eau fortement modifiées et des masses d'eau artificielles.

Evaluation 2013 des lacs naturels : IPLAC + IBML et IIL si pertinents Evaluation 2013 des MEFM et MEA : IPLAC + IBML si pertinent

Principes d'évaluation de la classe d'état écologique suivant le guide REEE 2010-2015

La physico-chimie soutenant la biologie

Les nouvelles limites de classes pour 3 paramètres physico-chimiques soutenant la biologie (phosphore total, ammonium et transparence) ont été établies à partir de l'indice biologique IPLAC, le plus utilisé sur tous les types de plans d'eau français. Les deux métriques de l'indice (Métrique de Biomasse Algale-MBA et Métrique de Composition Spécifique-MCS), développées de façon indépendante (de Bortoli et Argillier 2008, Feret et Laplace-Treyture 2013)², ont été utilisées pour

[&]quot;« Une **métrique** est un paramètre ou un ensemble de paramètres décrivant une fonctionnalité de l'écosystème. Par exemple, le taux d'espèces détritivores, le nombre d'espèces exogènes, la richesse taxonomique, la diversité. » (https://hydrobio-dce.cemagref.fr)

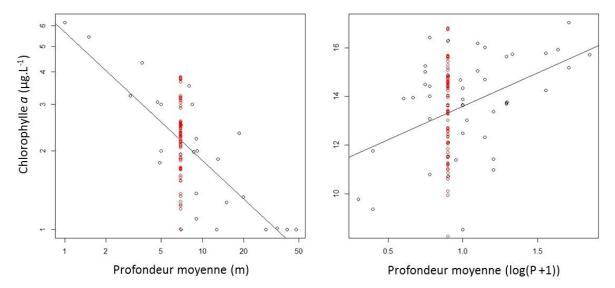
² **De Bortoli J., Argillier C., 2008**. Définition des conditions de référence et des limites des classes d'état sur la base d'une approche pressions/impacts - Plans d'eau, Paramètre chlorophylle-a, Cemagref, 51 p.

ONEMA Office national de letters

Partenariat 2013 Impact nouveaux indicateurs

dériver les seuils de qualité physico-chimiques. La méthode consiste à faire correspondre aux limites de classes des métriques biologiques brutes, des limites de classes physico-chimiques en tenant compte de l'incertitude des modèles de référence et des relations métriques-paramètres physico-chimiques. Comme les limites de classe de chaque métrique sont définies pour chaque plan d'eau à partir d'un modèle de référence continu (fonction de la profondeur moyenne), les limites de classes physico-chimiques sont aussi dépendantes de la profondeur moyenne théorique de chaque plan d'eau. La profondeur moyenne théorique est définie comme le rapport entre le volume et la surface de chaque plan d'eau (cf liste de profondeurs moyennes théoriques dans les Annexes "Seuils physico-chimiques"). Dans le cas des plans d'eau marnant, les couples volume-surface sont renseignés à la cote maximale d'exploitation dans la base PLAN_DEAU au Pôle d'Aix-en-Provence.

La méthode n'a pu s'appliquer qu'aux paramètres de transparence de l'eau, et aux paramètres de concentrations en phosphore total et de concentrations en ammonium mesurées dans la zone euphotique, parce que ces trois paramètres étaient les seuls à présenter une corrélation suffisante avec les métriques MBA (i.e. concentration en chloro a) et MCS (ρ >0.6). Les valeurs médianes de phosphore total et de transparence de l'eau sur la période d'étude ont été utilisées, alors que pour l'ammonium la valeur maximale a été choisie. Une analyse "bootstrap" a été conduite aux différentes étapes de la méthode afin d'évaluer la propagation des incertitudes (i.e. depuis les modèles de prédiction des valeurs de référence jusqu'au modèle métrique-paramètre physico-chimique) sur l'évaluation finale.


La méthodologie est illustrée ci-dessous avec l'exemple du lac d'Anterne (74).

Dans un premier temps, les valeurs de métriques de référence sont définies pour chaque plan d'eau en utilisant les modèles de référence de chaque métrique dont la seule variable explicative considérée dans les indicateurs est la profondeur moyenne (l'altitude du modèle de référence de la métrique MCS a été exclus de cette analyse du fait du faible gain qu'apporte l'ajout de cette variable dans le modèle et de sa dépendance observée avec la profondeur moyenne). L'intervalle de prédiction obtenu par "bootstrap" (1000 simulations réalisées) permet de déterminer directement les valeurs seuil de la métrique MBA (De Bortoli et Argillier 2008). Pour la métrique MCS, la distribution des valeurs seuils de la métrique se déduit simplement de la distribution des valeurs prédites de référence (Feret et Laplace-Treyture 2013) (Figure 1).

Feret T., Laplace-Treyture C., 2013. « IPLAC : L'indice Phytoplanctonique LACustre : Méthode de développement, description et application nationale. Rapport final » Irstea Groupement de Bordeaux, Unité de Recherche Réseaux, Epuration et Qualité des Eaux. Rapport, **69** p.

Figure 1 : Valeurs de la métrique MBA (cercles noirs à gauche, *i.e.* concentration en cholorophylle a) et de la métrique MCS (cercles noirs à droite) représentées en fonction de la profondeur moyenne. Les cercles rouges correspondent aux distributions "bootstrap" respectives des valeurs de référence prédites pour le plan d'eau d'Anterne (74).

Ensuite, la régression linéaire entre les valeurs de métriques et les paramètres physico-chimiques pour l'ensemble des plans d'eau permet de déterminer à quelles valeurs seuils de physico-chimie sont associées les valeurs seuils des métriques (Figure 2). L'analyse "bootstrap" fournit une distribution des valeurs de limites de classes pour les paramètres physico-chimiques considérés (Figure 3).

Le centile 66 de la distribution a été arbitrairement choisi pour quantifier les limites de classe de manière à ce que le risque de déclasser par erreur un plan d'eau soit strictement inférieur à 34% (i.e. qu'il y ait strictement moins d'une chance sur 3 pour que le plan d'eau soit déclassé à tort dans la classe juste en-dessous) (Figure 3). La confrontation entre les valeurs des paramètres physicochimiques mesurés et les limites de classes des paramètres permet de définir la classe de qualité du plan d'eau pour chacun des paramètres et chacune des métriques. Pour un paramètre donné, le principe de l'élément le plus déclassant a été appliqué aux évaluations obtenues par les deux métriques indépendantes (Figure 4).

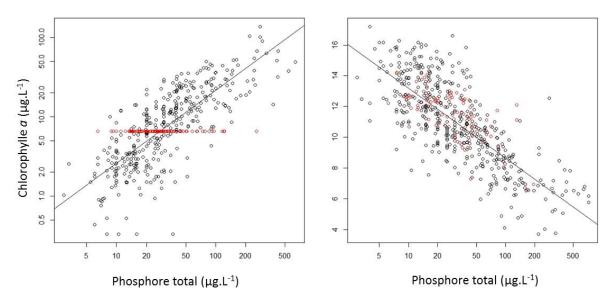
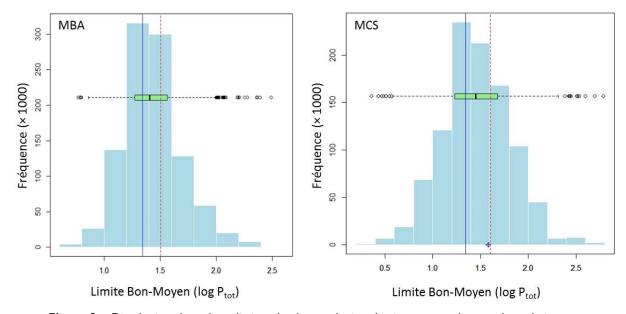



Figure 2 : Transposition des limites de classe des métriques en limite de classes des paramètres physicochimiques. Exemple de la limite Bon-Moyen pour le phosphore total (valeur médiane des mesures annuelles en zone euphotique). Les points rouges représentent la distribution "bootstrap". Pour la métrique MBA (à gauche), les limites de classe sont issues de l'intervalle de prédiction et sont donc fixes pour l'ensemble des simulations "bootstrap". Pour la métrique MCS (à droite), l'incertitude sur le modèle de référence est propagée dans le modèle de pression.

Figure 3 : Distribution des valeurs-limites de classes physico-chimiques pour chacune des métriques : exemple de la limite Bon-Moyen pour le phosphore total. La ligne discontinue rouge représente le centile 66 qui constitue la limite de classe Bon-Moyen du phosphore total. La ligne continue bleue indique la valeur médiane de phosphore total observé en 2007 dans le lac d'Anterne (74).

ONEMA Office national de l'eau

Partenariat 2013 Impact nouveaux indicateurs

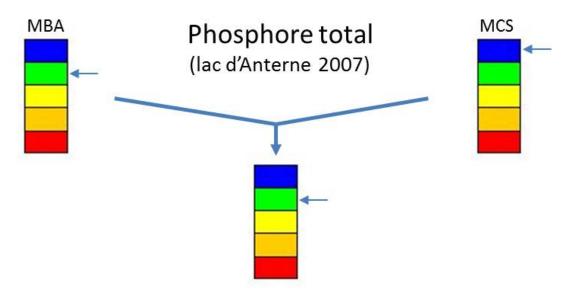


Figure 4 : Application du principe de l'élément le plus déclassant aux résultats des deux métriques, exemple du lac d'Anterne. Pour chacune des métriques, la concentration en phosphore total se situe endessous de la concentration-limite Bon-Moyen (i.e. correspond à un état situé au-dessus de la classe Bon-Moyen). Les deux métriques sont concordantes pour dire que le plan d'eau est au moins dans l'état Bon. En considérant la limite Très Bon-Bon, on constate en fait que la métrique la moins sévère, i.e. ici MCS, classe le plan d'eau en état Très Bon (à droite) pour le phosphore total. L'application du principe de l'élément le plus déclassant aux résultats des deux métriques conduit finalement à classer le plan d'eau en état Bon.

Cas des Nitrates

La méthodologie présentée ci-dessus n'ayant pas permis d'obtenir des réponses significatives de MCS et MBA aux concentrations en nitrates, une seconde approche a été adoptée. Cette approche consiste à :

- Choisir une métrique physico-chimique pertinente compte tenu des particularités du réseau de suivi. La concentration maximale (NO3max) a été sélectionnée pour sa représentativité de la capacité productive des lacs.
- Vérifier la réponse (droite oblique rouge sur la Figure 5) de la métrique physico-chimique à un indicateur de pression anthropique. Ici, les concentrations maximales ont montré une réponse significative avec la force motrice "Pourcentage d'Agriculture" (AG) sur le bassin-versant (source : Corine Land Cover).
- Utiliser le centile 90 de NO3max des plans d'eau de référence (points rouges et roses sur la Figure 5) pour définir la valeur-seuil à la limite Très Bon-Bon (ligne horizontale verte sur la Figure 5).
- Diviser l'espace restant (i.e. entre la limite Très Bon-Bon et la valeur maximale observée en NO3max) en 4 parties égales (sur une échelle en log10(NO3max)) pour définir les autres valeurs-seuils (ligne horizontale bleue pour la limite Bon-Moyen, rouge pour la limite Moyen-Passable et marron pour la limite Passable-Mauvais).

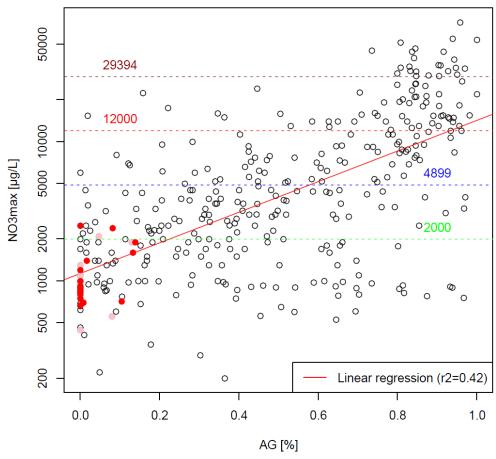


Figure 5 : Relation entre la concentration maximale en nitrates (NO3max en $\mu g/L$) dans les plans d'eau et le pourcentage d'agriculture sur leur bassin-versant (source : Corine Land Cover) ; quelque soit le type de plan d'eau (lacs naturels ou d'origine anthropique). Les points rouges sont les plans d'eau naturels de référence et les points roses sont les retenues de référence. La ligne oblique rouge est le modèle de régression linéaire (r^2 est le coefficient de détermination ajusté). Les lignes horisontales pointillées et des valeurs associées représentent les valeurs-seuils des classes d'état (voir texte pour détail).

ONEMA Office national de l'eau

Partenariat 2013 Impact nouveaux indicateurs

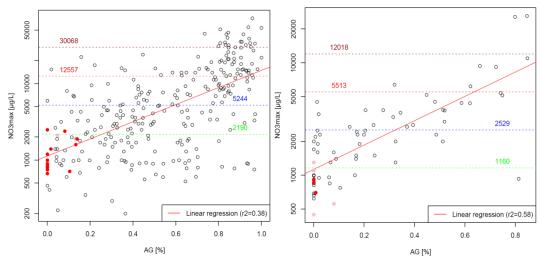


Figure 6 : Relation entre la concentration maximale en nitrates (NO3max en μg/L) dans les plans d'eau et le pourcentage d'agriculture sur leur bassin-versant (source : Corine Land Cover) ; quel que soit le type de plan d'eau (lacs naturels ou d'origine anthropique) uniquement pour les plans d'eau de profondeur moyenne inférieure ou égale à 15m (à gauche), et uniquement pour les plans d'eau de profondeur moyenne supérieure à 15m (à droite). Les points rouges sont les plans d'eau naturels de référence et les points roses sont les retenues de référence. La ligne oblique rouge est le modèle de régression linéaire (r² est le coefficient de détermination ajusté). Les lignes horizontales pointillées et les valeurs associées représentent les valeurs-seuils des classes d'état (voir texte pour détail).

Les concentrations seuils de NO3max en milligramme de NO3 par litre utilisées pour l'évaluation 2013 des plans d'eau sont détaillées dans le Tableau I.

Tableau 1: Valeurs seuils en mg/L pour les nitrates en fonction de la profondeur moyenne théorique des plans d'eau.

Type de plan d'eau	Valeurs-seuils [mg NO ₃ /L]				
selon leur profondeur moyenne théorique*	Très Bon-Bon	Bon-Moyen	Moyen- Passable	Passable- Mauvais	
≤ I5m	2,2	5,3	12,6	30, I	
> 15m	1,2	2,6	5,6	12,1	

^{*} Les profondeurs moyennes théoriques utilisées sont listées dans les Annexes sur les seuils physico-chimiques.

Cas des Phosphates : valeurs-seuils et pertinence

Les deux méthodologies présentées au-dessus (§ "La physico-chimie soutenant la biologie" et § "Cas des Nitrates" n'ayant pas permis de définir des seuils de classes d'état pour les concentrations en phosphates (PO4), les valeurs seuils du SEQ-PE 2003 ont été utilisées.

Les composés phosphorés sont des éléments nutritifs pour les végétaux dont le cycle de croissance-mort-sédimentation et les vitesse de changement d'état dépendent de nombreux facteurs environnementaux limitant ou amplificateur (Figure 7). Selon les épisodes plus ou moins rapides de croissance des végétaux, les phosphates peuvent arrivés abondamment dans un plan d'eau, du fait des activités anthropiques, sans pour autant que leur concentration à un instant donné soit élevée s'ils sont mesurées après un événement de croissance. La relativement faible fréquence de suivi des conditions physico-chimiques dans les réseaux (i.e. 4 campagnes annuelles, une année par plan de gestion) vis-à-vis de la rapidité des réactions de consommation des phosphates ne permet pas d'avoir une image globale objective de la quantité de phosphates bio-disponibles dans les plans d'eau, et donc, de leur niveau d'eutrophisation. Le suivi des orthophosphates est donc non pertinent. Par

ONEMA Office artifact activities

Partenariat 2013 Impact nouveaux indicateurs

contre, le suivi du phosphore total, qui englobe la part biodisponible et la part consommée des phosphates, est pertinent. Son suivi même que 4 fois par année donne une image globale du niveau

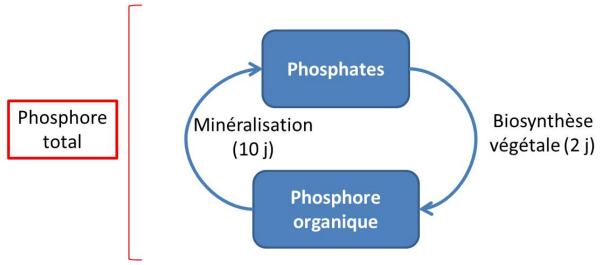


Figure 7: Dés que les conditions sont favorables à la croissance des végétaux, les phosphates de la colonne sont absorbés par les végétaux et incorporés dans la matière organique. La teneur du PE en phosphore risque donc d'être sous-évaluée par la simple mesure des phosphates dans l'eau à cause du stockage du phosphore dans la biomasse. L'analyse du phosphore total (minéral+organique) évite ce risque et permet de mieux d'appréhender le niveau trophique d'un plan d'eau. Les phosphates sont restitués à la colonne d'eau suite à la mort des organismes lors de la décomposition et minéralisation de la matière organique, processus plus long que la biosynthèse. Les constantes de temps pour la biosynthèse par le phytoplancton et le recyclage sont de l'ordre de 2 et 10 jours (Officer and Ryther, 1980).

de phosphore des plans d'eau.

Evaluations de l'état physicochimique et exceptions typologiques

Ainsi, dans le cas général les évaluations de l'état physicochimique 2013 ont été effectuées sur la base des nouveaux seuils pour les métriques Phosphore total médian, NH4max, NO3max et Transparence médiane et avec les anciens seuils pour la métrique PO4. Cette évaluation n'a été faite que dans le cas où l'ensemble des paramètres étaient disponibles.

Pour l'évaluation 2010, certaines agences ont eu recours à des exceptions typologiques qui étaient reproductibles sur le processus d'évaluation de l'état écologique 2013. Elles ont donc été aussi prises en compte dans les nouvelles évaluations. Elles concernent :

- L'EQ Transparence non utilisé pour les plans d'eau artificiels de Loire-Bretagne et Rhin-Meuse et pour les plans d'eau peu profonds d'Artois Picardie, Loire-Bretagne et certains plans d'eau de Rhône Méditerranée Corse
- Les nitrates avec un seuil Bon-Moyen de 50 mg/L pour les plans d'eau artificiels de LB.

Evaluation 2013SP des lacs naturels et d'origine anthropique TPmed + NH4max + NO3max + TranspMed*

Evaluation 2013 des lacs naturels et d'origine anthropique : TPmed+ NH4max + NO3max + TranspMed* + PO4 (anciens seuils)

^{*} sauf en cas d'exceptions typologiques

Les polluants spécifiques (PSP)

Nous n'avons pas travaillé sur les valeurs seuils de ces 9 substances. Ainsi l'analyse actuelle ne peut que reprendre les paramètres, seuils antérieurs et classifications antérieures utilisées pouir l'évaluation 2010.

Principes généraux de l'étude d'impact

Compte tenu de l'hétérogénéité des approches adoptées par les différentes agences, les principes suivants ont été retenus :

- Afin d'obtenir des comparaisons d'évaluations qui soient les plus pertinentes, pour chaque lac, nous n'avons pris en compte que les données recueillies sur la même fenêtre temporelle. Il se peut donc que des données récentes ou anciennes n'aient pas été mobilisées dans cette étude parce que acquises hors de la période de temps considérée pour la réalisation des évaluations fournies par les différentes agences (cf Données mobilisées pour l'étude d'impact);
- Lorsque nous disposions de données pluriannuelles pour un même lac, dans la mesure du possible, nous avons calculé la moyenne de chaque élément constitutif d'un élément de qualité et défini la classe d'état sur ces valeurs moyennes. Quand nous ne disposions pas d'un tel détail, la classification moyenne d'un élément de qualité a été obtenue en moyennant les classifications de l'élément de qualité.

Comparaison du caractère déclassant de l'état biologique.

L'état biologique '2010' basé sur chloro a et IPL pour les lacs naturels, chloro a pour les retenues, a été comparé avec l'état biologique '2013' basé sur les trois éléments de qualité, IPLAC, IBML, IIL dans la mesure où ces éléments sont pertinents et disponibles. Dans le cas contraire, la comparaison a été faite avec les informations disponibles les plus complètes sur la période considérée. Lors des évaluations 2010, en cas de discordance entre les résultats des classifications résultant de l'utilisation de la chloro a et de l'IPL, une certaine expertise a pu être faite sur certains lacs. Dans ce cas, n'ayant pas toujours eu accès aux données brutes, ce sont les résultats expertisés qui ont été pris pour la présente analyse. Les évaluations 2013 avec et sans phosphates résultent seulement de l'analyse des données d'indices sans pondération.

Comparaison du caractère déclassant de l'état physico-chimique.

Comme pour la biologie, il est important de rappeler que nous ne disposons pas toujours des données brutes, mais parfois que d'une valeur de classe d'état résultant de l'agrégation de tous les paramètres physico-chimiques. Cette agrégation a été réalisée par les soins des différentes agences de l'eau, et peut intégrer un certain degré d'expertise. Cette expertise est absente des résultats présentés pour les évaluations 2013SP (sans phosphates) et 2013 (avec phosphates) basés sur les nouveaux seuils définis pour chaque plan d'eau.

La distinction des évaluations 2013SP et 2013 a été faite pour d'une part prendre en compte les EQ nutriments calculés selon les nouvelles règles d'évaluation et d'autre part intégrer les phosphates pour lesquels ces nouvelles règles ne s'appliquent pas.

Pour la physico-chimie il a été décidé de comparer :

- les évaluations 2010 aux évaluations 2013SP, pour évaluer l'impact des nouvelles règles physico-chimiques ;
- les évaluations 2013SP et 2013 pour évaluer l'impact de la prise en compte des phosphates sur l'EQ physico-chimie 2013 ;

- les évaluations 2010 et 2013 si les résultats de la comparaison précédente sont pertinents.

Comparaison de l'évaluation de l'état écologique.

Plusieurs comparaisons ont été retenues pour répondre à différents objectifs :

- Comparaison de l'état des plans d'eau suivant le guide d'évaluation pour le rapportage 2010 (Phytoplancton + Physico-chimie SEQ + Polluants spécifiques, voir schéma précédant) avec l'état des plans d'eau résultant de l'utilisation des nouvelles règles 2013 sans phosphates pour évaluer l'impact des nouveaux indicateurs 2013 (Biologie + Physico-chimie + Polluants spécifiques inchangés) sur l'évaluation écologique;
- Comparaison de l'état écologique 2013SP et 2013 pour évaluer l'importance des phosphates en complément des nouvelles règles dans l'établissement de l'état écologique 2013;
- Comparaison de l'état écologique 2010 à l'état écologique dit 'Mixte' basé sur l'état-physicochimique 2010 et l'état biologique 2013, pour évaluer les effets du changement des indicateurs biologiques seuls ;
- Comparaison de l'état écologique 2013SP et Mixte, pour évaluer l'impact d'un changement des indicateurs physico-chimiques dans l'évaluation de l'état écologiques ;
- Comparaison de l'état écologique 2013 et Mixte, pour évaluer l'impact d'un changement des indicateurs physico-chimiques dans l'évaluation de l'état écologique 2013.

Cette dernière comparaison n'a été réalisée que si les phosphates avaient un impact sur l'évaluation de l'état écologique 2013.

Notons que les PSP ont été pris en compte quand ils étaient disponibles, autrement ils ont été considérés comme non dégradants.

Comparaison de l'évaluation biologique avec l'IPL et l'IPLAC.

Cette dernière comparaison a été réalisée car le phytoplancton est le seul élément de qualité biologique utilisé dans les évaluations 2010 et 2013 pour lequel deux versions d'indices existent. A titre comparatif, les poissons n'étaient pas pris en compte dans le rapportage 2010 faute d'indice existant.

Résultats de l'étude d'impact sur les plans d'eau à l'échelle nationale

Nous disposons de **285 plans d'eau** avec des données sur les indicateurs anciens et actuels, pour des périodes de temps très diverses selon les agences (voir paragraphe sur les données disponibles).

État biologique

La majorité des états biologiques actuels sont basés sur le phytoplancton (Tableau 2). Les macrophytes et les poissons ne sont disponibles respectivement que pour 15,4 et 11,9% des plans d'eau seulement. Pour les macrophytes, ceci est dû à la fois à la non pertinence de cet EQB pour de nombreux plans d'eau marnants et par le manque de données. Pour les poissons, l'absence de données provient principalement du fait qu'aucun indicateur n'est actuellement disponible pour les retenues qui constituent la majeure partie des plans d'eau de cette étude.

Tableau 2 : Détail des données pour les plans d'eau à l'échelle nationale.

	Non pertinent	Manquant*	Disponible
Macrophytes	117	124	44
Phytoplancton	0	2	283
Poisson	27	224	34

^{*} une donnée manquante pour l'un des éléments de qualité biologique peut correspondre à une donnée non disponible sur la période considérée par l'étude ou non acquise ou bien à une absence d'indice (cas de l'indice poisson des retenues).

A de rares exceptions près, lorsqu'ils sont disponibles, les EQB poissons et macrophytes sont les plus déclassants. Les classifications 2010 et 2013 concordent pour 43,9% des plans d'eau, diffèrent d'une classe pour 17,9% et de plus d'une classe pour 38,2% des plans d'eau (Tableau 3).

 Tableau 3 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs.

Nouveaux indicateurs

ТВ В Mo Me Ma Total Anciens indicateurs 24 0 76 3 ı TΒ 48 10 81 33 27 7 В 19 26 П 64 Mo 49 0 10 21 17 Me Ι 7 15 Ma **Total** 62 87 84 42 10 285

Les indicateurs biologiques 2010 et 2013 donnent une vision très proche de l'état des plans d'eau français. Les seules différences semblent être une proportion plus importante de plans d'eau en état Moyen en même temps qu'une diminution du nombre de plans d'eau en état Très Bon avec les

ONEMA Office artifact activities

Partenariat 2013 Impact nouveaux indicateurs

indicateurs 2013 par rapport aux indicateurs 2010 (Figure 8). Néanmoins les nombres de sites « dégradés » (état Moyen à Mauvais) restent comparables, respectivement 128 et 136 pour 2010 et 2013, et donc les sites non dégradés également (Bon à Très Bon, 157 et 149).

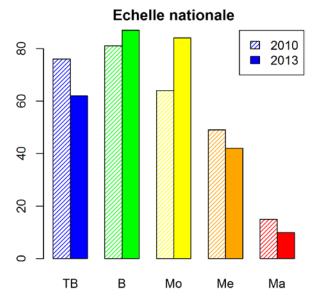


Figure 8 : Classification biologique des plans d'eau avec les anciens et les nouveaux indicateurs.

État physico-chimique

La comparaison des EQs physicochimiques 2010 et 2013SP porte sur **284 plans d'eau**. L'état 2013SP est défini sur les EQs **Nutriments** et **Transparence** avec des exceptions typologiques qui varient selon les agences. L'EQ Nutriment 2013SP n'inclut **pas les phosphates (SP)** et n'a été calculé que lorsque tous les éléments qui le compose étaient disponibles (NH4, NO3, P).

Contrairement à la biologie, l'état physico-chimique des plans d'eau français varie selon les critères utilisés. Seul 35,2% des plans d'eau ont des évaluations identiques avec les critères 2010 et 2013SP. Pour 41,9% des plans d'eau, les états estimés avec les critères 2013SP ont une classe plus élevée que ceux estimés avec les critères 2010 (valeurs en dessous de la diagonale du Tableau 4). A l'inverse, 22,9% des plans d'eau ont des EQ physico-chimiques 2013SP inférieurs aux EQ 2010 (valeurs au-dessus de la diagonale du Tableau 4).

Tableau 4: Comparaison des états physicochimiques 2010 et 2013SP.

Physicochimie 2013SP

		ТВ	В	Мо	Me	Ma	Total
010	ТВ	3	0	0	0	0	3
mie 2	В	24	25	13	4	I	67
cochi	Мо	13	18	13	17	П	72
Physicochimie 2010	Me	1	16	24	19	19	79
_	Ma	0	1	6	16	40	63
	Total	41	60	56	56	71	284

La différence majeure entre les évaluations 2010 et 2013SP concerne le Très Bon état dont la proportion progresse très fortement avec les critères 2013SP, en parallèle d'une diminution des sites en état Moyen à Médiocre (Figure 9).

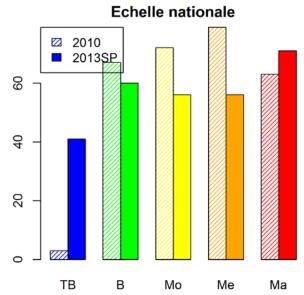


Figure 9: Classification physicochimique des plans d'eau avec les indicateurs 2010 et 2013SP.

La comparaison des EQs physicochimiques 2010 et 2013 portent sur **284 plans d'eau**. L'état 2013 est défini sur les EQs **Nutriments** et **Transparence** avec des exceptions typologiques qui varient selon les agences. L'EQ Nutriment **2013 inclus les phosphates** et n'a été calculé que lorsque tous les éléments qui le compose étaient disponibles (NH4, NO3, P, PO4).

Contrairement à la biologie, l'état physico-chimique des plans d'eau français varie selon les critères utilisés. Seul 38,7% des plans d'eau ont des évaluations identiques avec les critères 2010 et 2013. Pour 36,3% des plans d'eau, les états estimés avec les critères 2013 ont une classe plus élevée que ceux estimés avec les critères 2010 (valeurs en dessous de la diagonale du Tableau 4). A l'inverse, 25% des plans d'eau ont des valeurs d'EQ physico-chimiques 2013 inférieures aux valeurs des EQ 2010 (valeurs au-dessus de la diagonale du Tableau 4). Ces valeurs sont plus proches l'une de l'autre que pour les règles 2010 et 2013SP.

Tableau 5 : Comparaison des états physicochimiques 2010 et 2013.

ъ.				20	
Phy	ysico	chin	nıe	20	IЗ

		ТВ	В	Mo	Me	Ma	Total
2010	ТВ	3	0	0	0	0	3
Physicochimie 2010	В	15	30	15	4	3	67
cochi	Мо	12	18	13	17	12	72
² hysi	Me	I	13	23	22	20	79
_	Ma	0	1	6	14	42	63
	Total	31	62	57	57	77	284

Les différences majeures entre les évaluations 2010 et 2013 concernent la forte augmentation des sites classés en Très Bon état et la diminution des sites classés en état Moyen à Médiocre avec les critères 2013 (Figure 10). On observe globalement les mêmes résultats qu'avec la physico-chimie 2013 sans phosphates, mais de manière moins marquée (Figure 9).

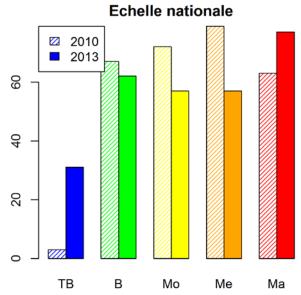


Figure 10: Classification physicochimique des plans d'eau avec les indicateurs 2010 et 2013.

La comparaison des EQs physicochimiques 2013SP et 2013 portent sur **287 plans d'eau**. Les états 2013SP et 2013 sont définis sur les EQs **Nutriments** et **Transparence** avec des exceptions typologiques qui varient selon les agences. L'EQ Nutriment 2013SP n'inclus pas les phosphates alors que l'EQ Nutriment **2013 inclus les phosphates**. Ils ont tous deux été calculés que lorsque tous les autres éléments qui les composent étaient disponibles (NH4, NO3, P).

Les évaluations physico-chimiques avec ou sans phosphates sont très concordantes. Seul 22 plans d'eau (7,7%) ont des classes d'état inférieures avec les règles 2013 et les évaluations sont concordantes pour 92,3% des plans d'eau. Potentiellement les phosphates déclasseraient moins de 10% des plans d'eau s'ils sont pris en compte avec les nouvelles règles d'évaluation physico-chimique (Tableau 6).

La seule différence vraiment marquante quand on prend en compte les phosphates, est une diminution du nombre de plan d'eau classés en état Très Bon (Figure 11).

 Tableau 6 : Comparaison des états physicochimiques 2013SP et 2013.

Physicochimie 2013 ТВ В Mo Me Ma Total TΒ 32 7 I 2 ı 43 Physicochimie 2013SP В 0 **55** I 4 0 60 0 0 ı 56 Mo **55** 0 Me 0 **52** 5 57 Ma 0 0 0 7 I 71 **Total** 32 62 57 59 77 287

Figure 11: Classification physicochimique des plans d'eau avec les indicateurs 2013 et 2013SP.

État écologique 2013

Les états écologiques 2010 et 2013SP sont établis pour 262 plans d'eau en prenant en compte les EQs Biologiques, Physicochimiques et PSP. L'EQ physico-chimie 2010 prend toujours en compte l'EQ nutriments et presque toujours la transparence qui a pu être l'objet d'exception typologique et donc non considérée pour certains plans d'eau. Pour l'EQ nutriments 2010, certaines agences ont utilisé le seuil de 50 mg.L-I pour les nitrates. L'EQ nutriment 2013SP intègre systématiquement le phosphore total, les nitrates et l'ammonium, mais pas les phosphates, alors que pour l'EQ transparence 2013 les mêmes exceptions typologiques que pour les règles 2010 ont été appliquées. Les PSP ont été pris en compte quand ils étaient disponibles, autrement ils ont été considérés comme non dégradants.

La moitié des plans d'eau (53,1%) ont des états écologiques similaires avec les critères 2010 et 2013SP (Tableau 7). Ces plans d'eau sont principalement classés en état Moyen (94 sur 139, 67,6%). Les écarts de classification entre les deux évaluations sont essentiellement d'une classe et concernent 38,2% des plans d'eau. Parmi les plans d'eau avec une classe d'état d'écart, 65% ont des classes d'état plus élevées avec les critères 2013SP. Cette proportion reste inchangée lorsque l'on regarde tous les sites dont les états 2010 et 2013SP sont différents (66,7%). Quelles que soient les règles d'évaluation, 64,5% des plans d'eau sont toujours considérés comme dégradés (Moyen à Mauvais) alors que seulement 15,3% des plans d'eau sont toujours considérés comme non dégradés (Très Bon, Bon).

Pour deux tiers (64,9%) des plans d'eau, l'élément de qualité dont dépend l'état écologique reste inchangé quelles que soient les règles utilisées (Tableau 8). Parmi ces 170 plans d'eau, 66,5% sont évalués par la biologie, contre 32,9% par la physicochimie et 0,6% par les polluants spécifiques. Lorsque l'élément de qualité responsable de l'évaluation écologique varie selon les critères 2010 et 2013SP, la biologie devient majoritairement l'élément déterminant avec les critères 2013SP. Près de deux tiers des plans dont l'EQ déterminant change, sont déterminés par la physico-chimie selon les règles 2010 et par la biologie selon les règles 2013SP. Seulement 26,1% des plans d'eau sont évalués par la biologie selon les règles 2010 et par la physico-chimie par les règles 2013SP. L'état écologique n'est que très peu dépendant des polluants spécifiques, même si ceux-ci rentrent davantage en compte avec les nouvelles règles

Malgré les différences d'importance des EQs dans l'évaluation de l'état écologique, les règles 2010 et 2013SP renvoient une image relativement similaire des plans d'eau français (Figure 12). Les règles 2013SP donnent toutefois un nombre de plans d'eau en Très Bon état largement supérieur à celui obtenu avec les règles 2010.

Tableau 7 : Comparaison des états écologiques 2010 et 2013SP.

Ecologie 2013SP ТВ В Ma Mo Me Total 2 0 0 0 3 TΒ ı В 12 26 19 0 2 59 Ecologie 2010 7 15 Mo 21 94 3 140 0 3 I 47 Me 27 16 Ma 0 0 7 5 I 13 21 50 148 36 7 262 Total

Tableau 8 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013SP.

		Е	lément 2013SF)	
		Biologie	Chimie	PSP	Total
nt	Biologie	113	24	1	138
Elément 2010	Chimie	62	56	4	122
EIÉ 20	PSP	0	I	I	2
	Total	175	81	6	262

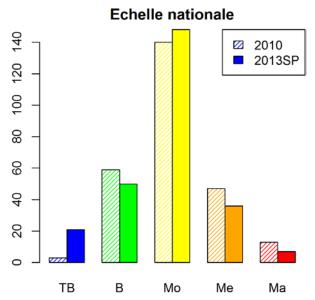


Figure 12: Classification écologique des plans d'eau avec les indicateurs 2010 et 2013SP.

Les états écologiques 2010 et 2013 sont établis pour 262 plans d'eau en prenant en compte les EQs Biologiques, Physicochimiques et PSP. L'EQ physico-chimie 2010 prend toujours en compte l'EQ nutriments et presque toujours la transparence qui a pu être l'objet d'exception typologique et donc non considérée pour certains plans d'eau. Pour l'EQ nutriments 2010, certaines agences ont utilisé le seuil de 50 mg.L-I pour les nitrates. L'EQ nutriment 2013 intègre systématiquement le phosphore total, les nitrates, l'ammonium et les phosphates alors que pour l'EQ transparence 2013 les mêmes exceptions typologiques que pour les règles 2010 ont été appliquées. Les PSP ont été pris en compte quand ils étaient disponibles, autrement ils ont été considérés comme non dégradants.

La moitié des plans d'eau (54,6%) ont des états écologiques similaires avec les critères 2010 et 2013 (Tableau 9). Ces plans d'eau sont principalement classés en état Moyen (96 sur 143, 67,1%). Les écarts de classification entre les deux évaluations sont essentiellement d'une classe et concernent 37% des plans d'eau. Parmi les plans d'eau avec une classe d'état d'écart, 59,8% ont des classes d'état plus élevées avec les critères 2013. Cette proportion reste inchangée lorsque l'on regarde tous les sites avec au moins une classe d'écart (62,2%). Avec les deux règles, 65,6% des plans d'eau sont considérés comme dégradés (Moyen à Mauvais) alors que seulement 13,7% des plans d'eau sont toujours considérés comme non dégradés (Très Bon, Bon).

Pour deux tiers (66%) des plans d'eau, l'élément de qualité dont dépend l'état écologique reste inchangé quelles que soient les règles utilisées (Tableau 10). Parmi ces 173 plans d'eau, 63% sont évalués par la biologie, 36,4% par la physicochimie et 0,6% par les polluants spécifiques. Lorsque l'élément de qualité responsable de l'évaluation écologique varie selon les règles utilisées (2010 et 2013), la biologie devient majoritairement l'élément déterminant avec les règles 2013. Soixante-deux pour cent des plans d'eau dont l'EQ déterminant change, sont déterminés par la physico-chimie selon les règles 2010 et par la biologie par les règles 2013. Seulement 31,5% des plans d'eau sont évalués par la biologie selon les règles 2010 et par la physicochimie selon les règles 2013. L'état écologique n'est que très peu dépendant des polluants spécifiques.

Malgré les différences d'importance des EQs dans l'évaluation de l'état écologique, les règles 2010 et 2013 renvoient une image relativement similaire des plans d'eau français (Figure 13). Les règles 2013 donnent toutefois un nombre de plans d'eau en états Très Bon et Moyen supérieur à celui obtenu avec les règles 2010.

Tableau 9 : Comparaison des états écologiques 2010 et 2013.

Ecologie 2013

		ТВ	В	Mo	Me	Ma	Total
	ТВ	2	0	I	0	0	3
010	В	6	28	23	0	2	59
gie 20	Мо	7	19	96	15	3	140
Ecologie 2010	Me	0	2	28	16	1	47
ш	Ma	0	0	7	5	1	13
	Total	15	49	155	36	7	262

Tableau 10 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013.

			Elément 2013		
		Biologie	Chimie	PSP	Total
int	Biologie	109	28	1	138
Elément 2010	Chimie	55	63	4	122
	PSP	0	I	I	2
	Total	164	92	6	262

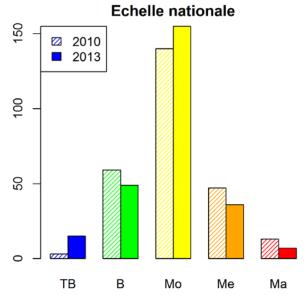


Figure 13 : Classification écologique des plans d'eau avec les indicateurs 2010 et 2013.

Les états écologiques 2013SP et 2013 sont établis pour **265 plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les EQ physico-chimie 2013 et 2013SP prennent toujours en compte les EQ nutriments et presque toujours la transparence qui a pu être

l'objet d'exception typologique et donc non considérée pour certains plans d'eau. Les EQ nutriment 2013SP et SP intègrent systématiquement le phosphore total, les nitrates et l'ammonium, l'EQ 2013 intègre en plus les phosphates. Les EQ transparence 2013SP et 2013 appliquent les mêmes exceptions typologiques que pour les règles 2010. Les PSP ont été pris en compte quand ils étaient disponibles, autrement ils ont été considérés comme non dégradants.

Sans surprise, les états écologiques avec ou sans phosphates sont presque similaires (Tableau II). Seulement I3 plans d'eau, soit moins de 5%, ont des états écologiques différents dont 8 (3%) qui sont considérés comme dégradés avec les phosphates et non dégradés sans les phosphates. Les deux règles donnent donc des visions très proches de l'état écologique des plans d'eau à l'échelle nationale (Figure I4) et les éléments déterminants de l'état écologique sont relativement identiques (Tableau I2).

Tableau II: Comparaison des états écologiques 2013SP et 2013.

Ecologie 2013 TB В Мо Me Ma Total TΒ **Ecologie 2013SP** В Mo Me Ma Total

Tableau 12: Comparaison des éléments déterminant de l'état écologique 2013SP et 2013.

	Elément 2013					
		Biologie	Chimie	PSP	Total	
<u>۳</u> تا	Biologie	165	12	0	177	
Elément 2013SP	Chimie	0	82	0	82	
Elé 20	PSP	0	0	6	6	
	Total	165	94	6	265	

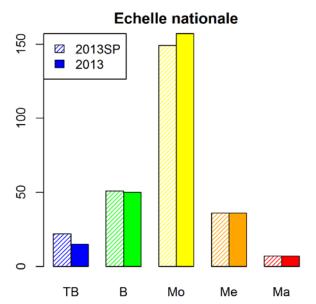


Figure 14: Classification écologique des plans d'eau avec les indicateurs 2013SP et 2013.

État écologique Mixte (Physico-chimie 2010 et Biologie 2013)

Les états écologiques 2010 et Mixte sont établis pour 285 plans d'eau en prenant en compte les EQs Biologiques, Physicochimiques et PSP. L'EQ physico-chimie 2010 prend toujours en compte l'EQ nutriments et presque toujours la transparence qui a pu être l'objet d'exception typologique et donc non considérée pour certains plans d'eau. Pour l'EQ nutriments 2010, certaines agences ont utilisé le seuil de 50 mg.L-1 pour les nitrates. Les PSP ont été pris en compte quand ils étaient disponibles, autrement ils ont été considérés comme non dégradants. Les états écologiques Mixtes ont été établis à partir des EQ physico-chimie 2010 et EQ Biologie 2013. Il s'agit de comparer les anciennes et nouvelles évaluations en tenant compte de l'impact des nouveaux indices biologiques.

Les états écologiques obtenus avec les règles 2010 d'une part et la physico-chimie 2010 et la biologie 2013 sont très fortement concordants (Tableau 13). Soixante-dix pour cent des plans d'eau ont des états écologiques 2010 et Mixte similaires. Ces plans d'eau sont principalement classés en état Moyen (63,2%) et Bon (26,9%).

Pour 71,6% des plans d'eau l'élément de qualité dont dépend l'état écologique reste inchangé quelles que soient les règles utilisées (Tableau 14). Parmi ces 201 plans d'eau, 57,8% sont évalués par la biologie, 40,7% par la physicochimie et 1,6% par les polluants spécifiques. Les changements d'éléments déterminants de l'état écologique sont équilibrés entre les règles 2010 et Mixte : 44,4% des changements se font vers la chimie avec les règles mixtes contre 54,3% vers la biologie.

Les règles 2010 et Mixtes renvoient une image similaire des plans d'eau français (Figure 15).

Tableau 13 : Comparaison des états écologiques 2010 et 2013.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Mo	Me	Ma	Total
	ТВ	2	0	I	0	0	3
010	В	0	54	6	I	2	63
gie 20	Мо	0	4	127	18	6	155
Ecologie 2010	Me	0	I	30	17	I	49
ш	Ma	0	0	8	6	I	15
	Total	2	59	172	42	10	285

Tableau 14 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013.

	Elément Mixte (Phy 2010 & Bio 2013)						
		Biologie	Chimie	PSP	Total		
int	Biologie	118	36	1	155		
Elément 2010	Chimie	44	83	0	127		
	PSP	0	0	3	3		
	Total	162	119	4	285		

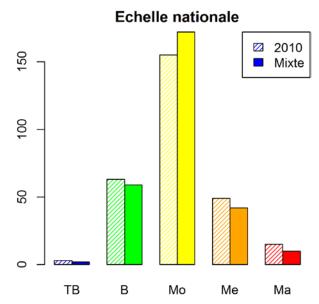


Figure 15 : Classification écologique des plans d'eau avec les indicateurs 2010 et Mixte (Phy 2010 & Bio 2013).

Les états écologiques 2013SP et Mixte sont établis pour 262 plans d'eau en prenant en compte les EQs Biologiques, Physicochimiques et PSP. L'EQ physico-chimie 2013SP prend toujours en compte l'EQ nutriment sans phosphates et presque toujours la transparence qui a pu être l'objet d'exception typologique et donc non considérée pour certains plans d'eau (même exception que pour l'EQ physico-chimique 2010). Les états écologiques Mixtes ont été établis à partir des

EQ physico-chimie 2010 et EQ Biologie 2013 + PSP. Il s'agit ici de faire varier la physico-chimie tout en utilisant les nouvelles règles pour la biologie.

Les états écologiques obtenus avec les règles 2013SP d'une part et la physico-chimie 2010 et la biologie 2013SP sont très fortement concordants (Tableau 15). Près de 80% des plans d'eau ont des états écologiques 2013SP et Mixte similaires. Ces plans d'eau sont principalement classés en état Moyen (65,5%). Lorsque les classifications sont discordantes (en dehors de la diagonale du tableau), l'EQ physico-chimique 2010 donne majoritairement des classifications inférieures à l'EQ physico-chimique 2013SP. Par exemple 30 plans d'eau sont classés Moyen avec les règles Mixtes et Bon ou Très Bon avec les règles 2013SP contre 13 dans l'autre sens.

Les mêmes phénomènes sont observés sur l'élément déterminant de l'état écologique (Tableau 16). Pour près de 80% des plans d'eau l'EQ déterminant ne change pas selon la physico-chimie utilisée avec la nouvelle biologie. La physico-chimie 2013SP semble moins déclassante que la physico-chimie 2010 car la biologie est plus souvent l'élément déterminant avec les règles 2013SP qu'avec les règles Mixte.

Les règles 2013SP et Mixtes renvoient une image similaire des plans d'eau français (Figure 16) avec toutefois plus de sites en état Très Bon avec les nouveaux critères physicochimiques sans phosphates, par rapport aux anciens.

 Tableau 15 : Comparaison des états écologiques 2013SP et Mixte.

Ecologie Mixte (Phy 2010 – Bio 2013)

		ТВ	В	Мо	Me	Ma	Total
_	ТВ	2	13	6	0	0	21
13SF	В	0	26	24	0	0	50
Ecologie 2013SP	Мо	0	13	135	0	0	148
goloo	Me	0	0	0	36	0	36
ш	Ma	0	0	0	0	7	7
	Total	2	52	165	36	7	262

Tableau 16 : Comparaison des éléments déterminant de l'état écologique 2013SP et Mixte.

	F F						
		Elément Mix	te (Phy 2010 a	& Bio 2013)			
		Biologie	Chimie	PSP	Total		
<u>با</u> م	Biologie	138	37	0	175		
Elément 2013SP	Chimie	7	73	I	81		
EI (PSP	0	4	2	6		
	Total	145	114	3	262		

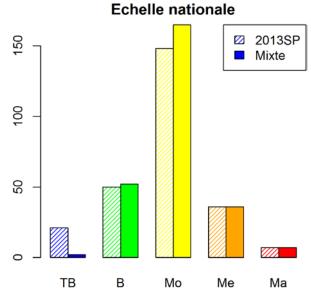


Figure 16: Classification écologique des plans d'eau avec les indicateurs 2013SP et Mixte (Phy 2010 & Bio 2013).

Les états écologiques 2013 et Mixte sont établis pour 262 plans d'eau en prenant en compte les EQs Biologiques, Physicochimiques et PSP. L'EQ physico-chimie 2013 prend toujours en compte l'EQ nutriment avec les phosphates et presque toujours la transparence qui a pu être l'objet d'exception typologique et donc non considérée pour certains plans d'eau (même exception que pour l'EQ physico-chimique 2010). Les états écologiques Mixtes ont été établis à partir des EQ physico-chimie 2010 et EQ Biologie 2013 + PSP. Il s'agit ici de faire varier la physico-chimie tout en utilisant les nouvelles règles pour la biologie.

Comparées avec les règles 2013SP, les règles 2013 donnent sensiblement les mêmes réponses par rapport aux règles Mixte. Les règles 2013 et Mixte sont très concordantes et la majorité des plans d'eau sont classés en état Moyen (65,4%). La seule évolution notable par rapport à la comparaison précédente i.e. quand le phosphate est pris en compte, est que les classifications discordantes s'équilibrent mieux entre les règles 2013 et Mixte. Vingt-sept plans d'eau sont évalués comme dégradés avec la physico-chimie 2010 et non dégradés par la physico-chimie 2013, contre 17 dans l'autre sens. Ce résultat n'est pas surprenant de par la plus forte concordance entre les EQ physico-chimie 2010 et 2013 avec phosphates, qu'entre les EQ physico-chimie 2010 et 2013SP.

Les mêmes phénomènes sont observés sur l'élément déterminant de l'état écologique (Tableau 18). Pour plus de 80% des plans d'eau, l'EQ déterminant ne change pas selon la physico-chimie utilisée. Cette proportion est légèrement plus importante qu'avec les règles 2013SP. La physico-chimie 2013 semble moins déclassante que la physico-chimie 2010 car la biologie est plus souvent l'élément déterminant avec les règles 2013 qu'avec les règles Mixte.

Les règles 2013 et Mixtes renvoient une image similaire des plans d'eau français (Figure 17) avec toutefois plus de sites en état Très Bon avec les nouveaux critères physicochimiques avec phosphates, par rapport aux anciens. Les différences d'évaluation de l'état écologique avec les EQ physico-chimie 2010 et 2013 sont légèrement moins marquées quand les phosphates sont pris en compte.

Tableau 17 : Comparaison des états écologiques 2013 et Mixte.

Ecologie Mixte (Phy 2010 – Bio 2013)

		ТВ	В	Mo	Me	Ma	Total
	ТВ	2	7	6	0	0	15
13	В	0	28	21	0	0	49
gie 20	Мо	0	17	138	0	0	155
Ecologie 2013	Me	0	0	0	36	0	36
ш	Ma	0	0	0	0	7	7
	Total	2	52	165	36	7	262

Tableau 18 : Comparaison des éléments déterminant de l'état écologique 2013 et Mixte.

		Elément Mix	te (Phy 2010 a	& Bio 2013)	
		Biologie	Chimie	PSP	Total
int	Biologie	136	28	0	164
Elément 2013	Chimie	9	82	1	92
	PSP	0	4	2	6
	Total	145	114	3	262

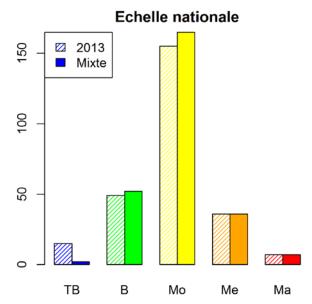


Figure 17 : Classification écologique des plans d'eau avec les indicateurs 2013 et Mixte (Phy 2010 & Bio 2013).

Association physico-chimie biologie

L'objectif de ce point, est de comparer les niveaux d'associations entre les évaluations biologiques et physico-chimiques, selon les règles 2010, 2013 sans phosphates et 2013 avec

phosphates. Le terme corrélation serait inapproprié ici, parce que l'on compare des classes d'état (variable catégorielle) et non des valeurs numériques, mais l'idée est la même.

Globalement, les concordances entre l'évaluation biologique et physico-chimique des plans d'eau nationaux, sont similaires entre les règles 2010 (Tableau 19), 2013SP (Tableau 20) et 2013 (Tableau 21). Néanmoins, les règles biologiques et physico-chimiques 2013 avec phosphates présentent la plus faible statistique de concordance (Gamma, G, de Goodman – Kruskal) bien que cette valeur ne soit pas très éloignée des deux précédentes. Toutes ces statistiques sont très proches : G(2010) = 0,550, G(2013SP) = 0,528 et G(2013) = 0,505.

De même les proportions du nombre plans d'eau avec des écarts de classe entre les évaluations biologiques et écologiques, sont similaires entre toutes les règles (Tableau 22, test du Chi-deux non significatif). Les distributions des écarts de classe entre la biologie et la physico-chimie sont proches entre les règles 2010, 2013SP et 2013. Les écarts de classification sont majoritairement en direction d'une physico-chimie plus sévère (évaluations plus basses qu'avec la biologie). Il est a noter que les règles 2013 sans phosphates sont celles qui permettent la plus forte adéquation entre les écarts de classification entre la biologie et la physico-chimie (Tableau 23).

 Tableau 19 : Comparaison des états biologiques et physico-chimiques 2010

Biologie 2010

TΒ В Mo Me Ma Total Physico-chimie 2010 ΤВ В ı Mo Me Ma Total

 Tableau 20 : Comparaison des états biologiques et physico-chimiques 2013 sans phosphates.

Biologie 2013SP

				Ü			
		ТВ	В	Мо	Me	Ma	Total
I3SP	ТВ	21	12	3	2	2	40
e 201	В	21	23	10	4	0	58
Physico-chimie 2013SP	Мо	9	21	13	5	3	51
	Me	5	16	24	4	I	50
Phys	Ma	2	9	30	21	I	63
	Total	58	81	80	36	7	262

Tableau 21 : Comparaison des états biologiques et physico-chimiques 2013 avec phosphates.

Biologie 2013

		ТВ	В	Мо	Me	Ma	Total
	ТВ	15	9	3	1	2	30
2013	В	25	21	9	5	0	60
imie	Мо	10	22	13	5	3	53
о-сh	Me	5	18	24	4	0	51
Physico-chimie 2013	Ma	3	11	31	21	2	68
<u></u>	Total	58	81	80	36	7	262

Tableau 22 : Distribution des discordances entre les évaluations physico-chimiques et biologiques.

		Ecart (nombre de classes)				
		I	2	3	4	Total
e e	2010	115	49	25	4	193
Règle	2013SP	115	65	16	4	200
	2013	115	70	17	5	207

Tableau 23 : Distribution des discordances entre les évaluations physico-chimiques et biologiques.

		Ecart (nombre de classes)				
Règles	Paramètre déclassant	I	2	3	4	Total
2010	Bio	17	4	0	0	21
2010	PC	98	45	25	4	172
2013SP	Bio	28	10	2	2	42
201335	PC	87	55	14	2	158
2013	Bio	23	11	l	2	37
	PC	92	59	16	3	170

Résultats de l'étude d'impact sur les plans d'eau du bassin Adour Garonne

Nous disposons de **47 plans d'eau** avec des données sur les indicateurs anciens et actuels, pour la période **2009-2011**.

ONEMA Office artifact activities

Partenariat 2013 Impact nouveaux indicateurs

État biologique

La majorité des états biologiques actuels sont fondés sur le phytoplancton. La comparaison repose donc majoritairement sur ces données. Les valeurs d'indices poisson et macrophytes sont disponibles pour seulement respectivement un et quatre plans d'eau (Tableau 24).

Tableau 24 : Détail des données pour les plans d'eau d'Adour Garonne.

	Non pertinent	Manquant*	Disponible
Macrophytes	18	25	4
Phytoplancton	-	0	47
Poisson	4	42	1

^{*} une donnée manquante pour l'un des éléments de qualité biologique peut correspondre à une donnée non disponible sur la période considérée par l'étude ou non acquise ou bien à une absence d'indice (cas de l'indice poisson des retenues).

A l'exception d'un plan d'eau avec macrophytes, les EQBs ichtyofaune et macrophytes sont toujours les plus déclassants.

Les classifications des états biologiques concordent pour 40,4% des plans d'eau, diffèrent d'une classe pour 42,6% et de plus d'une classe pour 17% des plans d'eau (Tableau 25).

Tableau 25 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs.

Nouveaux indicateurs

TB Mo Me Ma Total Anciens indicateurs ı 0 9 4 0 TB 14 3 В 4 0 0 8 Mo 0 5 0 6 12 Me 0 2 0 7 5 Ma 0 0 6 Total 12 47

L'image générale de l'état biologique des plans d'eau de l'agence Adour Garonne est relativement similaire avec les anciens et les nouveaux indicateurs. Ces derniers semblent cependant moins sévères. Plus aucun plan d'eau n'est classé en état Mauvais par la biologie et les proportions de plans d'eau en Bon et Moyen sont plus élevées avec les nouveaux indicateurs (Figure 18).

La biologie déclasse 25 plans d'eau (soit 53% des plans d'eau) avec les anciens indicateurs; elle n'en déclasse plus que 19 (soit 40%) avec les nouveaux.

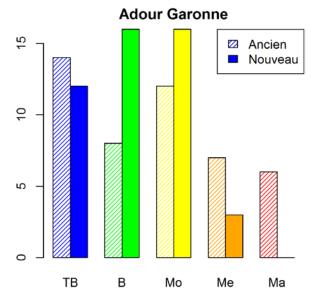


Figure 18: Classification biologique des plans d'eau avec les anciens et les nouveaux indicateurs.

État physico-chimique

La comparaison des EQs physicochimiques 2010 et 2013SP porte sur **44 plans d'eau**. L'état 2013SP est défini sur les EQs **Nutriments (SP)** et **Transparence** sans aucune exception typologique.

La classification des plans d'eau sur la base de la physicochimie 2010 a tendance à être plus sévère que celle obtenue avec la physicochimie 2013SP. Le Tableau 26 montre que la moitié des plans d'eau sont dans une classe d'état inférieure avec les anciennes règles (sont en dessous de la diagonale du tableau). Dix-neuf plans d'eau (43,2%) ont une classification identique avec les règles 2010 et 2013SP.

Tableau 26 : Comparaison des états physicochimiques 2010 et 2013SP.

Physicochimie 2013SP TB В Mo Ma Me Total Physicochimie 2010 3 0 0 0 0 3 TΒ В 2 0 0 2 Mo 2 2 0 П 0 I Me ı 12 0 0 2 Ma 10 16 5 **Total** 7 8 13 П 44

Par conséquent, lorsque l'on regarde l'état physicochimique à l'échelle du territoire de l'agence, on note un basculement des plans d'eau classés Médiocre ou Mauvais vers les états Bon à Très Bon (Figure 19).

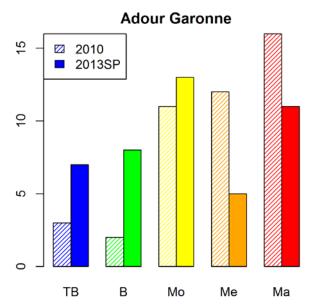


Figure 19: Classification physicochimique des plans d'eau avec les indicateurs 2010 et 2013SP.

A l'exception d'un plan d'eau considéré comme Bon sans les phosphates et Médiocre avec les phosphates, la prise en compte du phosphate ne modifie pas l'évaluation physicochimique 2013 des plans d'eau d'Adour Garonne (Tableau 27).

Tableau 27 : Comparaison des états physico-chimiques 2013 sans et avec phosphates.

Physicochimie 2013

			,				
		ТВ	В	Мо	Me	Ma	Total
3SP	ТВ	7	0	0	0	0	7
201	В	0	7	0	I	0	8
Physicochimie 2013SP	Мо	0	0	13	0	0	13
sicoc	Me	0	0	0	5	0	5
Phy	Ma	0	0	0	0	П	11
	Total	7	7	13	6	П	44

État écologique 2013

Les états écologiques 2010 et 2013SP sont établis pour **42 plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP.

Vingt-trois plans d'eau ont des états écologiques similaires entre 2010 et 2013 et sont majoritairement en état Moyen (20 plans d'eau). La classification 2013 est moins sévère que la classification 2010. Dix-sept plans d'eau sont dans une classe d'état plus élevée avec les règles 2013 et seulement 2 avec les règles 2010. Néanmoins, 78,6% des plans d'eau sont considérés comme dégradés (moins que Bon) quelles que soient les règles utilisées (Tableau 28).

Près de la moitié des plans d'eau doivent leur état écologique à l'EQ Biologie. Entre les règles 2010 ou 2013, l'EQ Biologie devient l'élément déterminant de l'état écologique pour quatre plans d'eau, et l'EQ Chimie pour seulement 5 plans d'eau (Tableau 29). Le changement de règle ne semble donc pas modifier l'importance de la biologie ou de la chimie dans l'évaluation de l'état écologiques des plans d'eau d'Adour-Garonne.

La Figure 20 montre la forte proportion de plans d'eau en état Moyen quelles que soient les règles d'évaluation ainsi que la plus forte proportion de plans d'eau en Bon et inversement une diminution des plans d'eau en état Médiocre ou Mauvais avec les règles 2013.

Tableau 28 : Comparaison des états écologiques 2010 et 2013.

Ecologie 2013 TB В Mo Me Ma Total 0 ı 0 3 TΒ 0 ı В 0 0 0 0 ı Ecologie 2010 Mo I 20 I 0 26 7 Me 0 0 6 I 0 Ma 0 0 I 0 5 Total 4 31 3 0 42

Tableau 29 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013.

	Elément 2013					
		Biologie	Chimie	PSP	Total	
int	Biologie	19	5	I	25	
Elément 2010	Chimie	4	10	2	16	
Elé 20	PSP	0	0	I	1	
	Total	23	15	4	42	

ONEMA Office national de l'eau

Partenariat 2013 Impact nouveaux indicateurs

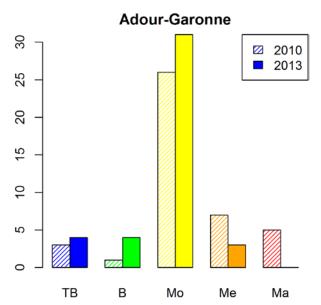


Figure 20 : Classification écologique des plans d'eau avec les indicateurs 2010 et 2013.

La prise en compte du phosphate ne modifiant pas l'évaluation de l'état physicochimique 2013 des plans d'eau, les états écologiques 2013 obtenus en considérant l'EQ Physico-chimie avec ou sans phosphates sont rigoureusement identiques; les résultats avec les règles 2013 et 2013SP sont les mêmes et ne seront donc pas discutés ici.

État écologique Mixte (Physico-chimie 2010 et Biologie 2013)

Les états écologiques 2010 et Mixte sont établis pour **47 plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les états écologiques Mixtes ont été établis à partir des EQ physico-chimie 2010 et EQ Biologie 2013.

Près de trois quarts des plans d'eau (70,2%) ont des états écologiques similaires avec les règles 2010 et Mixte et sont majoritairement en état Moyen (28 plans d'eau, 59,6%). La biologie 2013 donne une classification plus élevée que la biologie 2010. Douze plans d'eau ont une classe plus élevée avec les règles Mixte contre deux avec les règles 2010. Néanmoins, 89,4% des plans d'eau sont considérés comme dégradés (moins que Bon) quelles que soient les règles utilisées (Tableau 30).

Que la physico-chimie 2010 devienne plus souvent l'EQ déterminant de l'état écologique avec les règles Mixte qu'avec les règles 2010 (Tableau 31), tend à montrer aussi que la biologie 2013 donne des classes plus élevées que la biologie 2010. La physico-chimie 2010 devient plus déclassante avec la biologie 2013 qu'avec la biologie 2010.

La Figure 21 montre une proportion de plans d'eau en état Moyen plus marquée avec les règles Mixte qu'avec les règles 2010. Parallèlement, on observe une diminution des états Médiocre et Mauvais avec lorsque les règles sont appliquées sur l'EQ biologie.

Tableau 30 : Comparaison des états écologiques 2010 et Mixte.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Mo	Me	Ma	Total
	ТВ	2	0	I	0	0	3
010	В	0	2	0	0	0	2
Ecologie 2010	Мо	0	0	28	1	0	29
	Me	0	0	6	ı	0	7
ш	Ma	0	0	5	1	0	6
	Total	2	2	40	3	0	47

Tableau 31 : Comparaison des éléments déterminant de l'état écologique 2010 et Mixte.

Elément Mixte (Phy 2010 & Bio 2013)						
		Biologie	Chimie	PSP	Total	
int	Biologie	19	8	1	28	
Elément 2010	Chimie	2	15	0	17	
	PSP	0	0	2	2	
	Total	21	23	3	47	

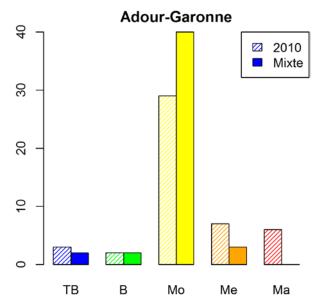


Figure 21 : Classification écologique des plans d'eau avec les indicateurs 2010 et Mixte (Phy 2010 & Bio 2013).

Les états écologiques 2013 et Mixte sont établis pour **42 plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les états écologiques Mixtes ont été établis à partir des EQ physico-chimie 2010 et EQ Biologie 2013.

Quatre-vingt-cinq pour cent des plans d'eau ont des états écologiques similaires avec les règles 2013 et Mixte et trois quarts (31) sont en état Moyen (Tableau 32). Quand les classifications divergent, les règles 2013 donnent des états plus élevés que les règles Mixtes. L'EQ physico-chimie 2013 serait dans certains cas moins déclassant que l'EQ physico-chimie 2010, les EQ biologiques donnant les mêmes classifications (2013).

Ceci s'observe dans le Tableau 35. Les EQ biologie et PSP deviennent plus souvent les éléments déterminants de l'état écologique avec les règles 2013 par rapport aux règles Mixte.

Ces deux scenarii donnent des évaluations écologiques comparables. Notons toutefois une diminution de la proportion des plans d'eau en état Moyen et une augmentation des plans d'eau en état Bon ou Très Bon avec l'EQ physico-chimie 2013 par rapport à l'EQ physico-chimie 2010.

Tableau 32 : Comparaison des états écologiques 2013 et Mixte.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Mo	Me	Ma	Total
	ТВ	2	I	I	0	0	4
13	В	0	0	4	0	0	4
Ecologie 2013	Мо	0	0	31	0	0	31
ဇဝါဝ၁	Me	0	0	0	3	0	3
ш	Ma	0	0	0	0	0	0
	Total	2	I	36	3	0	42

Tableau 33 : Comparaison des éléments déterminant de l'état écologique 2013 et Mixte.

	•			0.			
	Elément Mixte (Phy 2010 & Bio 2013)						
		Biologie	Chimie	PSP	Total		
nent 3	Biologie	19	4	0	23		
<u></u>	Chimie	0	15	0	15		
Elén 2013	PSP	0	2	2	4		
	Total	19	21	2	42		

ONEMA

Partenariat 2013 Impact nouveaux indicateurs

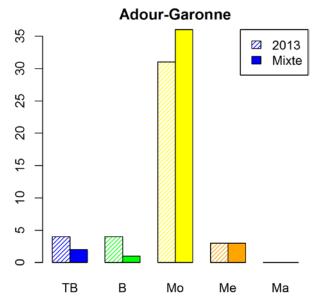


Figure 22: Classification écologique des plans d'eau avec les indicateurs 2013 et Mixte (Phy 2010 & Bio 2013).

Résultats de l'étude d'impact sur le bassin Artois Picardie

Cinq plans d'eau seulement se trouvent sur le territoire de l'agence de l'eau Artois Picardie. Ils ont tous été échantillonnés entre 2007 et 2012 (Tableau 34).

Sur ces plans d'eau, l'évaluation a été réalisée à dire d'expert en s'appuyant sur un nombre limité de paramètres, la plupart des outils disponibles n'étant pas adaptés aux petits plans d'eau peu profonds de ces bassins.

État biologique

L'IPLAC est le seul nouvel indice disponible pour ces plans d'eau sur la plage temporelle de l'analyse.

Tableau 34 : Détail des données pour les plans d'eau d'Artois Picardie.

	Non pertinent	Manquant*	Disponible
Macrophytes	2	3	0
Phytoplancton	-	0	5
Poisson	0	5	0

^{*} une donnée manquante pour l'un des éléments de qualité biologique peut correspondre à une donnée non disponible sur la période considérée par l'étude ou non acquise ou bien à une absence d'indice (cas de l'indice poisson des retenues).

Les états biologiques obtenus avec les anciens et les nouveaux indicateurs concordent pour 3 plans d'eau et diffèrent d'une classe pour les deux plans d'eau restants (Tableau 35).

Il est difficile de conclure sur les impacts de l'utilisation, tant le nombre de plans d'eau pour cette agence est restreint (Figure 23). Cependant, l'utilisation de l'IPLAC ne modifie pas le nombre de plans d'eau déclassés lors de l'évaluation précédente (4 sur les 5 de l'agence).

Tableau 35 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs.

Nouveaux indicateurs

ΤB В Mo Me Ma Total Anciens indicateurs 0 ı 0 0 0 ı TΒ 0 0 0 0 0 0 В 0 0 0 0 ı Мо 0 2 0 3 Me 0 0 0 0 0 0 Ma

2 2 5 0 0 **Total**



Figure 23 : Classification biologique des plans d'eau avec les anciens et les nouveaux indicateurs.

État physico-chimique

Les classifications de l'état physicochimique sont basées uniquement sur l'EQ Nutriments. Les états sont quasiment identiques avec les règles 2010 et 2013, un seul des cinq plans d'eau étant déclassé de Moyen à Médiocre avec les règles 2013SP (Tableau 36) et déclassé de Moyen à Mauvais avec les règles 2013 avec phosphates (résultats non présentés).

Tableau 36 : Comparaison des états physicochimiques 2010 et 2013SP.

Physicochimie 2013SP

		ТВ	В	Мо	Me	Ma	Total
010	ТВ	0	0	0	0	0	0
mie 2	В	0	0	0	0	0	0
ochi	Мо	0	0	0	1	0	I
Physicochimie 2010	Me	0	0	0	I	0	I
ш.	Ma	0	0	0	0	3	3
	Total	0	0	0	2	3	5

Par conséquent les classifications globales sont très cohérentes. Tous les plans d'eau sont toujours classés comme moins que Bon, et ce quelle que soit la règle utilisée (Figure 24).

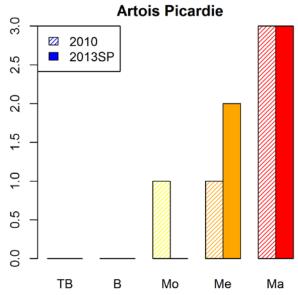


Figure 24: Classification physicochimique des plans d'eau avec les indicateurs 2010 et 2013SP.

État écologique 2013

Les états écologiques 2010 et 2013 sont établis en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les états écologiques 2013 avec et sans phosphates étant identiques, il n'est pas fait de distinction entre les deux.

Les cinq plans d'eau sont tous classés en état Moyen ou Médiocre avec les règles 2010 et 2013. Un seul plan d'eau change de classe écologique, passant de Médiocre à Moyen (Tableau 37).

Les EQs déterminant l'état écologique restent inchangés, quatre plans d'eau sont déclassés par l'EQ Biologie et un par l'EQ Physicochimie (Tableau 38).

Il est à noter que l'image dégradée des plans d'eau d'Artois Picardie est très concordante quelle que soit la règle utilisée (Figure 25).

Tableau 37 : Comparaison des états écologiques 2010 et 2013.

Ecologie 2013

		ТВ	В	Мо	Me	Ma	Total
	ТВ	0	0	0	0	0	0
0	В	0	0	0	0	0	0
Ecologie 2010	Мо	0	0	2	0	0	2
colog	Me	0	0	I	2	0	3
ш	Ma	0	0	0	0	0	0
	Total	0	0	3	2	0	5

Tableau 38 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013.

			Elément 2013		
		Biologie	Chimie	PSP	Total
Elément 2010	Biologie	4	0	0	4
	Chimie	0	I	0	I
	PSP	0	0	0	0
	Total	4	I	0	5

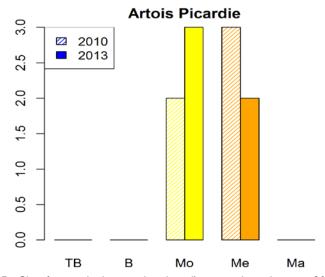


Figure 25 : Classification écologique des plans d'eau avec les indicateurs 2010 et 2013.

État écologique Mixte (Physico-chimie 2010 et Biologie 2013)

Les états écologiques 2010 et Mixte sont établis en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les états écologiques Mixtes ont été établis à partir des EQ physico-chimie 2010 et EQ Biologie 2013.

ONEMA Office national de l'eau office ational de l'eau et des milleux aquatiques

Partenariat 2013 Impact nouveaux indicateurs

La comparaison de l'état écologique 2010 avec l'état écologique mixte est en tout point comparable à celle obtenue en comparant les états écologiques 2010 aux états écologiques 2013 (Tableau 37 et Tableau 38, Figure 25). Les tableaux et figures ne sont donc pas ajoutés. Quelles que soient les règles, les plans d'eaux sont considérés comme dégradés.

Les états écologiques Mixtes et 2013 sont identiques, trois plans d'eau sont considérés comme en état Moyen et deux en état Médiocre.

Résultats de l'étude d'impact sur le bassin Loire Bretagne

État biologique

Pour Loire Bretagne nous disposons de données biologiques sur III plans d'eau, 13 lacs naturels et 98 d'origine anthropique, échantillonnés entre 2005 et 2012.

Tableau 39 : Détail des données pour les plans d'eau de Loire Bretagne.

	Non pertinent	Manquant*	Disponible
Macrophytes	30	62	19
Phytoplancton	-	I	110
Poisson	I	101	9

^{*} une donnée manquante pour l'un des éléments de qualité biologique peut correspondre à une donnée non disponible sur la période considérée par l'étude ou non acquise ou bien à une absence d'indice (cas de l'indice poisson des retenues).

La proportion de plans d'eau avec un écart d'une classe maximum est de 88,3%, dont 38,7% avec une classification identique, indiquant une très **bonne concordance entre les évaluations de l'état biologique** résultant de l'application des règles 2010 et 2013 (Tableau 40).

Vingt et un des 27 plans d'eau avec au moins deux éléments de qualité biologique, sont déclassés par les macrophytes ou les poissons. Le phytoplancton semble moins sévère que les autres éléments.

A l'échelle de l'agence, les classifications biologiques des plans d'eau sont relativement concordantes, avec une légère tendance à moins de plans d'eau en état Très Bon ou Bon et plus de plans d'eau en état biologique Moyen (Figure 26). Nous passons de 57% des plans d'eau déclassés par la biologie avec les anciens indicateurs à 67% avec les nouveaux.

Tableau 40 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs.

Nouveaux indicateurs TB В Mo Me Ma Total Anciens indicateurs 5 8 0 0 0 13 TB 0 12 19 3 Τ 35 В 2 32 6 16 Mo 5 10 10 26 Me 5 0 0 4 0 Ma IIII31 24 4 6 46 Total

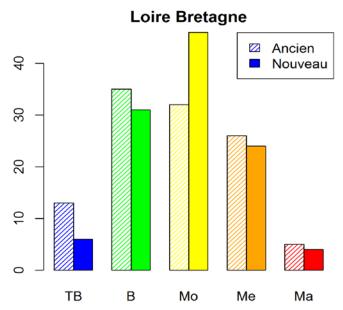


Figure 26: Classification biologique des plans d'eau avec les anciens et les nouveaux indicateurs.

État physico-chimique

L'EQ physico-chimie 2010 a été établi sur l'EQ Nutriments et l'EQ Transparence pour les lacs naturels profonds et seulement sur l'EQ Nutriments pour tous les autres plans d'eau. Dans un souci de comparabilité, la même règle a été utilisée pour définir l'EQ physico-chimie 2013SP. L'EQ nutriments 2013SP ne prend pas en compte les phosphates. De plus pour 2010, le seuil de 50mg.L-1 a été utilisé comme limite Bon/Moyen pour l'EQ Nitrate (en accord avec l'arrêté évaluation du 25 janvier 2010). Cette règle n'a pas été appliquée pour l'évaluation 2013SP. L'EQ physico-chimie 2013SP a été établi pour 93 plans d'eau.

Les règles 2010 et 2013SP donnent des EQs physico-chimique identiques pour 33,3% des plans d'eau. On observe des divergences de classification inverses de celles observées pour Adour-Garonne. Quarante-deux plans d'eau (45,2%) ont des classes inférieures avec la règle 2013SP contre 20 (21,5%) avec la règle 2010. La majorité des plans d'eau, 78,5%, sont identifiés en état Moyen à Mauvais avec les deux règles, alors que seulement 5 plans d'eau (5,4%) sont identifiés en Bon ou Très Bon avec les deux règles (Tableau 41). La physico-chimie 2013SP semble donc plus sévère que la physico-chimie 2010.

Tableau 41 : Comparaison des états physicochimiques 2010 et 2013SP.

Physicochimie 2013SP

		ТВ	В	Mo	Me	Ma	Total
010	ТВ	0	0	0	0	0	0
mie ,	В	3	2	2	1	1	9
cochi	Мо	3	5	5	12	10	35
Physicochimie 2010	Me	0	3	3	13	16	35
_	Ma	0	0	0	3	Ш	14
	Total	6	10	10	29	38	93

A l'échelle du territoire de l'agence de l'eau Loire Bretagne, l'EQ physico-chimique **2013SP** fournit des **classifications extrêmes** (Très Bon, Mauvais) **plus nombreuses** et inversement l'EQ physico-chimique **2010** donne plus de **classifications intermédiaires** (Moyen) (Figure 27). La proportion de plans d'eau en état Mauvais est bien supérieure avec les règles 2013SP alors que la proportion de plans d'eau en état Moyen est largement plus importante avec les règles 2010.

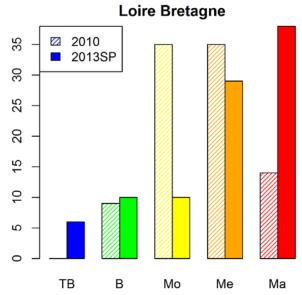


Figure 27: Classification physicochimique des plans d'eau avec les indicateurs 2010 et 2013SP.

Les règles 2013 avec et sans phosphates engendrent des évaluations physico-chimiques très proches, avec des classifications différentes pour 6 plans d'eau soit moins de 10% de discordances (Tableau 42).

Tableau 42 : Comparaison des états physicochimiques 2013 sans et avec phosphates.

Physicochimie 2013

		ТВ	В	Мо	Me	Ma	Total
3SP	ТВ	4	I	0	1	0	6
201	В	0	8	0	2	0	10
himie	Mo	0	0	10	0	0	10
Physicochimie 2013SP	Me	0	0	0	27	2	29
Phys	Ma	0	0	0	0	38	38
	Total	4	9	10	30	40	93

État écologique 2013

Les états écologiques 2010 et 2013SP sont établis pour **93 plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les polluants spécifiques sont manquants pour 54 plans d'eau. Quand ils sont manquants ils ne sont pas pris en compte pour établir l'état écologique.

Plus de la moitié des plans d'eau (62,4%) sont classés similairement avec les règles 2010 et 2013SP. Ces plans d'eau sont majoritairement classés en état moyen (45 sur 58). La classification 2013SP semble moins sévère que la classification 2010. Vingt-quatre plans d'eau ont une classe plus élevée avec les règles 2013SP contre 11 avec les règles 2010. De plus, huit plans d'eau considérés comme dégradés (Moyen à Mauvais) avec les règles 2010 deviennent non dégradés avec les règles 2013SP. Inversement, seul quatre plans d'eau dégradés avec les règles 2013SP ne le sont pas avec les règles 2010. Néanmoins, 82,8% des plans d'eau sont considérés comme dégradés (moins que Bon) quelles que soient les règles utilisées (Tableau 43).

Quelle que soit la règle utilisée, l'EQ Biologie est l'élément qui détermine majoritairement l'état Ecologique des plans d'eau de Loire Bretagne. L'EQ physico-chimie est beaucoup moins déclassant avec les règles 2013SP qu'avec les règles 2010. On observe 27 plans d'eau dont l'état écologique est déterminé par la physico-chimie 2010 et par la biologie 2013SP contre cinq dans l'autre sens (Tableau 44). Les polluants spécifiques ne sont jamais déterminants pour les plans d'eau de Loire Bretagne pris en compte dans cette étude, mais ils ne sont que peu renseignés.

Sur le territoire de l'agence Loire Bretagne, les classifications écologiques obtenues avec les règles de 2010 et 2013SP sont très cohérentes, comme indiqué sur la Figure 28.

Tableau 43 : Comparaison des états écologiques 2010 et 2013SP.

Ecologie 2013SP

		ТВ	В	Mo	Me	Ma	Total
	ТВ	0	0	0	0	0	0
010	В	0	4	4	0	0	8
Ecologie 2010	Мо	I	5	45	6	0	57
colos	Me	0	2	12	9	1	24
ш	Ma	0	0	I	3	0	4
	Total	I	11	62	18	1	93

Tableau 44 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013SP.

	Elément 2013SP						
		Biologie	Chimie	PSP	Total		
Elément 2010	Biologie	47	5	0	52		
	Chimie	27	14	0	41		
	PSP	0	0	0	0		
	Total	74	19	0	93		

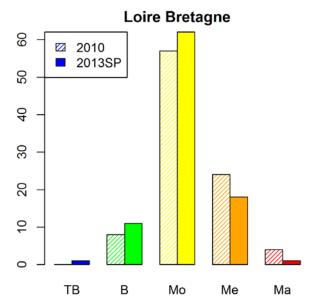


Figure 28 : Classification écologique des plans d'eau avec les indicateurs 2010 et 2013SP.

La seule différence entre les règles 2013 avec et sans phosphates est que trois plans d'eau considérés en état Bon sans phosphates sont considérés comme Moyen avec les phosphates. Les 90 autres plans d'eau ont des classifications identiques.

État écologique Mixte (Physico-chimie 2010 et Biologie 2013)

Les états écologiques 2010 et Mixte sont établis pour III plans d'eau en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les polluants spécifiques sont manquants pour 64 plans d'eau. Quand ils sont manquants ils ne sont pas pris en compte pour établir l'état écologique.

Les règles 2010 et Mixte donnent des classifications identiques pour deux tiers des plans d'eau (Tableau 45) et 48,6% des plans d'eau sont classés en état Moyen quelle que soit la règle utilisée. Les divergences de classifications se font presque autant vers la règle Mixte que vers la règle 2010 et ont lieu principalement pour les états allant de Moyen à Mauvais. Quatre-vingt-six pour cent des plans d'eau sont considérés comme dégradés quelle que soit la règle utilisée.

Malgré la relative concordance des classifications, **l'EQ biologie 2013** est plus souvent **déterminant de l'état écologique** que l'EQ biologie 2010 quand associé à l'EQ physico-chimie 2010 (Tableau 46).

La Figure 29 confirme la très **forte concordance entre les états écologiques**, obtenus avec les deux règles, au niveau du territoire de l'agence Loire Bretagne.

 Tableau 45 : Comparaison des états écologiques 2010 et Mixte.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Mo	Me	Ma	Total
	ТВ	0	0	0	0	0	0
010	В	0	9	1	1	0	П
gie 2(Mo	0	3	54	9	3	69
Ecologie 2010	Me	0	1	14	10	1	26
ш	Ma	0	0	1	4	0	5
	Total	0	13	70	24	4	Ш

Tableau 46 : Comparaison des éléments déterminant de l'état écologique 2010 et Mixte.

		Elément Mix	te (Phy 2010 a	& Bio 2013)	
		Biologie	Chimie	PSP	Total
in.	Biologie	57	9	0	66
Elément 2010	Chimie	26	19	0	45
	PSP	0	0	0	0
	Total	83	28	0	57

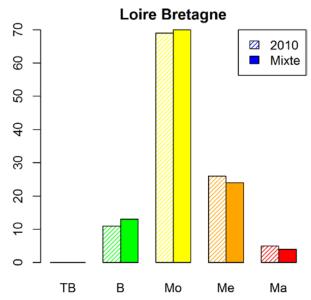


Figure 29: Classification écologique des plans d'eau avec les indicateurs 2010 et Mixte (Phy 2010 & Bio 2013).

Les états écologiques 2013SP et Mixte sont établis pour **93 plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les états écologiques Mixtes ont été établis à partir des EQ physico-chimie 2010 et EQ Biologie 2013. L'état écologique 2013SP ne prend pas en compte les phosphates. Les polluants spécifiques sont manquants pour 54 plans d'eau et ne sont pas pris en compte pour établir l'état écologique de ces plans d'eau.

Près de 9 plans d'eau sur 10 ont des états écologiques similaires avec les règles 2013SP et Mixte et 63,4% des plans d'eau sont en état Moyen (Tableau 32). Huit plans d'eau avec des classifications divergentes ont des états plus élevés avec les règles 2013SP qu'avec les règles Mixtes contre 3 dans l'autre sens. L'EQ physico-chimie 2013SP serait dans certains cas moins déclassant que l'EQ physico-chimie 2010, les EQ biologiques étant les mêmes (2013).

Ceci s'observe aussi dans le Tableau 48 avec l'EQ biologie qui devient plus souvent l'élément déterminant de l'état écologique avec les règles 2013SP par rapport aux règles Mixte.

Ces deux règles donnent des évaluations écologiques comparables (Figure 30).

Tableau 47 : Comparaison des états écologiques 2013SP et Mixte.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Mo	Me	Ma	Total
•	ТВ	0	0	I	0	0	I
) I 3SF	В	0	4	7	0	0	П
Ecologie 2013SP	Мо	0	3	60	0	0	63
colos	Me	0	0	0	21	0	21
ш	Ma	0	0	0	0	I	1
	Total	0	7	68	21	I	97

Tableau 48 : Comparaison des éléments déclassant de l'état écologique 2013SP et Mixte.

		Elément Mix	te (Phy 2010 a	& Bio 2013)	
		Biologie	Chimie	PSP	Total
Elément 2013SP	Biologie	66	8	0	74
	Chimie	2	17	0	19
	PSP	0	0	0	0
	Total	68	25	0	93

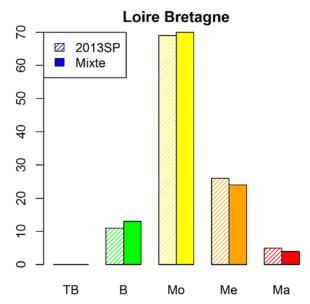


Figure 30 : Classification écologique des plans d'eau avec les indicateurs 2013SP et Mixte (Phy 2010 & Bio 2013).

Les comparaisons entre les états écologiques 2013 avec phosphates et les états écologiques Mixte sont en tous points comparables aux comparaisons entre les états écologiques 2013SP et 2010. Les résultats ne sont donc pas présentés ici.

Résultats de l'étude d'impact sur le bassin Rhin Meuse

Le jeu de données de l'agence Rhin Meuse, se compose d'un total de 15 plans d'eau, 13 masses d'eau artificielles et deux lacs naturels, échantillonnés entre 2007 et 2011.

État biologique

Pour l'état biologique, nous ne disposons des données complètes que pour **I I plans d'eau** (Tableau 49). Les classifications obtenues avec les anciens et les nouveaux indicateurs biologiques sont très concordantes (Tableau 50, Figure 31). Néanmoins, à l'exception de deux plans d'eau avec des inventaires piscicoles, les états nouveaux sont définis par l'IPLAC. Lorsque l'IIL a pu être calculé, il s'est avéré être l'indice le plus déclassant (N = 2).

Tableau 49 : Détail des données pour les plans d'eau Rhin Meuse.

	Non pertinent	Manquant*	Disponible
Macrophytes	5	6	0
Phytoplancton	-	0	11
Poisson	3	6	2

^{*} une donnée manquante pour l'un des éléments de qualité biologique peut correspondre à une donnée non disponible sur la période considérée par l'étude ou non acquise ou bien à une absence d'indice (cas de l'indice poisson des retenues).

Les classifications biologiques anciennes et nouvelles sont relativement similaires (Figure 31). Près de trois-quarts des plans d'eau ont des classifications concordantes et 36% des plans d'eau sont considérés comme dégradés par les deux évaluations (Tableau 50).

Tableau 50 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs.

Nouveaux indicateurs

		ТВ	В	Mo	Me	Ma	Total
eurs	ТВ	4	I	0	0	0	5
dicate	В	I	I	0	0	0	2
Anciens indicateurs	Мо	0	0	I	0	0	I
	Me	0	0	I	2	0	3
	Ma	0	0	0	0	0	0
	Total	5	2	2	2	0	11

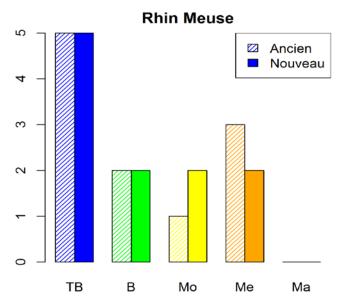


Figure 31 : Classification biologique des plans d'eau avec les anciens et les nouveaux indicateurs.

État physico-chimique

L'EQ physico-chimie 2010 a été établit sur l'EQ **Nutriments** et l'EQ **Transparence** pour les lacs naturels et seulement sur l'EQ **Nutriments** pour tous les autres plans d'eau. Dans un souci de comparabilité, la même règle a été utilisée pour définir l'EQ physico-chimie 2013SP qui se base sur tous les nutriments sauf les phosphates. L'EQ physico-chimie a été établi pour **15 plans d'eau**.

Les EQs physico-chimiques sont identiques pour 40% des plans d'eau (6 sur 15). Globalement, les règles 2010 donnent une vision plus dégradée de l'état chimique des plans d'eau que les règles 2013SP. Huit plans d'eau sur 15 (53,3%) ont un état chimique plus bas avec les règles 2010 contre un seul (14,3%) avec les règles 2013SP (Tableau 51).

Ce phénomène est illustré sur la Figure 32 qui ne montre aucun plan d'eau en état Très Bon avec les règles 2010 alors que deux le sont avec les règles 2013SP. Inversement les proportions d'états Moyen et Mauvais sont plus fortes avec les règles 2010 qu'avec les règles 2013SP.

Tableau 51: Comparaison des états physicochimiques 2010 et 2013SP.

Physicochimie 2013SP Total Ma TB В Mo Me Physicochimie 2010 TΒ 0 0 0 0 0 0 В 3 3 0 0 0 Mo 2 2 I 0 5 0 0 3 Me 0 0 3 Ma 0 0 0 I 3 4 2 5 3 2 3 15 **Total**

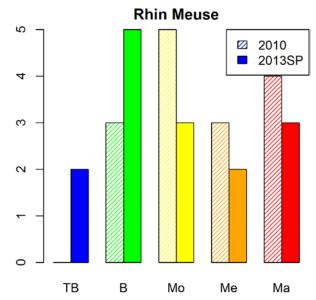


Figure 32: Classification physicochimique des plans d'eau avec les indicateurs 2010 et 2013SP.

La prise en compte des phosphates dans l'évaluation 2013 déclasse 4 plans d'eau sur 18 (22,2%) et deux de ces plans d'eau sont en état Très Bon ou Bon sans les phosphate et Moyen ou Médiocre avec les phosphates (Tableau 52).

Tableau 52 : Comparaison des états physicochimiques 2013SP et 2013.

Physicochimie 2013 Total TB В Mo Me Ma 3 0 0 ı 0 4 TΒ Physicochimie 2013SP В 0 0 0 5 Mo 0 2 0 3 Me 0 3 0 2 Ma 0 0 3 0 3 Total 3 3 4 4 18

Les physico-chimies 2010 et 2013 avec phosphates (Tableau 53) se ressemblent plus que les physico-chimies 2010 et 2013SP (Tableau 51). Ainsi 7 plans d'eau ont des évaluations 2010 et 2013 identiques (contre 6) et surtout les écarts de classifications sont mieux répartis entre les deux évaluations. Six plans d'eau ont des états moins bons avec la physico-chimie 2010 (contre 8) et deux plans d'eau sont mieux classés avec la physico-chimie 2013 (contre 1). Néanmoins ces différences d'appréciation sont à pondérer par le faible nombre de plans d'eau.

Tableau 53 : Comparaison des états physicochimiques 2010 et 2013.

Physicochimie 2013

		ТВ	В	Мо	Me	Ma	Total
<u>o</u>	ТВ	0	0	0	0	0	0
ie 20	В	0	2	I	0	0	3
chimi	Мо	2	2	0	I	0	5
Physicochimie 2010	Me	0	0	2	I	0	3
F.	Ma	0	0	0	0	4	4
	Total	2	4	3	2	4	15

État écologique 2013

Les états écologiques 2010 et 2013SP sont établis pour **II plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP.

Neuf plans d'eau, soit plus de 80%, ont des états écologiques similaires avec les règles 2010 et 2013SP. Les deux autres sont considérés comme étant en meilleures conditions avec les règles 2013SP. Huit plans d'eau sont toujours classés comme dégradés (Moyen à Mauvais) alors qu'un seul plan d'eau est considéré comme dégradé avec les règles 2010 et en très bon état avec les règles 2013SP (Tableau 54).

Comme dans la plupart des cas, l'EQ biologie devient plus déterminant pour l'état écologique avec les règles 2013SP qu'avec les règles 2010. De même l'EQ polluants spécifiques, n'est déclassant en 2013SP que pour un plan d'eau (Tableau 55).

A l'échelle de l'agence Rhin Meuse, les règles 2010 et 2013SP donnent des visions relativement similaires de l'état écologique des plans d'eau, avec toutefois des plans d'eau en état Très Bon avec les règles 2013SP qui n'étaient pas définis comme tels avec les règles 2010 (Figure 33).

Tableau 54 : Comparaison des états écologiques 2010 et 2013SP.

Ecologie 2013SP

		ТВ	В	Мо	Me	Ma	Total
	ТВ	0	0	0	0	0	0
010	В	0	2	0	0	0	2
Ecologie 2010	Мо	I	0	5	0	0	6
goloo	Me	0	0	I	2	0	3
ш	Ma	0	0	0	0	0	0
	Total	I	2	6	2	0	П

Tableau 55 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013SP.

		E	lément 2013SF)	
		Biologie	Chimie	PSP	Total
nent)	Biologie	4	0	0	4
Eléme 2010	Chimie	2	4	1	7
	PSP	0	0	0	0
	Total	6	4	1	П

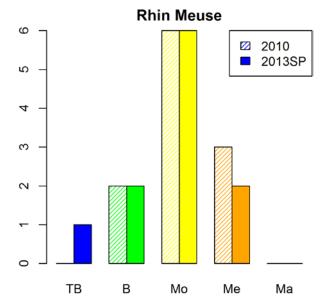


Figure 33 : Classification écologique des plans d'eau avec les indicateurs 2010 et 2013SP.

Les états écologiques 2013 définis sans et avec phosphate donnent des évaluations relativement concordantes (Tableau 56). Toutefois les phosphates déclassent deux plans d'eau de Très Bon ou Bon sans les phosphates en état Moyen avec les phosphates. La comparaison des états écologiques 2010 et 2013 avec phosphates, est en tout point comparable à la comparaison des états écologiques 2010 et 2013SP. Seul un plan d'eau classé Bon avec les règles 2010 et Bon avec les règles 2013SP devient Moyen avec les règles 2013.

Tableau 56 : Comparaison des états écologiques 2013 sans et avec phosphates.

Ecologie 2013

Total Ma ТВ В Мо Me 0 0 TΒ I I 0 2 **Ecologie 2013SP** В 0 2 I 3 0 0 7 Mo 0 0 7 0 0 Me 0 0 0 2 0 2 Ma 0 0 0 0 Total I 2 9 2 0 14

État écologique Mixte (Physico-chimie 2010 et Biologie 2013)

Les états écologiques 2010 et Mixte sont établis pour II plans d'eau en prenant en compte les EQs Biologiques, Physicochimiques et PSP.

Les règles 2010 et Mixte donnent des classifications identiques pour 10 des 11 plans d'eau (Tableau 45) et 54,4% des plans d'eau sont classés en état Moyen quelle que soit la règle utilisée. Neuf plans d'eau sont toujours considérés comme dégradés quelle que soit la règle utilisée.

Ces concordances sont aussi visibles au niveau de l'élément déterminant (Tableau 58) et de l'état écologique des plans d'eau de Rhin Meuse (Figure 34) : seul un plan d'eau change d'élément déterminant et de classe d'état.

Tableau 57 : Comparaison des états écologiques 2010 et Mixte.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Мо	Me	Ma	Total
	ТВ	0	0	0	0	0	0
Ecologie 2010	В	0	2	0	0	0	2
	Мо	0	0	6	0	0	6
	Me	0	0	I	2	0	3
	Ma	0	0	0	0	0	0
	Total	0	2	7	2	0	11

Tableau 58 : Comparaison des éléments déterminant de l'état écologique 2010 et Mixte.

Elément Mixte (Phy 2010 & Bio 2013)							
		Biologie	Chimie	PSP	Total		
int	Biologie	4	0	0	4		
Elément 2010	Chimie	I	6	0	7		
Elé 20	PSP	0	0	0	0		
	Total	5	6	0	11		

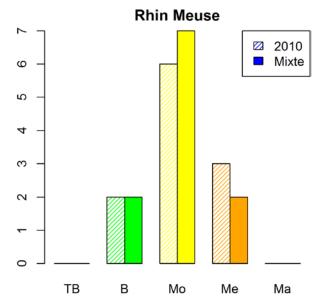


Figure 34: Classification écologique des plans d'eau avec les indicateurs 2010 et Mixte (Phy 2010 & Bio 2013).

Les états écologiques 2013SP et Mixte sont établis pour **II plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les états écologiques Mixte ont été établis à partir des EQ physico-chimie 2010 et EQ Biologie 2013.

Les règles 2013SP et Mixte donnent des classifications identiques pour 10 des 11 plans d'eau (Tableau 59) et 54,5% des plans d'eau sont classés en état Moyen quelle que soit la règle utilisée. La physico-chimie semble moins dégradante pour un plan d'eau qui passe de l'état Moyen avec la règle Mixte à l'état Très Bon avec la règle 2013SP. Huit plans d'eau sont toujours considérés comme dégradés quelle que soit la règle utilisée.

De même les éléments déterminants de l'état écologique sont identiques pour neuf plans d'eau sur II (Tableau 60). L'EQ physico-chimie 2013SP semble toutefois moins déclassant pour deux plans d'eau pour lesquels l'élément déterminant devient l'EQ biologie ou l'EQ PSP avec les règles 2013SP par rapport aux règles Mixte.

Comme attendu en regard dees résultats précédents, les règles 2013SP et Mixte donnent des évaluations globales très similaires des plans d'eau du territoire de l'agence Rhin Meuse (Figure 35).

Tableau 59 : Comparaison des états écologiques 2013SP et Mixte.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Mo	Me	Ma	Total
•	ТВ	0	0	I	0	0	I
) I 3SF	В	0	2	0	0	0	2
gie 20	Мо	0	0	6	0	0	6
Ecologie 2013SP	Me	0	0	0	2	0	2
ш	Ma	0	0	0	0	0	0
	Total	0	2	7	2	0	П

Tableau 60 : Comparaison des éléments déterminant de l'état écologique 2013SP et Mixte.

Elément Mixte (Phy 2010 & Bio 2013)							
		Biologie	Chimie	PSP	Total		
t d	Biologie	5	I	0	6		
Elémer 2013SF	Chimie	0	4	0	4		
Elé 20	PSP	0	I	0	1		
	Total	5	6	0	11		

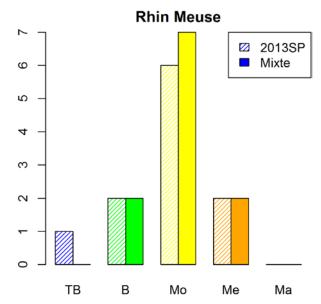


Figure 35 : Classification écologique des plans d'eau avec les indicateurs 2013SP et Mixte (Phy 2010 & Bio 2013).

L'ajout des phosphates dans l'évaluation de l'état écologique 2013 ne modifie pas les tendances observées précédemment. La comparaison des états écologiques 2013 et Mixte est similaire à la comparaison des états écologiques 2013SP et Mixte. Seul un plan d'eau qui est en état Bon avec les règles 2013SP et Mixte devient Moyen avec les règles 2013 et reste Bon avec les règles 2010.

Résultats de l'étude d'impact sur le bassin Rhône Méditerranée et Corse

État biologique

Pour l'agence Rhône-Méditerranée-Corse, les états biologiques anciens et nouveaux ont pu être définis pour **92 plans d'eau échantillonnés entre 2005 et 2012**. L'IPLAC est disponible pour 91 plans d'eau, l'IIL pour 22 et l'IBML pour 13 sites.

Tableau 61 : Détail des données pour les plans d'eau Rhône Méditerranée Corse.

	Non pertinent	Manquant*	Disponible
Macrophytes	56	23	13
Phytoplancton	-	1	91
Poisson	16	54	22

^{*} une donnée manquante pour l'un des éléments de qualité biologique peut correspondre à une donnée non disponible sur la période considérée par l'étude ou non acquise ou bien à une absence d'indice (cas de l'indice poisson des retenues).

Les classifications anciennes et actuelles sont identiques pour 52,2% des plans d'eau, avec un écart d'une classe pour 31,5% des plans d'eau, de deux classes pour 10,9% et de plus de deux classes pour 5,4% des plans d'eau (Tableau 62). Le phytoplancton est l'élément le plus déclassant pour seulement deux plans d'eau parmi les 24 ayant au moins deux EQBs. L'IPLAC semble donc l'indicateur le moins sévère, l'élément le plus déclassant étant le poisson.

Tableau 62 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs.

Nouveaux indicateurs Total Mo Ma Anciens indicateurs 29 8 ı ı 0 39 TΒ 13 3 27 В 2 Mo 5 3 15 3 2 0 8 Me 3 0 0 ı Ma 38 30 П 7 6 92 Total

Malgré des divergences entre certaines classifications, à l'échelle de l'agence RMC, les anciens et nouveaux indicateurs donnent une vision relativement similaire de l'état des masses d'eau (Figure 36). Les anciens indicateurs conduisent à estimer que 29% des plans d'eau sont dégradés (moins que Bon) alors que 26% le sont avec les nouveaux indicateurs.

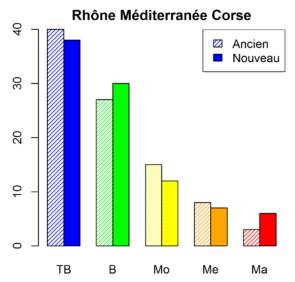


Figure 36: Classification biologique des plans d'eau avec les anciens et les nouveaux indicateurs.

État physico-chimique 2013

L'EQ physico-chimie 2010 a été établi sur l'EQ Nutriments et l'EQ Transparence pour la majorité des plans d'eau. Pour quelques plans d'eau (9) l'EQ Nutriments a été utilisé seul, la transparence jugée non pertinente. Dans un souci de comparabilité, la même règle a été utilisée pour définir l'EQ physico-chimie 2013SP qui n'inclut pas les phosphates. L'EQ physico-chimie a été établi pour 92 plans d'eau.

L'utilisation des règles 2013SP, par rapport aux règles 2010, a pour principale conséquence un surclassement des états physico-chimiques. Quarante-neuf des 92 plans d'eau (53,3%) ont une classification plus élevée avec les règles 2013SP contre 15 (16,3%) pour les règles 2010. Ainsi 18 plans d'eau en état Bon avec les règles 2010 sont en état Très Bon avec les règles 2013SP et 18 plans d'eau considérés dégradés avec les règles 2010 sont considérés en état Bon ou Très Bon avec les règles 2013SP. Vingt-huit plans d'eau (30,4%) sont classés similairement avec les deux règles (Tableau 63).

La Figure 37 souligne la plus forte proportion de sites en état Très Bon pour l'EQ physico-chimie et inversement la perte de sites en état Bon avec les règles 2013SP. Pour les états Moyen à Mauvais, les deux règles donnent des proportions de plans d'eau comparables.

Tableau 63 : Comparaison des états physicochimiques 2010 et 2013SP.

Physicochimie 2013SP

		ТВ	В	Mo	Me	Ma	Total
Physicochimie 2010	ТВ	0	0	0	0	0	0
mie 2	В	18	20	11	2	0	51
cochi	Мо	6	9	3	I	I	20
hysic	Me	I	2	7	I	0	П
_	Ma	0	0	2	4	4	10
	Total	25	31	23	8	5	92

Rhône Méditerranée Corse 2010 2013SP TB B Mo Me Ma

Figure 37: Classification physicochimique des plans d'eau avec les indicateurs 2010 et 2013SP.

La prise en compte des phosphates dans les règles 2013 déclasse moins de 10% des plans d'eau (RMC). De plus sur ces 9 plans d'eau, seuls 3 d'entre eux sont considérés comme dégradés avec les phosphates (Tableau 64). L'impact des phosphates pour les plans d'eau RMC semble donc limité. La comparaison avec la physico-chimie 2010 donne des résultats relativement similaires si ce n'est une plus faible proportion de plans d'eau en état Très Bon et une augmentation de la proportion des états Bon quand on prend en compte les phosphates avec les règles 2013 (Tableau 65).

Tableau 64 : Comparaison des états physicochimiques 2013 sans et avec phosphates.

Physicochimie 2013

		ТВ	В	Мо	Me	Ma	Total
3SP	ТВ	17	6	I	0	I	25
201	В	0	30	0	I	0	31
Physicochimie 2013SP	Мо	0	0	23	0	0	23
icocl	Me	0	0	0	8	0	8
Phy	Ma	0	0	0	0	5	5
	Total	17	36	24	9	6	92

Tableau 65 : Comparaison des états physicochimiques 2010 et 2013 avec phosphates.

Physicochimie 2013

		ТВ	В	Мо	Me	Ma	Total
0	ТВ	0	0	0	0	0	0
ie 20	В	11	25	12	2	1	51
Physicochimie 2010	Мо	5	10	3	I	I	20
ysico	Me	I	I	7	2	0	11
F.	Ma	0	0	2	4	4	10
	Total	17	36	24	9	6	92

État écologique 2013

Les états écologiques 2010 et 2013SP sont établis pour **92 plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les EQ nutriments 2013SP ne prennent pas en compte les phosphates.

Les résultats de l'état écologique sont relativement similaires à ceux observés avec l'EQ physicochimie. Les règles 2013SP donnent de meilleurs classements pour 34,8% des plans d'eau contre seulement 26,1% avec les règles 2010. La proportion de sites passant d'un état dégradé avec les règles 2010 à non dégradé avec les règles 2013SP est de 15,2%; il est de 18,4% dans l'autre sens. Néanmoins, la proportion de classifications identiques est de 39,1% avec l'état écologique. Finalement, la proportion de sites considérés comme dégradés avec les deux règles est de 32,6% (Tableau 66).

Tableau 66 : Comparaison des états écologiques 2010 et 2013SP.

Ecologie 2013SP

		ТВ	В	Mo	Me	Ma	Total
	ТВ	0	0	0	0	0	0
010	В	П	20	15	0	2	48
ğie 20	Мо	4	9	13	4	3	33
Ecologie 2010	Me	0	I	5	2	0	8
ш	Ma	0	0	1	1	I	3
	Total	15	30	34	7	6	92

L'EQ biologie est le plus souvent l'élément qui détermine l'état écologique avec les règles 2013SP, alors qu'avec les règles 2010 l'importance relative des EQs Chimie et Biologie est comparable. L'EQ polluant spécifique est déterminant pour un seul plan d'eau aussi bien avec les règles 2010 qu'avec les règles 2013SP puisque les mêmes seuils de PSP ont été utilisés (Tableau 67).

Tableau 67 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013SP.

	Elément 2013SP					
		Biologie	Chimie	PSP	Total	
nt	Biologie	34	13	0	47	
Elément 2010	Chimie	21	22	1	44	
Elé 20	PSP	0	I	0	I	
	Total	55	36	I	92	

A l'échelle de l'agence Rhône Méditerranée Corse, les règles 2013SP identifient des plans d'eau en Très Bon état, contrairement aux règles 2010, et dans le même temps, identifient moins de plans d'eau en état Bon par rapport aux règles 2010. Les proportions de plans d'eau dans les autres classes d'état sont comparables (Figure 38).

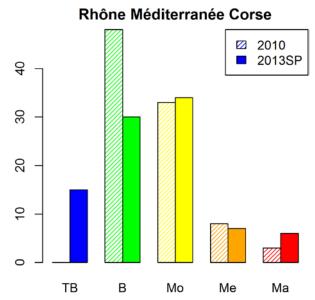


Figure 38 : Classification écologique des plans d'eau avec les indicateurs 2010 et 2013SP.

La prise en compte des phosphates dans les règles 2013 déclassent 8 plans d'eau (8,7%) dont trois qui deviennent dégradés (Tableau 68). Aucune autre modification majeure n'est visible. Les résultats 2013 avec et sans phosphates sont tellement proches que seul les résultats sans phosphates sont présentés.

Tableau 68 : Comparaison des états écologiques 2013 avec et sans phosphates

		Ecologie 2013					
		ТВ	В	Мо	Me	Ma	Total
0	ТВ	9	5	1	0	0	15
) I 3SF	В	0	28	2	0	0	30
gie 20	Mo	0	0	34	0	0	34
Ecologie 2013SP	Me	0	0	0	7	0	7
ш	Ma	0	0	0	0	6	6
	Total	9	33	37	7	6	92

État écologique Mixte (Physico-chimie 2010 et Biologie 2013)

Les états écologiques 2010 et Mixte sont établis pour **92 plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les règles Mixte prennent en compte l'EQ Physico-chimie 2010 et l'EQ Biologie 2013. Il s'agit de tester les différences d'évaluation liées aux nouveaux indicateurs biologiques tout en conservant les anciennes règles d'évaluation de la physico-chimie.

Les règles 2010 et Mixte donnent des classifications identiques pour les trois-quarts des plans d'eau (Tableau 69) et 44,6% des plans d'eau sont en état Bon. Les divergences de classifications se font presque autant vers la règle Mixte que vers la règle 2010 et ont lieu

principalement pour les états allant de Moyen à Mauvais. Quelle que soit la règle prise en compte, **46,7% des plans d'eau** sont considérés comme **dégradés**.

Malgré la forte concordance des classifications avec les deux règles, l'EQ biologie 2013 est moins souvent déterminant de l'état écologique que l'EQ biologie 2010 (Tableau 70). La Figure 39 confirme la très forte concordance entre les états écologiques, obtenus avec les deux règles. Il est notable qu'aucun plan d'eau n'est classé en état Très Bon, quelle que soit la règle d'évaluation choisie.

Tableau 69 : Comparaison des états écologiques 2010 et Mixte.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Mo	Me	Ma	Total
0	ТВ	0	0	0	0	0	0
2010	В	0	41	5	0	2	48
rie 20	Мо	0	I	25	4	3	33
Ecologie	Me	0	0	6	2	0	8
ш	Ma	0	0	I	I	I	3
	Total	0	42	37	7	6	92

Tableau 70 : Comparaison des éléments déterminant de l'état écologique 2010 et Mixte.

		Elément Mix	te (Phy 2010	& Bio 2013)	
		Biologie	Chimie	PSP	Total
nt	Biologie	30	17	0	47
Elément 2010	Chimie	8	36	0	44
Elé 20	PSP	0	0	1	I
	Total	38	53	1	92

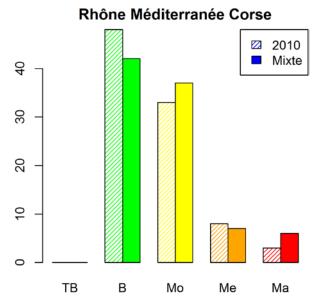


Figure 39: Classification écologique des plans d'eau avec les indicateurs 2010 et Mixte (Phy 2010 & Bio 2013).

Les états écologiques 2013SP et Mixte sont établis pour **92 plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les états écologiques Mixtes ont été établis à partir des EQ physico-chimie 2010 et EQ Biologie 2013. L'EQ physico-chimie 2013SP ne prend pas en compte les phosphates. L'objectif ici est d'évaluer l'impact de la prise en compte des nouvelles règles physico-chimiques par rapport aux anciennes, quand elles sont associées aux nouveaux indicateurs biologiques.

Soixante-deux pour cent des plans d'eau ont des états écologiques similaires avec les règles 2013SP et Mixte, 34,8% sont considérés comme non dégradés avec les deux règles et 40,2% sont considérés comme dégradés (Tableau 71). Quand les classifications divergent, les règles 2013SP donnent globalement de meilleurs états que les règles Mixtes. L'EQ physico-chimie 2013SP serait dans certains cas moins déclassant que l'EQ physico-chimie 2010, les EQ biologiques étant les mêmes (2013). Ainsi 15 plans d'eau sont en état Très Bon avec les règles 2013SP alors que cette classe d'état n'est pas observée avec les règles Mixte.

Ceci s'observe aussi dans le Tableau 72. L'EQ biologie devient majoritairement l'élément déterminant de l'état écologique avec les règles 2013SP alors que l'EQ physico-chimie est le plus déterminant avec les règles Mixte.

Pour les états Moyen à Mauvais, les deux règles donnent des évaluations écologiques comparables alors que de nombreux plans d'eau en état Très Bon apparaissent au détriment de plans d'eau en Bon état quand l'EQ physico-chimie 2013SP est pris en compte (Figure 40).

Tableau 71 : Comparaison des états écologiques 2013SP et Mixte.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Mo	Me	Ma	Total
Ecologie 2013SP	ТВ	0	12	3	0	0	15
	В	0	20	10	0	0	30
gie 20	Mo	0	10	24	0	0	34
ဒဝါဝ၁	Me	0	0	0	7	0	7
ш	Ma	0	0	0	0	6	6
	Total	0	42	37	7	6	92

Tableau 72 : Comparaison des éléments déterminant de l'état écologique 2013SP et Mixte.

	Elément Mixte (Phy 2010 & Bio 2013)							
		Biologie	Chimie	PSP	Total			
Elément 2013SP	Biologie	33	22	0	55			
	Chimie	5	30	1	36			
	PSP	0	I	0	I			
	Total	38	53	1	92			

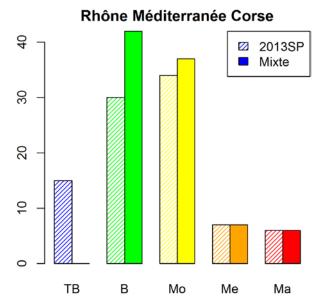


Figure 40 : Classification écologique des plans d'eau avec les indicateurs 2013SP et Mixte (Phy 2010 & Bio 2013).

La prise en compte des phosphates dans les règles d'évaluation 2013 ne modifie pas les tendances observées précédemment mais rapproche les évaluations 2013 des évaluations Mixte (Tableau 73). Ce résultat n'est pas surprenant puisque la physico-chimie 2013 avec phosphate est plus sévère pour certains plans d'eau de RMC qu'en l'absence de phosphates. Les états écologiques 2013 sont plus élevés que ceux des règles Mixte dans 19,6% des cas (27,2% sans les phosphates); ils sont moins

ONEMA Office national de l'eau office national

Partenariat 2013 Impact nouveaux indicateurs

élevés dans 13% des cas (10,9% sans les phosphates). De même, l'EQ biologie reste l'élément majoritairement déterminant de l'état écologique mais à quasi égalité avec la physico-chimie 2013 (Tableau 74).

Pour les états Moyen à Mauvais, les deux règles donnent des évaluations écologiques identiques alors que de nombreux plans d'eau en état Très Bon apparaissent au détriment de plans d'eau en état Bon quand l'EQ physico-chimie 2013 est pris en compte (Figure 41).

Tableau 73 : Comparaison des états écologiques 2013 et Mixte.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Мо	Me	Ma	Total
2013	ТВ	0	6	3	0	0	9
	В	0	24	9	0	0	33
gie 20	Mo	0	12	25	0	0	37
Ecologie 2013	Me	0	0	0	7	0	7
ш	Ma	0	0	0	0	6	6
	Total	0	42	37	7	6	92

Tableau 74 : Comparaison des éléments déterminant de l'état écologique 2013SP et Mixte.

	Elément Mixte (Phy 2010 & Bio 2013)						
		Biologie	Chimie	PSP	Total		
Elément 2013SP	Biologie	32	15	0	47		
	Chimie	6	37	1	44		
	PSP	0	I	0	I		
	Total	38	53	1	92		

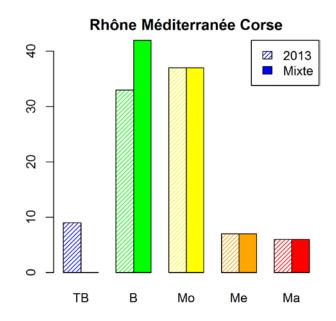


Figure 41 : Classification écologique des plans d'eau avec les indicateurs 2013 et Mixte (Phy 2010 & Bio 2013).

Résultats de l'étude d'impact sur le bassin Seine Normandie

État biologique

Pour l'agence Seine Normandie, nous disposons de données sur les anciens et nouveaux indicateurs pour 19 plans d'eau, sur la période 2008-2011.

Tableau 75 : Détail des données pour les plans d'eau Seine Normandie.

	Non pertinent	Manquant*	Disponible
Macrophytes	6	5	8
Phytoplancton	-	0	19
Poisson	3	16	0

^{*} une donnée manquante pour l'un des éléments de qualité biologique peut correspondre à une donnée non disponible sur la période considérée par l'étude ou non acquise ou bien à une absence d'indice (cas de l'indice poisson des retenues).

Les classifications sont identiques pour seulement quatre plans d'eau, mais les différences sont d'une classe pour 52,6% des plans d'eau (N=10, Tableau 76).

Aucune information sur les peuplements piscicoles n'est disponible pour les 19 plans d'eau de l'étude sur la période 2008-2011. Lorsqu'ils sont disponibles, les macrophytes représentent l'EQB le plus déclassant (8 plans d'eau).

L'amplitude des classifications actuelles est moins grande qu'avec les anciens indicateurs. Les classifications actuelles varient entre les états Très Bon à Médiocre alors que les anciens indicateurs donnent les cinq états biologiques possibles (Figure 42 et Tableau 76).

 Tableau 76 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs.

Nouveaux indicateurs

		ТВ	В	Мо	Me	Ma	Total
Anciens indicateurs	ТВ	I	2	I	0	0	4
dicate	В	0	3	3	3	0	9
ns in	Mo	0	2	0	I	0	3
\ncie	Me	0	0	2	0	0	2
4	Ma	0	0	I	0	0	I
	Total	I	7	7	4	0	19

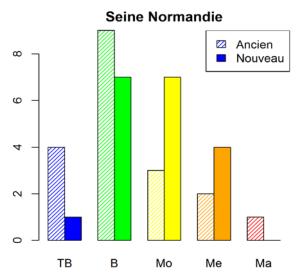


Figure 42 : Classification biologique des plans d'eau avec les anciens et les nouveaux indicateurs.

État physico-chimique 2013

Les EQ physico-chimie 2010 et 2013SP ont été établis sur les EQs **Nutriments** et **Transparence** pour **35 plans d'eau**. L'EQ physico-chimie 2013SP ne prend pas en compte les phosphates.

L'utilisation des règles 2013SP par rapport aux règles 2010 a pour principale conséquence un surclassement des états physico-chimiques. Plus de la moitié des plans d'eau (57,1%) sont mieux classés avec les règles 2013SP et 34,3% des plans d'eau ont des EQs physico-chimie identiques. Ainsi six plans d'eau identifiés comme dégradés avec les règles 2010 ne le sont pas avec les règles 2013SP, contre un seul plan d'eau dans l'autre sens (Tableau 77). Néanmoins, 77,1% des plans d'eau sont considérés comme dégradés par les deux règles ; 2,9% sont considérés non dégradés.

La Figure 43 montre une distribution plus homogène des classes d'état des plans d'eau avec les règles 2013SP qu'avec les règles 2010 qui elles, donnent des proportions importantes de plans d'eau en des états Médiocre et Mauvais.

Tableau 77 : Comparaison des états physicochimiques 2010 et 2013SP.

Physicochimie 2013SP Total Ma TB В Mo Me Physicochimie 2010 TB 0 0 0 0 0 0 В I 0 0 I 0 2 0 Mo 0 0 0 0 0 5 7 3 2 Me 17 0 9 Ma 16 35 I 6 7 10 П Total

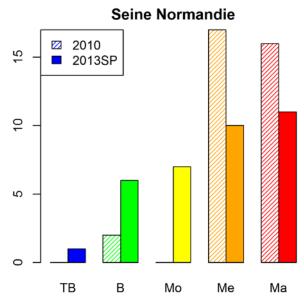


Figure 43: Classification physicochimique des plans d'eau avec les indicateurs 2010 et 2013SP.

La prise en compte des phosphates dans l'évaluation de l'état physico-chimique 2013 ne modifie la classe d'état que d'un seul plan d'eau sur 35 qui passent de Médiocre à Mauvais. Les résultats avec phosphates étant quasi identiques de ceux sans phosphates, ils ne seront pas détaillés.

État écologique 2013

Les états écologiques 2010 et 2013SP sont établis pour **19 plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP.

A l'exception de neuf plans d'eau classés en Moyen par les règles 2010 et 2013SP, les règles 2013SP semblent être moins déclassantes que les règles 2010. Ainsi trois plans d'eau considérés en état Moyen avec les règles 2010 sont en état Bon ou Très Bon avec les règles 2013SP (Tableau 78). Quatre-vingt-cinq pour cent des plans d'eau (N=16) sont considérés dégradés par les deux règles.

L'EQ biologie est le plus souvent l'élément qui donne l'état écologique avec les règles 2013SP; inversement, avec les règles 2010, l'EQ physico-chimie est le plus déterminant. L'EQ polluant spécifique n'est pas déterminant (Tableau 79).

Les règles 2013SP génèrent une évaluation moins sévère de l'état écologique des plans d'eau de Seine Normandie avec l'apparition de plans d'eau en état Bon et la disparition de plans d'eau en état Mauvais observés avec les précédentes règles (Figure 44). Néanmoins cette comparaison est établie sur un nombre restreint de plans d'eau par rapport au contingent de plans d'eau sur le territoire de cette agence. Il convient de prendre ces résultats avec précautions.

Les états écologiques 2013 avec et sans phosphates sont parfaitement identiques pour les 19 plans d'eau considérés.

Tableau 78 : Comparaison des états écologiques 2010 et 2013SP.

Ecologie 2013SP

		ТВ	В	Mo	Me	Ma	Total
010	ТВ	0	0	0	0	0	0
	В	0	0	0	0	0	0
ğie 20	Мо	0	3	9	4	0	16
Ecologie 2010	Me	0	0	2	0	0	2
ш	Ma	0	0	I	0	0	I
	Total	0	3	12	4	0	19

Tableau 79 : Comparaison des éléments déterminant de l'état écologique 2010 et 2013SP.

	Elément 2013SP						
		Biologie	Chimie	PSP	Total		
in t	Biologie	5	I	0	6		
Elément 2010	Chimie	8	5	0	13		
	PSP	0	0	0	0		
	Total	13	6	0	19		

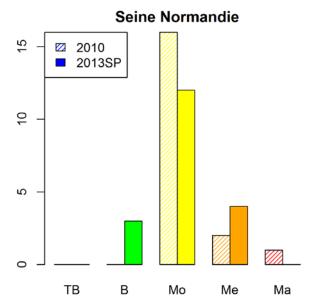


Figure 44 : Classification écologique des plans d'eau avec les indicateurs 2010 et 2013SP.

État écologique Mixte (Physico-chimie 2010 et Biologie 2013)

Les états écologiques 2010 et Mixte sont établis pour **19 plans d'eau** en prenant en compte les EQs Biologiques, Physicochimiques et PSP.

Les règles 2010 et Mixte donnent des classifications identiques pour 63,2% des plans d'eau (Tableau 80) et tous ces plans d'eau sont classés en état Moyen. Les divergences de classifications se font presque autant vers la règle Mixte que vers la règle 2010 et ont lieu pour les états allant de Moyen à Mauvais. Quelle que soit la règle prise en compte, tous les plans d'eau sont considérés comme dégradés.

Malgré la forte concordance des classifications avec les deux règles, **l'EQ biologie 2013** est plus souvent **déterminant de l'état écologique** que l'EQ biologie 2010 (Tableau 70). La biologie 2013 serait donc plus souvent limitante que la biologie 2010.

La Figure 45 confirme la très **forte concordance entre les états écologiques**, obtenus avec les deux règles. Il est notable qu'**aucun** plan d'eau n'est classé en **Très Bon** ou **Bon état**.

Tableau 80 : Comparaison des états écologiques 2010 et Mixte.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Mo	Me	Ma	Total
Ecologie 2010	ТВ	0	0	0	0	0	0
	В	0	0	0	0	0	0
	Мо	0	0	12	4	0	16
	Me	0	0	2	0	0	2
ш	Ma	0	0	1	0	0	I
	Total	0	0	15	4	0	19

Tableau 81 : Comparaison des éléments déterminant de l'état écologique 2010 et Mixte.

	Elément Mixte (Phy 2010 & Bio 2013)						
		Biologie	Chimie	PSP	Total		
nt	Biologie	4	2	0	6		
Elément 2010	Chimie	7	6	0	13		
Elé 20	PSP	0	0	0	0		
	Total	11	8	0	19		

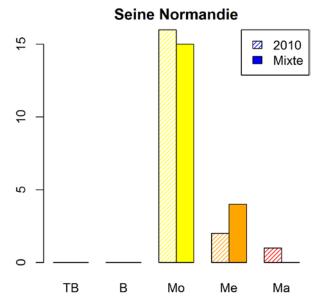


Figure 45: Classification écologique des plans d'eau avec les indicateurs 2010 et Mixte (Phy 2010 & Bio 2013).

Les états écologiques 2013SP et Mixte sont établis pour 19 plans d'eau en prenant en compte les EQs Biologiques, Physicochimiques et PSP. Les états écologiques Mixtes ont été établis à partir des EQ physico-chimie 2010 et EQ Biologie 2013 alors que les états écologiques 2013SP ne prennent pas en compte les phosphates.

Les évaluations de l'état écologique avec les règles 2013SP et Mixte sont similaires pour 84,2% des plans d'eau (Tableau 82). Ces plans d'eau sont tous classés en état Moyen ou Médiocre. Les trois plans d'eau avec des classifications divergentes sont classés en meilleur état avec les règles 2013SP qu'avec les règles Mixtes. Ce résultat suggère que l'EQ physico-chimie 2013SP est moins déclassant que l'EQ physico-chimie 2010. L'EQ biologie devient aussi plus souvent l'élément déterminant de l'état écologique avec la règle 2013SP qu'avec la règle Mixte (Tableau 83). La seule différence notable est un basculement de quelques plans d'eau d'un état Moyen avec les règles Mixte à Bon avec les règles 2013 (Figure 46).

Tableau 82 : Comparaison des états écologiques 2013SP et Mixte.

Ecologie Mixte (Phy 2010 & Bio 2013)

		ТВ	В	Мо	Me	Ma	Total
2013SP	ТВ	0	0	0	0	0	0
	В	0	0	3	0	0	3
jie 20	Мо	0	0	12	0	0	12
Ecologie	Me	0	0	0	4	0	4
ш	Ma	0	0	0	0	0	0
	Total	0	0	15	4	0	19

Tableau 83 : Comparaison des éléments déclassant de l'état écologique 2013SP et Mixte.

		Elément Mixte (Phy 2010 & Bio 2013)					
		Biologie	Chimie	PSP	Total		
Elément 2013	Biologie	11	2	0	13		
	Chimie	0	6	0	6		
	PSP	0	0	0	0		
	Total	11	8	0	19		

Seine Normandie 2013SP Mixte Mixte TB Mo Me Ma

Figure 46: Classification écologique des plans d'eau avec les indicateurs 2013SP et Mixte (Phy 2010 & Bio 2013).

Comparaison des versions anciennes et actuelles des indicateurs phytoplancton.

Le phytoplancton est le seul élément de qualité biologique pour lequel nous disposons de deux versions d'indice, l'IPL utilisé jusqu'à présent pour les masses d'eau naturelles et l'IPLAC utilisable aussi pour les masses d'eau fortement modifiées. La comparaison des évaluations repose sur **278** années-lac (considère toutes les années pour un même plan d'eau).

Globalement, les évaluations fournies par les deux indices sont très concordantes. Pour 83,8% des années-lac les écarts ne dépassent pas une classe, et les évaluations sont identiques pour 36,3% des années-lac. Des écarts de deux classes s'observent pour 12,9% des années-lacs.

Sur la base des données disponibles, l'IPL déclasserait 61% des plans d'eau alors que l'IPLAC en déclasserait 51%. Dans 53% des cas où l'on observe un écart d'une classe, l'IPL est plus sévère que l'IPLAC (Tableau 84) soit une quasi symétrie entre les deux indicateurs.

A l'échelle nationale (sauf RMC pour laquelle on n'avait pas le détail des données IPL), les évaluations IPL et IPLAC sont globalement proches avec toutefois une proportion d'état Très Bon plus forte et une proportion d'état Moyen moins forte avec l'IPLAC. Il est à noter que l'IPLAC génère des états Mauvais non observés avec l'IPL (Figure 47).

Tableau 84 : Comparaison des états biologiques obtenus avec les anciens et les nouveaux indicateurs.

IPLAC Total В Ma ТВ Мо Me ТВ В IPL П I Мо Me Ma Total

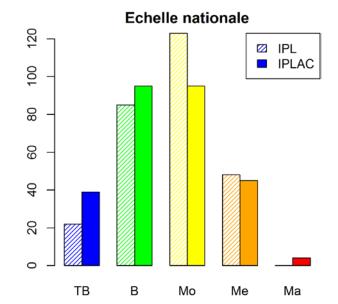


Figure 47 : Evaluation biologique des plans d'eau avec l'IPL et l'IPLAC.

Conclusions et perspectives

Bien que plan d'eau par plan d'eau les différentes évaluations puissent donner lieu à de fortes variations des états biologiques, physico-chimiques et écologiques, à l'échelle nationale, les évaluations 2010, 2013 avec et sans phosphates donnent des visions très proches de l'état des plans d'eau. Ces tendances sont vérifiées pour l'ensemble des éléments de qualité. Ainsi plus de la moitié des plans d'eau sont considérés comme dégradés, état Moyen à Mauvais, avec la biologie. Ce pourcentage s'élève à plus de 64% lorsque l'on considère uniquement la physico-chimie. La physico-chimie donne donc une vision plus négative de l'état des plans d'eau que la biologie. Au final, l'ensemble des paramètres étant pris en compte en suivant les règles d'évaluation définies par le guide, c'est plus de 70% des plans d'eau nationaux dont l'état écologique est estimé dégradé. Toutefois il est à noter que, par rapport aux évaluations 2010 et 2013, les règles 2013 sans phosphates donnent les évaluations les plus clémentes comparées aux autres règles (Tableau 85).

Tableau 85 : Proportions de sites dégradés ou non selon les évaluations anciennes et actuelles.

Etat	Règle	Non dégradé	Dégradé
Bio	2010	55,1	44,9
	2013	52,3	47,7
_	2010	24,6	75,4
PC	2013SP	35,5	64,5
	2013	32,7	67,3
-	2010	23,7	76,3
Eco	2013SP	27,1	72,9
	2013	24,4	75,6

A l'échelle nationale, la prise en compte des phosphates ajoutés aux autres éléments de qualité physico-chimiques estimés selon les règles 2013 n'a que peu de conséquences. En effet, les phosphates déclassent moins de 8% des plans d'eau évalués avec les autres paramètres physico-chimiques. Leurs impacts sur l'évaluation écologique est encore plus faible puisque moins de 5% des plans d'eau ont des états écologiques moins élevés lorsque les phosphates sont inclus dans l'évaluation de l'état physico-chimique. Au final, la prise en compte des phosphates augmenterait de 3% le nombre de plans d'eau dégradés par l'application des règles 2013.

Avec les nouvelles règles d'évaluations, l'état écologique est très majoritairement déterminé par la biologie et dans des proportions plus élevées qu'avec les règles 2010. Au niveau national, c'est le résultat le plus remarquable de l'étude de l'impact de l'utilisation des règles 2013 par rapport aux règles 2010.

Tableau 86 : Elément déterminant de l'état écologique selon les règles d'évaluation.

	Elément déterminant de l'état écologique								
Règle	BIO	PC	PSP						
2010	52,7	46,6	0,8						
2013SP	66,8	30,9	2,3						
2013	62,6	35, I	2,3						

ONEMA Office national delignate of the military acquisitions

Partenariat 2013 Impact nouveaux indicateurs

A l'échelle des agences, on observe des situations très contrastées entre les évaluations 2010 et 2013 selon les éléments de qualité considérés et selon les agences. Pour certaines agences comme Rhône Méditerranée & Corse, les évaluations biologiques 2010 et 2013 sont globalement relativement similaires alors que les diagnostics physicochimiques 2010 et 2013 présentent des différences marquées. Pour Artois Picardie, même si la portée des résultats est à pondérer par le faible nombre de plans d'eau, les évaluations physico-chimiques sont plus similaires entre elles que les évaluations biologiques. A l'échelle des bassins comme à l'échelle nationale (cf. tableau précédent), de fortes variations de classes d'état peuvent être observées pour certains plans d'eau, mais globalement, l'application des différentes règles d'évaluation ne modifie pas sensiblement le pourcentage de plans d'eau en état moins que bon.

Plusieurs sources d'hétérogénéité peuvent expliquer les différences entre agences :

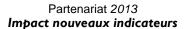
- Les données mobilisables pour l'étude ;
- Le type de données utilisé pour calculer l'lpl;
- Les règles utilisées pour attribuer les classes d'état pour chaque élément de qualité ;
- Le degré d'expertise utilisé pour l'évaluation ;
- Les experts;
- Les exceptions typologiques ;
- Les fenêtres temporelles considérées ;
- L'hétérogénéité spatiale des plans d'eau ;
- La sensibilité du protocole RCS aux variations temporelles des caractéristiques biologiques et physico-chimiques des plans d'eau ;
- Les effets potentiels des changements climatiques sur les systèmes.

A l'échelle du territoire de chaque agence, il semblerait que les évaluations biologiques et écologiques 2010 et 2013 soient bien plus cohérentes que les évaluations physicochimiques. Ceci s'explique probablement par des problèmes de disponibilité de données sur la période temporelle considérée et de pertinence des indicateurs (IBML non pertinents pour de nombreux type DCE de plan d'eau).

Il est donc important de considérer que lorsque les EQB poisson et macrophyte seront disponibles, il est possible que d'avantage de plans d'eau soient déclassés par la biologie.

L'avantage des seuils des variables physico-chimiques soutenant la biologie selon les règles 2013 par rapport à ceux du SEQ-PE 2003, est qu'ils sont définis plan d'eau par plan d'eau, à l'exception des nitrates pour lesquels deux types de plans d'eau sont distingués par la profondeur. Ainsi, ils prennent en compte plus rigoureusement la spécificité typologique profondeur où les anciens seuils n'étaient pas adaptés. Néanmoins, ces seuils ont été principalement définis sur la base de l'IPLAC (sauf pour les nitrates), soit pour des raisons d'indisponibilités des données des autres EQ biologiques, soit à cause de la non pertinence de ces EQB pour certains types de plans d'eau, soit du fait d'une impossibilité de caler ces seuils sur les seuils biologiques en l'absence de significativité des courbes de réponse de la biologie à la physico-chimie. L'expertise biologique et physico-chimique, d'une certaine manière, repose donc toutes les deux majoritairement sur l'IPLAC.

Les périodes de temps prises en compte sont aussi une autre limite à cette étude. En effet, dans un but de comparabilité maximale entre les évaluations, nous nous sommes focalisés uniquement sur des périodes de temps où nous avions à la fois des données selon les règles 2010 et des données selon les règles 2013 (autrement dit, où nous avions à la fois les données des anciens indicateurs et des données des nouveaux indicateurs). L'arrêté stipule que l'on peut considérer toutes les données



disponibles sur un plan de gestion de six ans. En appliquant cette règle nous aurions probablement pu mobiliser un jeu de données plus conséquent, notamment pour des agences comme celle de Seine Normandie et les conclusions bien que moins comparables, seraient probablement sensiblement différentes et reflèteraient davantage les nouvelles classifications des lacs résultant notamment de la prise en compte des nouveaux indices biologiques. Cette étape d'inclusion des éléments de qualité biologique collectés sur tout le plan de gestion dans l'établissement du diagnostic 2013 reste une perspective de travail qui n'a pu être réalisée dans le temps imparti à la réalisation de cette étude.

Notons enfin que, pour que les résultats de l'évaluation 2010 et 2013 soient pleinement comparables, il faudrait que les évaluations 2013 soient expertisées comme l'ont été celles de 2010 et, si possible, **par les mêmes experts**. L'expertise apparait comme une composante importante pour certains plans d'eau. Cette information n'étant pas toujours mobilisable, nous avons probablement comparé des données expertisées d'une part, et des données brutes d'autre part.

En conclusion cette étude d'impact montre l'importance plus marquée de la biologie dans l'évaluation écologique avec les règles 2013 qu'avec les règles 2010. Elle met également en évidence l'impact limité de la prise en compte des phosphates dans l'évaluation de l'état physico-chimique soutenant la biologie.

Annexe: Seuils physico-chimiques pour la transparence

Transparence de Secchi, valeur médiane (m)

	Profondeur			МВА		, varear me		MCS	
Code Lac	moyenne	тв в		Мо	Me	тв в		Мо	Me Ma
	théorique	2,14	1,47	1,15	0,82	1,67	0,97	0,59	0,34
ABB39	7,119	3,19	2,28	1,73	1,29	2,40	1,33	0,69	0,40
AIG15	31,598	3,18	2,28	1,70	1,23	2,44	1,32	0,72	0,40
AIG73	32,188	1,46	1,12	0,81	0,58	1,30	0,79	0,49	0,30
AIL02 ALB85	2,088 3,099	1,74	1,26	0,93	0,69	1,36	0,84	0,52	0,31
ALE2B	3,099 22,647	2,86	2,14	1,57	1,12	2,12	1,20	0,70	0,39
		2,31	1,65	1,25	0,96	1,92	1,07	0,61	0,37
ALLO1	11,038	2,63	2,03	1,48	1,05	2,24	1,22	0,69	0,38
ALL04 ALZ81	18,500 9,673	2,07	1,65	1,17	0,86	1,85	1,06	0,61	0,34
AMA10	4,385	1,77	1,40	0,97	0,69	1,44	0,86	0,53	0,30
	4,363 4,074	1,71	1,33	1,00	0,71	1,43	0,87	0,52	0,31
ANG85	41,751	3,32	2,50	1,84	1,32	2,75	1,45	0,79	0,42
ANN74 ANT74	6,915	1,99	1,62	1,10	0,83	1,68	1,00	0,58	0,35
ANT74 APR85	2,378	1,56	1,12	0,78	0,61	1,29	0,78	0,50	0,29
	5,801	1,94	1,40	1,06	0,78	1,58	0,99	0,54	0,33
ARG19 ART64	41,057	3,37	2,46	1,90	1,36	2,60	1,45	0,76	0,42
ARZ35	8,306	2,21	1,63	1,16	0,86	1,75	1,02	0,57	0,35
AST32	6,188	1,93	1,43	1,04	0,79	1,63	0,97	0,55	0,32
AUL13	3,816	1,67	1,37	1,01	0,76	1,54	0,91	0,53	0,33
AUM44	2,012	1,47	1,07	0,87	0,65	1,26	0,81	0,49	0,30
AUR40	2,000	1,45	1,06	0,79	0,59	1,29	0,79	0,48	0,30
AVE34	28,202	3,19	2,25	1,61	1,15	2,35	1,28	0,73	0,41
AYD63	7,462	2,14	1,57	1,08	0,77	1,64	1,00	0,57	0,32
AYG64	5,704	1,94	1,38	1,03	0,75	1,57	0,93	0,54	0,32
BAG12	8,695	2,18	1,51	1,17	0,84	1,69	0,96	0,58	0,34
BAI08	4,806	1,91	1,39	1,04	0,78	1,62	0,94	0,54	0,34
BAI36	1,004	1,19	0,87	0,69	0,48	1,20	0,74	0,46	0,29
BAR01	8,000	2,26	1,54	1,16	0,81	1,66	1,00	0,61	0,32
BAR32	4,149	1,78	1,31	1,01	0,72	1,55	0,92	0,55	0,34
BAY58	2,791	1,55	1,20	0,90	0,64	1,33	0,81	0,52	0,30
BCL12	18,907	2,81	2,01	1,41	1,08	2,10	1,23	0,69	0,38
BDB40	10,597	2,26	1,64	1,22	0,89	1,94	1,07	0,61	0,35
BEA36	0,990	1,26	0,86	0,65	0,50	1,11	0,70	0,44	0,28
BEL36	1,003	1,20	0,86	0,65	0,48	1,10	0,70	0,45	0,28
BEZ41	0,977	1,15	0,85	0,65	0,49	1,17	0,71	0,47	0,28
BIG36	1,002	1,24	0,93	0,71	0,51	1,10	0,67	0,44	0,27
BIM13	11,798	2,44	1,74	1,26	0,90	1,94	1,09	0,60	0,36

	ĺ					1 -			
BIS40	0,913	1,20	0,84	0,62	0,46	1,12	0,70	0,46	0,27
BIS73	34,629	3,35	2,29	1,69	1,21	2,51	1,30	0,73	0,41
BLA40	0,600	1,00	0,74	0,54	0,41	1,07	0,69	0,42	0,26
BLC19	13,609	2,49	1,87	1,33	1,00	1,90	1,08	0,61	0,35
BLE65	22,367	2,85	2,07	1,55	1,07	2,24	1,21	0,71	0,38
BLI36	0,671	1,06	0,79	0,59	0,43	1,08	0,69	0,45	0,28
BLI44	1,493	1,30	1,03	0,72	0,55	1,19	0,75	0,46	0,29
BMC16	10,568	2,28	1,76	1,27	0,90	1,88	1,06	0,60	0,34
BMS40	2,834	1,59	1,16	0,87	0,64	1,31	0,85	0,51	0,31
BOR63	1,308	1,32	0,94	0,69	0,52	1,17	0,74	0,45	0,29
BOS22	5,969	2,04	1,51	1,03	0,82	1,52	0,98	0,58	0,33
BOU35	2,876	1,54	1,19	0,87	0,64	1,37	0,86	0,52	0,32
BOU43	16,754	2,61	1,93	1,40	1,00	2,03	1,17	0,62	0,37
BOU63	2,995	1,61	1,13	0,89	0,63	1,34	0,85	0,51	0,30
BOU66	11,506	2,33	1,74	1,29	0,91	1,81	1,09	0,59	0,36
BOU73	82,348	4,10	2,91	2,20	1,57	3,07	1,66	0,87	0,45
BOU88	8,061	2,09	1,53	1,09	0,82	1,71	1,02	0,60	0,35
BOU89	4,984	1,83	1,33	1,02	0,71	1,52	0,95	0,53	0,33
BRA47	5,593	1,88	1,51	1,10	0,77	1,64	0,96	0,58	0,32
BSA58	3,466	1,70	1,26	0,96	0,71	1,42	0,87	0,53	0,31
BSF31	10,329	2,26	1,66	1,18	0,88	1,83	1,11	0,61	0,36
BSJ32	4,103	1,74	1,31	0,98	0,73	1,50	0,89	0,54	0,31
BUJ87	8,597	2,09	1,56	1,08	0,86	1,68	1,02	0,60	0,34
BUL85	8,441	2,22	1,63	1,20	0,92	1,69	1,06	0,60	0,35
CAE35	0,400	0,89	0,68	0,49	0,35	1,01	0,63	0,41	0,26
CAL2B	21,703	2,85	2,08	1,49	1,07	2,28	1,28	0,71	0,39
CAN32	3,028	1,62	1,24	1,00	0,71	1,43	0,84	0,51	0,30
CAR35	0,796	1,10	0,82	0,60	0,45	1,08	0,68	0,45	0,28
CAR66	15,028	2,56	1,85	1,35	0,98	1,97	1,17	0,65	0,37
CAR83	8,633	2,16	1,54	1,15	0,82	1,72	1,01	0,58	0,35
CAS04	30,513	3,06	2,30	1,70	1,20	2,33	1,31	0,72	0,39
CAS63	2,027	1,47	1,13	0,80	0,61	1,24	0,76	0,49	0,30
CAU19	3,408	1,65	1,23	0,93	0,68	1,41	0,85	0,54	0,31
CAZ23	1,986	1,43	1,08	0,79	0,58	1,26	0,79	0,51	0,30
CAZ40	10,328	2,25	1,75	1,22	0,92	1,80	1,04	0,62	0,35
CEB79	7,445	2,02	1,48	1,09	0,80	1,65	0,98	0,57	0,33
CER21	5,875	1,95	1,43	1,08	0,77	1,60	0,90	0,57	0,33
CHA21	7,799	2,17	1,54	1,13	0,83	1,70	0,98	0,55	0,34
CHA23	8,353	2,17	1,54	1,20	0,84	1,73	1,05	0,62	0,35
CHA25	23,842	2,99	2,09	1,56	1,15	2,17	1,23	0,71	0,38
CHA35	2,447	1,63	1,20	0,84	0,66	1,35	0,80	0,51	0,30
CHA38	38,485	3,39	2,52	1,72	1,26	2,52	1,34	0,77	0,40
CHA39	22,061	2,84	2,04	1,51	1,16	2,22	1,23	0,70	0,38

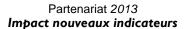
	i					Ī			
CHA48	4,378	1,86	1,31	1,00	0,69	1,48	0,90	0,55	0,32
CHA52	5,970	1,97	1,46	1,04	0,78	1,54	0,94	0,55	0,32
CHA58	14,301	2,53	1,89	1,30	0,99	1,98	1,12	0,63	0,36
CHA63	3,037	1,64	1,24	0,97	0,69	1,41	0,85	0,50	0,31
CHA86	2,203	1,49	1,10	0,83	0,65	1,32	0,83	0,50	0,30
CHA87	3,622	1,70	1,23	0,94	0,69	1,41	0,86	0,53	0,33
CHE38	10,474	2,33	1,64	1,29	0,92	1,88	1,01	0,60	0,36
CHE73	95,221	4,32	3,17	2,28	1,71	3,29	1,66	0,86	0,45
CHO04	23,594	2,94	2,11	1,49	1,12	2,16	1,25	0,69	0,39
COD2B	13,796	2,51	1,82	1,31	0,96	1,94	1,11	0,63	0,35
COI39	11,613	2,39	1,73	1,27	0,95	1,89	1,07	0,65	0,36
COM23	12,452	2,44	1,77	1,37	0,97	1,99	1,10	0,63	0,37
COR22	4,442	1,76	1,35	0,96	0,74	1,50	0,88	0,57	0,33
COR41	0,365	0,90	0,66	0,49	0,36	1,00	0,66	0,40	0,27
CRA18	1,771	1,43	1,03	0,74	0,55	1,22	0,74	0,48	0,30
CRE89	11,076	2,28	1,73	1,30	0,89	1,90	1,04	0,63	0,35
DEV07	4,821	1,88	1,37	0,99	0,73	1,45	0,90	0,54	0,34
DRE29	7,548	2,17	1,47	1,17	0,82	1,66	1,00	0,58	0,34
DUC56	2,359	1,49	1,13	0,83	0,61	1,29	0,80	0,49	0,29
ECH33	3,648	1,70	1,34	0,97	0,69	1,37	0,83	0,52	0,32
EDC23	2,688	1,57	1,14	0,88	0,66	1,36	0,81	0,50	0,30
EDC63	4,325	1,79	1,34	1,05	0,76	1,51	0,89	0,53	0,32
EDG36	1,003	1,19	0,87	0,65	0,48	1,15	0,72	0,44	0,29
EGR45	4,355	1,87	1,32	1,00	0,69	1,47	0,88	0,55	0,33
EGU36	20,673	2,71	2,02	1,49	1,06	2,13	1,19	0,71	0,39
ENC15	24,613	2,90	2,18	1,65	1,16	2,17	1,28	0,70	0,40
ENT13	4,800	1,91	1,34	0,97	0,76	1,53	0,94	0,57	0,32
ENT25	3,348	1,71	1,26	0,92	0,67	1,38	0,86	0,53	0,30
EPT35	2,397	1,67	1,22	0,89	0,72	1,30	0,79	0,50	0,30
ESP04	30,796	3,15	2,26	1,64	1,18	2,25	1,36	0,69	0,39
EST11	9,841	2,26	1,70	1,24	0,89	1,81	1,02	0,61	0,35
ETI39	4,600	1,90	1,29	0,96	0,74	1,43	0,92	0,55	0,33
ETR23	8,577	2,28	1,65	1,23	0,85	1,83	1,03	0,60	0,35
EVJ59	3,353	1,62	1,24	0,92	0,70	1,37	0,85	0,53	0,31
EYC05	9,374	2,26	1,61	1,19	0,87	1,86	1,06	0,60	0,35
FEY19	4,325	1,83	1,36	0,99	0,74	1,49	0,88	0,54	0,33
FIG2B	8,161	2,13	1,59	1,15	0,83	1,73	1,01	0,60	0,34
FIL09	9,394	2,32	1,68	1,24	0,85	1,78	1,02	0,57	0,34
FON36	1,027	1,20	0,88	0,64	0,46	1,13	0,73	0,43	0,30
FOR35	0,864	1,16	0,87	0,64	0,46	1,06	0,71	0,44	0,28
GAB36	1,006	1,22	0,88	0,67	0,49	1,20	0,70	0,46	0,29
GAB64	12,087	2,40	1,82	1,34	0,95	1,87	1,10	0,63	0,36
GAR09	6,906	2,07	1,49	1,08	0,78	1,61	0,94	0,56	0,34

GASLIAI 4,386			4.70	4.22	0.00	0.75	1.64	0.02	0.52	0.22
GENN2 4,696 1,82 1,33 1,03 0,74 1,50 0,91 0,55 0,33 GENRS 16,854 2,85 1,90 1,35 1,03 2,00 1,18 0,68 0,38 GIO40 4,381 1,78 1,32 0,99 0,76 1,50 0,88 0,55 0,32 GIC39 12,015 2,41 1,72 1,28 0,94 1,90 1,06 0,62 0,37 GONS7 3,072 1,65 1,22 0,87 0,66 1,41 0,82 0,51 0,31 GOU32 2,573 1,59 1,15 0,86 0,62 1,40 0,83 0,51 0,31 GOU32 9,884 2,25 1,68 1,21 0,90 1,80 1,05 0,62 0,34 GOU32 9,884 2,25 1,68 1,21 0,90 1,80 1,05 0,62 0,34 GOU32 7,482 2,21 1,54 1,1		•								
GER88 16,854 2,85 1,90 1,35 1,03 2,00 1,18 0,68 0,38		•								
GIO40 4,381 1,78 1,32 0,99 0,76 1,50 0,88 0,55 0,32 0,66										
GIR73 67,720 4,13 2,84 2,14 1,59 2,91 1,61 0,82 0,45 GIC39 12,015 2,41 1,72 1,28 0,94 1,90 1,06 0,62 0,37 GON57 3,072 1,65 1,22 0,87 0,66 1,41 0,82 0,51 0,31 GOU03 2,573 1,59 1,15 0,86 0,62 1,40 0,83 0,51 0,31 GOU03 2,573 1,59 1,15 0,86 0,62 1,40 0,83 0,51 0,31 GOU02 9,884 2,25 1,68 1,21 0,90 1,80 1,05 0,62 0,34 GOU02 7,482 2,21 1,54 1,10 0,81 1,67 0,99 0,58 0,33 GRA15 25,625 3,01 2,13 1,54 1,19 2,24 1,30 0,70 0,39 GRA21 14,143 2,51 1,89 1,34 0,99 2,07 1,18 0,63 0,37 GRA22 11,413 2,51 1,89 1,34 0,99 2,07 1,18 0,63 0,37 GRA25 17,497 2,72 1,99 1,44 1,05 2,04 1,22 0,67 0,36 HAG40 5,299 1,88 1,41 1,03 0,77 1,64 0,97 0,55 0,33 HAR22 1,983 1,45 1,17 0,79 0,61 1,26 0,80 0,47 0,29 HAU19 20,050 2,91 1,96 1,46 1,07 2,15 1,14 0,69 0,39 HA39 11,068 2,30 1,75 1,32 0,91 1,95 1,08 0,62 0,33 1,062 0,33 1,063 1,068 2,30 1,75 1,32 0,91 1,42 0,84 0,55 0,31 1,462 1,099 1,066 2,33 1,45 3,39 2,23 1,65 3,20 1,68 0,86 0,44 1,14 1,05 0,90 5,8 1,15 3,20 1,68 0,86 0,44 1,14 1,15 0,99 1,18 0,68 2,30 1,75 1,32 0,91 1,42 0,84 0,55 0,31 1,46 1,47 1,48 1,48 1,48 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49	GER88	16,854								
GLC39 12,015	GIO40						· ·			
GONS7 3,072 1,65 1,22 0,87 0,66 1,41 0,82 0,51 0,31 GOU03 2,573 1,59 1,15 0,86 0,62 1,40 0,83 0,51 0,31 GOU02 9,884 2,25 1,68 1,21 0,90 1,80 1,05 0,62 0,34 GOU82 7,482 2,21 1,54 1,10 0,81 1,67 0,99 0,58 0,33 GRA15 25,625 3,01 2,13 1,54 1,19 2,24 1,30 0,70 0,39 GRA42 14,143 2,51 1,89 1,34 0,99 2,07 1,18 0,63 0,37 GRA85 5,420 1,91 1,38 1,02 0,70 1,54 0,91 0,55 0,32 GRO21b 9,183 2,21 1,61 1,19 0,83 1,86 1,06 0,62 0,35 GRO21b 9,183 2,21 1,61 1,19 0,83 1,86 1,06 0,62 0,35 GRUEZ2 17,497 2,72 1,99 1,44 1,05 2,04 1,22 0,67 0,36 GRUEZ2 17,893 1,45 1,17 0,79 0,61 1,26 0,80 0,47 0,29 HAU19 20,050 2,91 1,96 1,46 1,07 2,15 1,14 0,69 0,39 ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,62 0,33 ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,62 0,33 ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,62 0,31 IAC22 4,169 1,88 3,147 1,05 0,80 1,42 0,84 0,55 0,31 IAC33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 IAC33 IAC33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 IAC33 1,03 IAC33 1,04 IAC33 1,04 IAC33 1,04 IAC33 1,04 IAC33 1,04 IAC33 1,04 IA	GIR73	67,720								
GOUGS 2,573 1,59 1,15 0,86 0,62 1,40 0,83 0,51 0,31 GOUGS 7,482 2,21 1,54 1,10 0,81 1,67 0,99 0,58 0,33 GRA42 14,143 2,51 1,89 1,34 0,99 2,07 1,18 0,63 0,37 GRA42 14,143 2,51 1,89 1,34 0,99 2,07 1,18 0,63 0,37 GRA42 14,143 2,51 1,89 1,34 0,99 2,07 1,18 0,63 0,37 GRA42 14,143 2,51 1,89 1,34 0,99 2,07 1,18 0,63 0,37 GRA55 5,420 1,91 1,38 1,02 0,70 1,54 0,91 0,55 0,32 GRO21b 9,183 2,21 1,61 1,19 0,83 1,86 1,06 0,62 0,35 GUEZ2 17,497 2,72 1,99 1,44 1,05 2,04 1,22 0,67 0,36 HAG40 5,299 1,85 1,41 1,03 0,77 1,64 0,97 0,55 0,33 HAG2 1,993 1,45 1,17 0,79 0,61 1,26 0,80 0,47 0,29 HAU19 20,050 2,91 1,96 1,46 1,07 2,15 1,14 0,69 0,39 ILA39 10,868 2,30 1,75 1,32 0,91 1,95 1,08 0,62 0,33 ILSSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,86 0,44 0,55 0,31 ILAG21 0,995 1,18 0,89 0,64 0,50 1,12 0,71 0,45 0,28 ILAG33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 ILAG3 2,30 1,05 1,18 0,89 0,64 0,50 1,12 0,71 0,45 0,28 ILAG3 1,037 1,19 0,87 1,19 0,87 0,77 0,42 ILAG3 1,037 1,19 0,87 0,72 0,55 0,39 ILAG3 1,037 1,19 0,87 0,72 0,50 1,15 0,80 0,45 0,29 ILAG3 1,037 1,19 0,87 0,72 0,50 1,15 0,80 0,44 0,55 0,31 ILAG3 1,037 1,19 0,87 0,72 0,50 1,15 0,80 0,44 0,55 0,31 ILAG3 1,037 1,19 0,87 0,72 0,50 1,15 0,80 0,45 0,29 ILAG6 40,814 3,40 2,45 1,79 1,37 2,65 1,39 0,77 0,42 ILAG6 40,814 3,40 2,45 1,79 1,37 2,65 1,39 0,77 0,42 ILAG3 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 ILAG16 1,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 ILAG3 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 ILAG16 8,246 2,14 1,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 ILAG3 2,25 1,69 1,23 0,99 1,59 0,59 0,58 0,35 ILAG16 8,246 2,14 1,56 1,15 0,87 1,77 0,99 0,58 0,35 ILAG16 8,246 2,14 1,56 1,15 0,87 1,77 0,99 0,58 0,35 ILAG16 8,246 2,14 1,56 1,15 0,87 1,77 0,99 0,58 0,35 ILAG16 8,246 2,14 1,56 1,15 0,87 1,77 0,99 0,58 0,35 ILAG16 8,246 2,14 1,56 1,15 0,87 1,77 0,99 0,58 0,35 ILAG16 8,246 2,14 1,56 1,15 0,87 1,77 0,99 0,58 0,35 ILAG16 8,246 2,14 1,56 1,15 0,87 1,77 0,99 0,58 0,35 ILAG16 8,246 2,14 1,56 1,15 0,87 1,77 0,99 0,58 0,35 ILAG16 8,246 2,14 1,56 1,15 0,87 0,99 1,75 0,90 0	GLC39	12,015								
GOUZZ 9,884 2,25 1,68 1,21 0,90 1,80 1,05 0,62 0,34 GOUSZ 7,482 2,21 1,54 1,10 0,81 1,67 0,99 0,58 0,33 GRA15 25,625 3,01 2,13 1,54 1,19 2,24 1,30 0,70 0,39 GRA42 14,143 2,51 1,89 1,34 0,99 2,07 1,18 0,63 0,37 GRA55 5,420 1,91 1,38 1,02 0,70 1,54 0,91 0,55 0,32 GRA55 5,420 1,91 1,38 1,02 0,70 1,54 0,91 0,55 0,32 GRA55 5,420 1,91 1,38 1,02 0,70 1,54 0,91 0,55 0,32 GRA55 5,420 1,91 1,38 1,02 0,70 1,54 0,91 0,55 0,32 GRA56 5,420 1,91 1,41 1,09 0,83 1,86 1,06 0,62 0,35 GUEZZ 17,497 2,72 1,99 1,44 1,05 2,04 1,22 0,67 0,36 HAG40 5,299 1,85 1,47 1,07 0,79 0,61 1,26 0,80 0,47 0,29 HAU19 20,050 2,91 1,96 1,46 1,07 2,15 1,14 0,69 0,39 ILA39 10,868 2,30 1,75 1,32 0,91 1,95 1,08 0,62 0,33 ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,86 0,44 ILG21 0,995 1,18 0,89 0,64 0,50 1,12 0,71 0,45 0,28 ILAC33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,55 0,31 ILAG16 2,320 1,50 1,10 0,92 0,67 1,24 0,78 0,49 0,30 ILA016 2,320 1,50 1,10 0,92 0,67 1,24 0,78 0,49 0,30 ILAN33 1,037 1,19 0,87 0,87 1,19 0,87 0,72 0,55 1,15 0,68 0,45 0,29 ILAN33 1,037 1,19 0,87 0,77 0,72 0,50 1,15 0,68 0,45 0,29 ILAN33 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 ILAN33 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 ILAN33 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 ILAN33 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 ILAN33 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 ILAN33 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 ILAN33 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 ILAN33 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 1,44 0,40 0,40 0,30 ILAN33 1,037 1,19 0,87 0,77 0,82 1,19 0,87 0,77 0,42 ILAN38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 ILAN38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 ILAN38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 ILAN38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 ILAN38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 ILAN38 29,240 3,00 2,27 1,46 1,18 2,32 1,37 0,72 0,41 ILAN38 29,240 3,00 2,27 1,46 1,18 2,32 1,37 0,72 0,41 ILAN38 29,240 3,00 2,27 1,46 1,18 2,32 1,37 0,72 0,41 ILAN38 29,240 3,00 2,27 1,46 1,18 2,30 0,	GON57	3,072	1,65				1,41			
GOUSE 7,482 2,21 1,54 1,10 0,81 1,67 0,99 0,58 0,33 GRA15 25,625 3,01 2,13 1,54 1,19 2,24 1,30 0,70 0,39 GRA42 14,143 2,51 1,89 1,34 0,99 2,07 1,18 0,63 0,37 GRA85 5,420 1,91 1,38 1,02 0,70 1,54 0,91 0,55 0,32 GRO21b 9,183 2,21 1,61 1,19 0,83 1,86 1,06 0,62 0,35 GRO21b 9,183 2,21 1,61 1,19 0,83 1,86 1,06 0,62 0,35 GRO21b 9,183 1,45 1,41 1,03 0,77 1,64 0,97 0,55 0,33 HAR22 1,983 1,45 1,17 0,79 0,61 1,26 0,80 0,47 0,29 HAU19 20,050 2,91 1,96 1,46 1,07 2,15 1,14 0,69 0,39 11,39 10,868 2,30 1,75 1,32 0,91 1,95 1,08 0,62 0,33 ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,86 0,44 0,55 0,31 LAC21 0,995 1,18 0,89 0,64 0,50 1,12 0,71 0,45 0,28 LAC33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 LAD16 2,320 1,50 1,10 0,92 0,67 1,24 0,78 0,49 0,30 LAR38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN38 1,636 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,92 1,75 1,06 0,60 0,35 LAN38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV38 29,240 3,00 2,27 1,64 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,66 1,23 0,99 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,66 1,13 0,99 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,66 1,17 0,08 0,06 0,35 LDC21 3,237 1,64 1,22 0,87 0,	GOU03	2,573			0,86	0,62	1,40		0,51	0,31
GRA1S 25,625 3.01 2.13 1.54 1.19 2.24 1.30 0.70 0.39 GRA42 14,143 2.51 1.89 1.34 0.99 2.07 1.18 0.63 0.37 GRA42 14,143 2.51 1.89 1.34 0.99 2.07 1.18 0.63 0.37 GRA55 5,420 1.91 1.38 1.02 0.70 1.54 0.91 0.55 0.32 GRO21b 9,183 2.21 1.61 1.19 0.83 1.86 1.06 0.62 0.35 GUE22 17,497 2.72 1.99 1.44 1.05 2.04 1.22 0.67 0.36 HAG40 5.299 1.85 1.41 1.03 0.77 1.64 0.97 0.55 0.33 HAR22 1.983 1.45 1.17 0.79 0.61 1.26 0.80 0.47 0.29 HAU19 20,050 2.91 1.96 1.46 1.07 2.15 1.14 0.69 0.39 ILA39 10,868 2.30 1.75 1.32 0.91 1.95 1.08 0.62 0.33 ISSO7 98,163 4.53 3.09 2.23 1.65 3.20 1.68 0.86 0.44 1.05 1.06 0.52 0.31 ILAC21 0.995 1.18 0.89 0.64 0.50 1.12 0.71 0.45 0.58 1.42 0.995 1.18 0.89 0.64 0.50 1.12 0.71 0.45 0.28 ILAC33 3.269 1.67 1.24 0.90 0.64 1.36 0.84 0.51 0.30 ILAT38 24,669 2.90 2.15 1.53 1.15 2.27 1.25 0.69 0.39 ILAN3 1.037 1.19 0.87 0.72 0.50 1.15 0.68 0.45 0.45 0.29 ILAN66 40,814 3.40 2.45 1.79 1.37 2.65 1.39 0.77 0.42 ILAN66 40,814 3.40 2.45 1.79 1.37 2.65 1.39 0.77 0.42 ILAN61 16,336 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAN31 5.436 1.87 1.49 1.03 0.79 1.59 0.95 0.54 0.33 ILAS15 10,717 2.30 1.74 1.26 0.99 1.75 1.06 0.60 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 0.99 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 0.99 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 0.99 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 0.99 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 0.99 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 0.99 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 0.99 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 0.99 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 0.99 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 0.70 0.99 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 0.99 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 1.77 1.00 0.58 0.35 ILAN38 2.9240 3.00 2.27 1.64 1.18 2.32 0.91 1.17 0.67 0.37 ILDC1 3.237 1.64 1.22 0.87 0.64 1.13 2.09 1.17 0.67 0.37 ILDC1 3.237 1.64 1.22 0.87 0.64 1.13 2.09 1.17 0.67 0.37 ILDC2 3.556 2.25 1.64 1	GOU22	9,884	2,25	1,68	1,21	0,90	1,80		0,62	0,34
GRA42 14,143 2.51 1.89 1.34 0.99 2.07 1,18 0.63 0.37 GRA85 5.420 1.91 1,38 1.02 0.70 1.54 0.91 0.55 0.32 GRO21b 9,183 2.21 1.61 1.19 0.83 1.86 1.06 0.62 0.35 GUE22 17,497 2.72 1.99 1.44 1.05 2.04 1.22 0.67 0.36 HAG40 5.299 1.85 1.41 1.03 0.77 1.64 0.97 0.55 0.33 HAG40 5.299 1.85 1.41 1.03 0.77 1.64 0.97 0.55 0.33 HAG22 1.983 1.45 1.17 0.79 0.61 1.26 0.80 0.47 0.29 HAU19 20,050 2.91 1.96 1.46 1.07 2.15 1.14 0.69 0.39 ILA39 10,868 2.30 1.75 1.32 0.91 1.95 1.08 0.62 0.33 ISSO7 98,163 4.53 3.09 2.23 1.65 3.20 1.68 0.86 0.44 JUG22 4,169 1.83 1.47 1.05 0.80 1.42 0.84 0.55 0.31 ILAC21 0.995 1.18 0.89 0.64 0.50 1.12 0.71 0.45 0.28 ILAC31 3.269 1.67 1.24 0.90 0.64 1.36 0.84 0.51 0.30 ILAT38 24,669 2.90 2.15 1.53 1.15 2.27 1.25 0.69 0.39 ILAN23 1.037 1.19 0.87 0.72 0.50 1.15 0.68 0.45 0.49 0.30 ILAT38 24,669 2.90 2.15 1.53 1.15 2.27 1.25 0.69 0.39 ILAN31 1.6336 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.55 1.98 1.49 1.03 0.79 1.59 0.95 0.54 0.33 ILAG31 5.436 2.55 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.19 0.64 0.38 ILAG31 5.436 2.56 1.98 1.46 0.99 2.04 1.17 0.67 0.37 0.42 ILAV33 9.580 2.25 1.69 1.23 0.91 1.18 2.32 1.37 0.72 0.41 ILAV16 8.246 2.14 1.56 1.15 0.82 1.75 1.06 0.00 0.35 ILAV33 9.580 2.25 1.69 1.23 0.91 1.83 1.04 0.61 0.35 ILAV33 9.580 2.25 1.69 1.23 0.91 1.83 1.04 0.61 0.35 ILAV33 9.580 2.25 1.64 1.23 0.92 1.77 1.00 0.58 0.35 ILAU33 9.580 2.25 1.64 1.23 0.90 0.65 1.41 0.83 0.54 0.31 ILDC51 7.	GOU82	7,482	2,21	1,54	1,10	0,81	1,67	0,99	0,58	0,33
GRASS 5,420 1,91 1,38 1,02 0,70 1,54 0,91 0,55 0,32 GRO21b 9,183 2,21 1,61 1,19 0,83 1,86 1,06 0,62 0,35 GUE22 17,497 2,72 1,99 1,44 1,05 2,04 1,22 0,67 0,36 HAG40 5,299 1,85 1,41 1,03 0,77 1,64 0,97 0,55 0,33 HAR22 1,983 1,45 1,17 0,79 0,61 1,26 0,80 0,47 0,29 HAU19 20,050 2,91 1,96 1,46 1,07 2,15 1,14 0,69 0,39 ILA39 10,868 2,30 1,75 1,32 0,91 1,95 1,08 0,62 0,33 ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,86 0,44 JUG22 4,169 1,83 1,47 1,05 0,80 1,42 0,84 0,55 0,31 LAC21 0,995 1,18 0,89 0,64 0,50 1,12 0,71 0,45 0,28 LAG33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 LAD16 2,320 1,50 1,10 0,92 0,67 1,24 0,78 0,49 0,30 LAG38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAG31 16,336 2,56 1,98 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,99 1,75 1,06 0,60 0,33 LAG16 16,336 2,56 1,98 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,99 1,75 1,06 0,60 0,35 LAG16 8,246 2,14 1,56 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV3 19,888 2,76 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV3 19,888 2,76 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV3 19,888 2,76 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV3 19,888 2,76 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV3 19,888 2,76 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV3 19,888 2,76 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV3 19,888 2,76 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV3 19,888 2,76 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV3 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,99 0,65 1,41 0,83 0,54 0,31 LBB5 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LBB5 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LBB5 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LBB5 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LBB5 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LBB5 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,94 0,49	GRA15	25,625	3,01	2,13	1,54	1,19	2,24	1,30	0,70	0,39
GRO21b 9,183 2,21 1,61 1,19 0,83 1,86 1,06 0,62 0,35 GUE22 17,497 2,72 1,99 1,44 1,05 2,04 1,22 0,67 0,36 HAG40 5,299 1,85 1,41 1,03 0,77 1,64 0,97 0,55 0,33 HAR22 1,983 1,45 1,17 0,79 0,61 1,26 0,80 0,47 0,29 HAU19 20,050 2,91 1,96 1,46 1,07 2,15 1,14 0,69 0,39 ILA39 10,868 2,30 1,75 1,32 0,91 1,95 1,08 0,62 0,33 ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,86 0,44 JUG22 4,169 1,83 1,47 1,05 0,80 1,42 0,84 0,55 0,31 LAC21 0,995 1,18 0,89 0,64 0,50 1,12 0,71 0,45 0,28 LAG33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 LAD16 2,320 1,50 1,10 0,92 0,67 1,24 0,78 0,49 0,30 LAF38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN33 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAG31 16,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 LAS15 10,717 2,30 1,74 1,26 0,99 1,75 1,06 0,60 0,35 LAS15 10,717 2,30 1,74 1,26 0,99 1,75 1,06 0,60 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV33 19,88 2,26 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,99 1,75 1,06 0,60 0,35 LAV33 19,88 2,26 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,99 1,75 1,06 0,60 0,35 LAV33 19,88 2,26 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV33 19,888 2,26 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV33 19,888 2,26 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV33 19,888 2,26 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV33 19,888 2,26 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV33 19,888 2,26 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,99 1,74 1,01 0,05 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEBS 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBS 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,49 0,49	GRA42	14,143	2,51	1,89	1,34	0,99	2,07	1,18	0,63	0,37
GUE22 17,497 2,72 1,99 1,44 1,05 2,04 1,22 0,67 0,36 HAG40 5,299 1,85 1,41 1,03 0,77 1,64 0,97 0,55 0,33 HAR22 1,983 1,45 1,17 0,79 0,61 1,26 0,80 0,47 0,29 HAU19 20,050 2,91 1,96 1,46 1,07 2,15 1,14 0,69 0,39 IIA39 10,868 2,30 1,75 1,32 0,91 1,95 1,08 0,62 0,33 ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,86 0,44 JUG22 4,169 1,83 1,47 1,05 0,80 1,42 0,84 0,55 0,31 IAA23 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 IA38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 IAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 IAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 IAA81 16,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 IAA31 5,436 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 IAA38 29,240 3,00 2,27 1,64 1,18 0,91 1,18 0,87 0,72 0,80 1,77 0,99 0,58 0,35 IAA03 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 IAA08 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 IAA08 1,8768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 IAA03 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 IAA04 1,988 2,26 2,14 1,56 1,15 0,87 1,77 0,99 0,58 0,35 IAAV3 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 IDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,340 1,77 1,03 0,56 0,35 IACC3 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 IACC1 3,40 1,54 1,54 1,54 1,54 1,54 1,55 1,17 0,90 0,65 1,41 0,83 0,54 0,31 IACC1 3,40 1,54 1,54 1,54 1,54 1,54 1,56 1,17 0,81 1,56 1,17 0,90 0,56 0,35 IACC1 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 IACC1 3,237 1,64 1,22 0,87 0,66 1,37 0,90 1,77 1,03 0,56 0,35 IACC1 3,40 1,40 1,40 1,40 1,40 1,40 1,40 1,	GRA85	5,420	1,91	1,38	1,02	0,70	1,54	0,91	0,55	0,32
HAG40 5,299 1,85 1,41 1,03 0,77 1,64 0,97 0,55 0,33 HAR22 1,983 1,45 1,17 0,79 0,61 1,26 0,80 0,47 0,29 HAU19 20,050 2,91 1,96 1,46 1,07 2,15 1,14 0,69 0,39 IIA39 10,868 2,30 1,75 1,32 0,91 1,95 1,08 0,62 0,33 ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,86 0,44 JUG22 4,169 1,83 1,47 1,05 0,80 1,42 0,84 0,55 0,31 LAC21 0,995 1,18 0,89 0,64 0,50 1,12 0,71 0,45 0,28 LAC33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 LAF16 2,320 1,50 1,10 0,992 0,67 1,24 0,78 0,49 0,39 LAR38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN66 40,814 3,40 2,45 1,79 1,37 2,65 1,39 0,77 0,42 LAO81 16,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 LAR31 5,436 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAT10 8,768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV33 19,88 2,76 1,97 1,46 1,18 2,32 1,37 0,72 0,41 LAV33 19,88 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC51 3,237 1,64 1,22 0,87 0,64 1,33 0,90 0,88 0,50 0,31 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC53 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEBS 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBS 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBS 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEBT 3,490 1,71 1,2	GRO21b	9,183	2,21	1,61	1,19	0,83	1,86	1,06	0,62	0,35
HAR22 1,983 1,45 1,17 0,79 0,61 1,26 0,80 0,47 0,29 HAU19 20,050 2,91 1,96 1,46 1,07 2,15 1,14 0,69 0,39 ILA39 10,868 2,30 1,75 1,32 0,91 1,95 1,08 0,62 0,33 ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,86 0,44 JUG22 4,169 1,83 1,47 1,05 0,80 1,42 0,84 0,55 0,31 LAC21 0,995 1,18 0,89 0,64 0,50 1,12 0,71 0,45 0,28 LAG33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 LAD16 2,320 1,50 1,10 0,92 0,67 1,24 0,78 0,49 0,30 LAF38 24,669 2,90 2,15 1,93 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN66 40,814 3,40 2,45 1,79 1,37 2,65 1,39 0,77 0,42 LAO81 16,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 LAR31 5,436 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,92 1,75 1,06 0,60 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,87 1,77 0,99 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV23 19,888 2,76 1,15 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 19,888 2,76 1,12 0,87 0,64 1,13 0,99 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC31 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEB5 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	GUE22	17,497	2,72	1,99	1,44	1,05	2,04	1,22	0,67	0,36
HAU19 20,050 2,91 1,96 1,46 1,07 2,15 1,14 0,69 0,39 ILA39 10,868 2,30 1,75 1,32 0,91 1,95 1,08 0,62 0,33 ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,86 0,44 JUG22 4,169 1,83 1,47 1,05 0,80 1,42 0,84 0,55 0,31 LAC21 0,995 1,18 0,89 0,64 0,50 1,12 0,71 0,45 0,28 LAC33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 LAD16 2,320 1,50 1,10 0,92 0,67 1,24 0,78 0,49 0,30 LAF38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN66 40,814 3,40 2,45 1,79 1,37 2,65 1,39 0,77 0,42 LAO81 16,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 LAR31 5,436 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,92 1,75 1,06 0,60 0,35 LAT10 8,768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV3 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEB5 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	HAG40	5,299	1,85	1,41	1,03	0,77	1,64	0,97	0,55	0,33
ILA39	HAR22	1,983	1,45	1,17	0,79	0,61	1,26	0,80	0,47	0,29
ISSO7 98,163 4,53 3,09 2,23 1,65 3,20 1,68 0,86 0,44 JUG22 4,169 1,83 1,47 1,05 0,80 1,42 0,84 0,55 0,31 LAC21 0,995 1,18 0,89 0,64 0,50 1,12 0,71 0,45 0,28 LAC33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 LAD16 2,320 1,50 1,10 0,92 0,67 1,24 0,78 0,49 0,30 LAF38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN66 40,814 3,40 2,45 1,79 1,37 2,65 1,39 0,77 0,42 LAO81 16,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 LAR31 5,436 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,92 1,75 1,06 0,60 0,35 LAT10 8,768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEB5 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	HAU19	20,050	2,91	1,96	1,46	1,07	2,15	1,14	0,69	0,39
IJIG22	ILA39	10,868	2,30	1,75	1,32	0,91	1,95	1,08	0,62	0,33
LAC21 0,995 1,18 0,89 0,64 0,50 1,12 0,71 0,45 0,28 LAC33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 LAD16 2,320 1,50 1,10 0,92 0,67 1,24 0,78 0,49 0,30 LAF38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN66 40,814 3,40 2,45 1,79 1,37 2,65 1,39 0,77 0,42 LAO81 16,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 LAR31 5,436 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,92 1,75 1,06 0,60 0,35 LAT10 8,768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49 0,49 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	ISS07	98,163	4,53	3,09	2,23	1,65	3,20	1,68	0,86	0,44
LAC33 3,269 1,67 1,24 0,90 0,64 1,36 0,84 0,51 0,30 LAD16 2,320 1,50 1,10 0,92 0,67 1,24 0,78 0,49 0,30 LAF38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN66 40,814 3,40 2,45 1,79 1,37 2,65 1,39 0,77 0,42 LAO81 16,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 LAR31 5,436 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,92 1,75 1,06 0,60 0,35 LAT10 8,768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEM54 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	JUG22	4,169	1,83	1,47	1,05	0,80	1,42	0,84	0,55	0,31
LAD16 LAD17 LAD16	LAC21	0,995	1,18	0,89	0,64	0,50	1,12	0,71	0,45	0,28
LAF38 24,669 2,90 2,15 1,53 1,15 2,27 1,25 0,69 0,39 LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN66 40,814 3,40 2,45 1,79 1,37 2,65 1,39 0,77 0,42 LAO81 16,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 LAR31 5,436 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,92 1,75 1,06 0,60 0,35 LAT10 8,768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJBS 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LAC33	3,269	1,67	1,24	0,90	0,64	1,36	0,84	0,51	0,30
LAN23 1,037 1,19 0,87 0,72 0,50 1,15 0,68 0,45 0,29 LAN66 40,814 3,40 2,45 1,79 1,37 2,65 1,39 0,77 0,42 LAO81 16,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 LAR31 5,436 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,92 1,75 1,06 0,60 0,35 LAT10 8,768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDG63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LAD16	2,320	1,50	1,10	0,92	0,67	1,24	0,78	0,49	0,30
LAN66	LAF38	24,669	2,90	2,15	1,53	1,15	2,27	1,25	0,69	0,39
LAO81 16,336 2,56 1,98 1,46 0,99 2,04 1,19 0,64 0,38 LAR31 5,436 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,92 1,75 1,06 0,60 0,35 LAT10 8,768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49 LEM74	LAN23	1,037	1,19	0,87	0,72	0,50	1,15	0,68	0,45	0,29
LAR31 5,436 1,87 1,49 1,03 0,79 1,59 0,95 0,54 0,33 LAS15 10,717 2,30 1,74 1,26 0,92 1,75 1,06 0,60 0,35 LAT10 8,768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LAN66	40,814	3,40	2,45	1,79	1,37	2,65	1,39	0,77	0,42
LAS15 10,717 2,30 1,74 1,26 0,92 1,75 1,06 0,60 0,35 LAT10 8,768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49 LEM74	LAO81	16,336	2,56	1,98	1,46	0,99	2,04	1,19	0,64	0,38
LAT10 8,768 2,23 1,58 1,15 0,87 1,77 0,99 0,58 0,35 LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LAR31	5,436	1,87	1,49	1,03	0,79	1,59	0,95	0,54	0,33
LAU38 29,240 3,00 2,27 1,64 1,18 2,32 1,37 0,72 0,41 LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LAS15	10,717	2,30	1,74	1,26	0,92	1,75	1,06	0,60	0,35
LAV16 8,246 2,14 1,56 1,15 0,82 1,76 1,03 0,58 0,35 LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LAT10	8,768	2,23	1,58	1,15	0,87	1,77	0,99	0,58	0,35
LAV23 9,580 2,25 1,69 1,23 0,91 1,83 1,04 0,61 0,35 LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LAU38	29,240	3,00	2,27	1,64	1,18	2,32	1,37	0,72	0,41
LAV43 19,888 2,76 1,97 1,46 1,13 2,09 1,17 0,67 0,37 LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LAV16	8,246	2,14	1,56	1,15	0,82	1,76	1,03	0,58	0,35
LDC21 3,237 1,64 1,22 0,87 0,64 1,39 0,88 0,50 0,31 LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LAV23	9,580	2,25	1,69	1,23	0,91	1,83	1,04	0,61	0,35
LDC25 8,596 2,25 1,64 1,23 0,92 1,74 1,01 0,58 0,34 LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LAV43	19,888	2,76	1,97	1,46	1,13	2,09	1,17	0,67	0,37
LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LDC21	3,237	1,64	1,22	0,87	0,64	1,39	0,88	0,50	0,31
LDC51 7,775 2,09 1,51 1,16 0,81 1,77 1,03 0,56 0,35 LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LDC25	8,596	2,25	1,64	1,23	0,92	1,74	1,01	0,58	0,34
LDC63 27,090 2,99 2,18 1,69 1,17 2,43 1,28 0,73 0,39 LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49	LDC51	7,775	2,09	1,51	1,16	0,81	1,77	1,03	0,56	0,35
LEJ85 3,490 1,71 1,23 0,90 0,65 1,41 0,83 0,54 0,31 LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49			2,99	2,18	1,69	1,17	2,43	1,28	0,73	0,39
LEM74 154,213 5,14 3,49 2,52 1,89 3,73 1,89 0,94 0,49			1,71	1,23	0,90	0,65	1,41	0,83	0,54	0,31
			5,14	3,49	2,52	1,89	3,73	1,89	0,94	0,49
			1,94	1,50	1,09	0,76	1,60	0,95	0,57	0,35

		1 440	0.70	0.50	0.44	445	0.60	0.45	0.27
LEO40	0,778	1,10	0,78	0,59	0,44	1,12	0,69	0,45	0,27
LES24	8,326	2,11	1,58	1,13	0,89	1,84	1,05	0,59	0,33
LGA36	0,934	1,19	0,91	0,68	0,51	1,14	0,68	0,44	0,27
LGM27	0,288	0,88	0,61	0,42	0,32	1,07	0,66	0,40	0,26
LGM39	11,511	2,35	1,76	1,31	0,93	1,89	1,06	0,62	0,36
LIE52	5,842	1,96	1,38	1,08	0,79	1,59	0,96	0,53	0,32
LKW68	16,850	2,52	1,94	1,40	1,03	2,03	1,15	0,67	0,38
LLI66	4,374	1,78	1,31	0,98	0,70	1,51	0,85	0,51	0,32
LNC04	12,900	2,46	1,78	1,29	0,97	1,90	1,07	0,62	0,35
LON88	13,271	2,49	1,84	1,27	1,00	1,90	1,13	0,66	0,37
LOU37	1,021	1,17	0,87	0,63	0,48	1,16	0,71	0,46	0,29
LOU64	12,878	2,43	1,80	1,26	0,96	1,84	1,06	0,65	0,35
LPC38	6,624	2,09	1,46	1,12	0,77	1,69	0,97	0,57	0,32
LRO39	7,681	2,08	1,55	1,12	0,83	1,66	0,98	0,60	0,34
LSF43	0,987	1,14	0,86	0,63	0,46	1,11	0,68	0,46	0,27
LSG81	18,189	2,65	1,92	1,34	1,03	2,18	1,22	0,71	0,38
LUN32	11,229	2,41	1,68	1,28	0,93	1,81	1,08	0,60	0,34
MAD55	3,345	1,68	1,30	0,91	0,68	1,39	0,87	0,52	0,31
MAR35	1,012	1,18	0,95	0,67	0,50	1,12	0,73	0,46	0,28
MAT66	9,376	2,19	1,66	1,15	0,85	1,74	1,01	0,60	0,35
MAU12	20,359	2,80	2,10	1,52	1,07	2,15	1,23	0,70	0,39
MIC68	9,793	2,31	1,63	1,19	0,88	1,87	1,06	0,58	0,36
MIE32	5,572	1,93	1,54	1,07	0,79	1,59	0,96	0,55	0,32
MON38	53,331	3,61	2,60	2,07	1,40	2,81	1,52	0,83	0,42
MON63	7,822	2,13	1,54	1,17	0,82	1,80	0,99	0,58	0,34
MON74	12,074	2,35	1,83	1,27	0,97	1,94	1,10	0,61	0,36
MOU52	9,100	2,22	1,60	1,19	0,86	1,75	1,04	0,62	0,35
MUS35	1,336	1,30	0,97	0,71	0,53	1,19	0,75	0,46	0,27
NAG09	52,624	3,80	2,60	2,07	1,43	2,70	1,48	0,80	0,42
NAN01	30,300	2,99	2,24	1,62	1,15	2,36	1,27	0,72	0,38
NAU48	18,118	2,70	1,95	1,42	1,00	2,04	1,16	0,68	0,38
NAU48bis	18,118	2,65	1,96	1,48	1,04	2,22	1,23	0,66	0,38
NAU48ter	18,118	2,66	1,94	1,50	1,05	2,05	1,16	0,66	0,38
NDC38	20,457	2,83	2,07	1,47	1,03	2,21	1,23	0,68	0,39
NEG06	12,900	2,53	1,81	1,36	0,96	2,02	1,10	0,66	0,35
NOY56	1,713	1,45	1,06	0,77	0,52	1,18	0,74	0,49	0,29
ORE65	16,142	2,64	1,99	1,38	1,04	2,04	1,15	0,67	0,37
ORX40	0,571	1,04	0,74	0,55	0,38	1,03	0,67	0,43	0,27
OSP2A	7,219	2,14	1,59	1,08	0,82	1,66	0,95	0,57	0,33
OUE35	1,929	1,39	1,06	0,77	0,62	1,26	0,79	0,48	0,29
PAI35	1,713	1,39	1,03	0,76	0,57	1,25	0,75	0,47	0,28
PAL07	20,725	2,76	2,10	1,50	1,07	2,16	1,22	0,65	0,38
PAL38	27,410	3,20	2,30	1,59	1,19	2,24	1,27	0,73	0,40

	İ					1			
PAN21	6,860	2,06	1,46	1,07	0,78	1,72	1,00	0,58	0,33
PAN58	15,270	2,56	1,87	1,32	1,04	2,02	1,14	0,64	0,38
PAR12	15,575	2,60	1,90	1,38	1,04	2,01	1,15	0,64	0,39
PAR40	7,559	2,00	1,52	1,12	0,81	1,79	1,00	0,59	0,34
PAR54	2,152	1,54	1,07	0,80	0,61	1,26	0,76	0,47	0,31
PAV63	50,832	3,73	2,70	1,95	1,48	2,62	1,45	0,78	0,42
PDF44	1,586	1,40	1,02	0,73	0,58	1,18	0,75	0,49	0,29
PDH35	2,865	1,66	1,20	0,88	0,64	1,42	0,81	0,50	0,30
PET38	10,775	2,32	1,73	1,25	0,94	1,73	1,05	0,61	0,35
PIE36	1,003	1,21	0,92	0,67	0,53	1,09	0,69	0,45	0,29
PIN49	2,645	1,60	1,14	0,84	0,64	1,26	0,79	0,52	0,30
PIR03	6,394	2,00	1,43	1,06	0,77	1,68	0,97	0,56	0,33
POI44	0,980	1,17	0,86	0,65	0,48	1,19	0,71	0,45	0,28
PON21	8,967	2,16	1,52	1,21	0,85	1,72	1,06	0,59	0,35
PON22	2,547	1,49	1,14	0,83	0,63	1,26	0,82	0,48	0,31
POU31	6,529	2,10	1,38	1,07	0,80	1,60	0,97	0,57	0,35
POU43	6,908	1,97	1,58	1,05	0,81	1,69	1,01	0,57	0,35
PRA03	12,918	2,40	1,72	1,26	0,95	1,93	1,07	0,64	0,34
PRA33	1,075	1,21	0,88	0,66	0,51	1,10	0,74	0,47	0,29
PRA66	4,975	1,87	1,44	1,06	0,73	1,52	0,91	0,54	0,32
PRO44	2,009	1,42	1,08	0,79	0,58	1,27	0,76	0,50	0,30
PUI18	3,261	1,70	1,26	0,94	0,72	1,38	0,83	0,50	0,31
PUY48	24,216	2,94	2,14	1,57	1,14	2,20	1,22	0,69	0,40
PUY66	11,121	2,38	1,67	1,24	0,91	1,87	1,08	0,61	0,35
QUE63	12,730	2,46	1,83	1,32	0,93	1,92	1,12	0,65	0,35
QUI04	11,676	2,38	1,72	1,28	0,92	1,95	1,06	0,60	0,35
RAB61	7,164	2,05	1,51	1,11	0,78	1,61	1,01	0,55	0,35
RAM23	1,290	1,27	0,95	0,67	0,47	1,23	0,72	0,46	0,29
RAV34	11,144	2,45	1,71	1,23	0,91	1,81	1,08	0,58	0,33
RBO63	45,225	3,44	2,46	1,88	1,37	2,65	1,46	0,84	0,42
RCB01	8,418	2,15	1,59	1,17	0,87	1,68	1,07	0,57	0,36
RCE35	7,283	2,16	1,51	1,08	0,82	1,68	0,97	0,58	0,33
RCM01	6,481	2,00	1,44	1,09	0,79	1,59	0,95	0,57	0,34
RCS70	12,769	2,47	1,81	1,29	0,93	1,85	1,04	0,61	0,34
RDC23	8,945	2,25	1,62	1,17	0,83	1,71	0,97	0,63	0,33
RDV35	5,596	1,90	1,44	1,04	0,80	1,52	0,93	0,55	0,32
REA13	1,628	1,35	1,03	0,77	0,56	1,22	0,77	0,48	0,29
REM25	9,878	2,31	1,64	1,17	0,91	1,83	1,02	0,61	0,36
RFB63	19,608	2,81	1,96	1,42	1,03	2,01	1,24	0,70	0,38
RGM38	59,665	3,74	2,82	1,99	1,45	2,75	1,53	0,81	0,44
RIN53	2,249	1,53	1,09	0,84	0,62	1,28	0,83	0,50	0,29
RKU22	3,911	1,77	1,35	0,97	0,72	1,39	0,88	0,53	0,32
RLB11	9,001	2,16	1,61	1,13	0,82	1,68	1,04	0,60	0,34

		2.70	2.60	1.00	1 42	1 2.60	1 40	0.70	0.42
RMC73	51,132	3,79	2,60	1,89	1,42	2,68	1,48	0,78	0,42
RMN29	2,988	1,61	1,15	0,86	0,63	1,36	0,84	0,51	0,31
RMP85	5,166	1,84	1,39	0,98	0,72	1,45	0,91	0,55	0,33
RMR49	4,032	1,74	1,21	0,93	0,69	1,43	0,85	0,52	0,32
ROC85	4,236	1,85	1,30	1,00	0,75	1,56	0,91	0,54	0,33
ROP22	5,934	1,96	1,44	1,03	0,76	1,56	0,94	0,55	0,33
ROS73	67,116	3,77	2,80	1,97	1,47	2,90	1,68	0,82	0,45
ROU21	1,003	1,21	0,88	0,64	0,50	1,10	0,73	0,47	0,29
RPR71	8,809	2,26	1,61	1,17	0,83	1,65	1,03	0,58	0,35
RST35	8,444	2,11	1,50	1,11	0,85	1,69	1,00	0,58	0,35
RSV34	5,655	2,01	1,39	1,02	0,75	1,62	0,96	0,54	0,32
RTN71	6,206	2,08	1,43	1,05	0,74	1,58	0,93	0,56	0,34
RTV71	3,976	1,75	1,26	0,95	0,69	1,50	0,89	0,52	0,31
RVH22	7,123	1,98	1,51	1,08	0,78	1,58	0,98	0,56	0,32
SAL34	14,146	2,44	1,82	1,35	0,99	2,04	1,14	0,65	0,38
SAU36	0,947	1,18	0,89	0,68	0,51	1,13	0,71	0,47	0,29
SAU38	34,149	3,29	2,33	1,77	1,27	2,41	1,33	0,73	0,39
SCA83	16,321	2,69	1,92	1,41	1,00	2,06	1,19	0,65	0,38
SCR04	34,883	3,16	2,31	1,66	1,25	2,49	1,39	0,74	0,42
SEC15	24,461	2,98	2,11	1,65	1,13	2,20	1,26	0,68	0,39
SEI10	9,572	2,24	1,66	1,20	0,83	1,86	1,06	0,60	0,36
SER63	9,915	2,27	1,79	1,19	0,88	1,77	1,09	0,59	0,36
SET58	6,596	2,02	1,54	1,07	0,78	1,62	0,92	0,56	0,35
SFP53	4,211	1,80	1,33	1,01	0,73	1,52	0,89	0,52	0,31
SID18	7,474	2,10	1,55	1,07	0,81	1,63	0,94	0,56	0,33
SIL85	7,520	2,08	1,55	1,14	0,80	1,69	0,99	0,58	0,34
SMI29	3,001	1,60	1,25	0,88	0,65	1,39	0,83	0,51	0,30
SOR71	5,358	1,89	1,44	1,03	0,73	1,59	0,92	0,54	0,33
SOU09	34,606	3,14	2,45	1,69	1,26	2,41	1,36	0,72	0,40
SOU40	0,596	1,02	0,76	0,58	0,44	1,07	0,71	0,43	0,28
SPA87	6,976	2,03	1,52	1,18	0,78	1,62	0,99	0,59	0,32
SPC38	26,119	3,01	2,19	1,57	1,17	2,22	1,25	0,72	0,39
SPO04	46,262	3,44	2,58	1,91	1,37	2,62	1,36	0,79	0,40
SPO25	23,528	2,87	2,16	1,64	1,15	2,12	1,27	0,72	0,39
STO57	3,038	1,57	1,25	0,90	0,67	1,37	0,86	0,51	0,31
SUD41	1,008	1,17	0,92	0,66	0,44	1,18	0,71	0,49	0,28
SYL01	13,253	2,35	1,80	1,29	0,94	1,97	1,17	0,67	0,37
TAI40	3,583	1,72	1,29	0,92	0,68	1,44	0,90	0,53	0,32
TAZ63	38,950	3,46	2,59	1,81	1,30	2,46	1,31	0,79	0,42
TOL2A	48,066	3,54	2,67	1,96	1,43	2,66	1,45	0,79	0,43
TOR82	4,232	1,84	1,39	0,94	0,75	1,48	0,92	0,56	0,32
TOU79	11,055	2,31	1,72	1,22	0,97	1,90	1,11	0,64	0,36
TRE19	8,731	2,13	1,57	1,13	0,89	1,74	1,07	0,59	0,33
	,	'				•			



	•					i			
TRE35	1,863	1,45	0,98	0,77	0,54	1,23	0,77	0,49	0,30
TRI19	7,668	2,20	1,53	1,12	0,83	1,70	1,01	0,60	0,33
TSC32	5,837	1,95	1,41	1,06	0,80	1,58	0,94	0,55	0,33
TUI45	3,632	1,71	1,31	0,94	0,67	1,45	0,84	0,53	0,32
TYX63	1,405	1,26	0,97	0,72	0,51	1,16	0,74	0,46	0,29
UBY32	3,822	1,73	1,34	0,94	0,68	1,41	0,89	0,53	0,32
VAL38	20,210	2,75	2,02	1,47	1,08	2,15	1,23	0,66	0,38
VAL39	16,943	2,67	2,01	1,39	1,09	2,09	1,12	0,66	0,37
VAL45	2,017	1,42	1,05	0,73	0,61	1,27	0,78	0,49	0,29
VAS87	11,998	2,40	1,74	1,28	0,93	1,88	1,10	0,64	0,36
VAU58	3,237	1,68	1,19	0,85	0,68	1,39	0,83	0,51	0,31
VEN06	8,600	2,13	1,60	1,17	0,89	1,78	1,03	0,57	0,34
VER38	23,761	2,95	2,11	1,58	1,11	2,35	1,32	0,69	0,40
VER83	19,822	2,66	1,96	1,43	1,08	2,10	1,31	0,67	0,39
VEZ50	11,701	2,37	1,68	1,30	0,93	1,92	1,08	0,61	0,35
VFO08	3,739	1,74	1,30	0,99	0,74	1,40	0,86	0,55	0,31
VIG36	0,790	1,11	0,81	0,58	0,43	1,10	0,68	0,42	0,28
VIL12	6,292	2,02	1,42	1,09	0,83	1,66	0,99	0,58	0,34
VIL35	4,136	1,71	1,26	0,97	0,70	1,52	0,92	0,54	0,32
VIL42	26,888	2,97	2,22	1,63	1,16	2,32	1,22	0,72	0,40
VIL48	21,933	2,84	2,13	1,61	1,07	2,10	1,19	0,71	0,39
VIL52	5,497	1,86	1,39	1,06	0,74	1,57	0,96	0,55	0,33
VIL66	9,651	2,27	1,63	1,20	0,88	1,71	1,02	0,61	0,36
VIN66	15,958	2,58	1,82	1,37	1,02	2,08	1,18	0,66	0,37
VIO44	3,830	1,74	1,24	0,98	0,70	1,41	0,85	0,50	0,32
VOU39	38,035	3,31	2,54	1,76	1,32	2,57	1,42	0,75	0,41
VPR88	18,346	2,73	1,95	1,49	1,09	2,12	1,25	0,67	0,36
YRI40	5,160	1,88	1,38	1,01	0,75	1,57	0,93	0,55	0,33
AME54	0,693	1,03	0,79	0,60	0,41	1,01	0,69	0,43	0,26
ANS69	7,000	1,99	1,50	1,08	0,83	1,64	0,98	0,57	0,33
ARD62	1,288	1,29	1,00	0,76	0,56	1,23	0,75	0,45	0,30
ARJ40	16,000	2,63	1,96	1,41	0,99	2,14	1,18	0,65	0,38
ARM77	1,000	1,18	0,94	0,67	0,51	1,14	0,74	0,46	0,27
AUD62	1,736	1,44	1,05	0,77	0,58	1,24	0,77	0,48	0,30
BEA53	1,001	1,19	0,89	0,64	0,47	1,21	0,75	0,45	0,28
BGP77	5,000	1,86	1,35	0,99	0,72	1,55	0,90	0,55	0,32
BIR01	0,645	1,04	0,76	0,58	0,41	1,10	0,66	0,44	0,27
BIS55	1,621	1,39	1,03	0,78	0,55	1,24	0,77	0,47	0,29
BMM78	7,901	2,13	1,56	1,12	0,82	1,75	1,00	0,56	0,34
BOR33	6,450	2,00	1,49	1,07	0,79	1,61	1,01	0,57	0,33
BOU27	6,220	2,06	1,51	1,13	0,79	1,54	0,93	0,58	0,32
BOU33	7,740	2,15	1,66	1,12	0,81	1,65	0,98	0,57	0,35
CAN77c	3,000	1,62	1,17	0,90	0,64	1,34	0,85	0,50	0,31

CER95	3,000	1,69	1,19	0,90	0,68	1,38	0,85	0,49	0,30
CHA01	0,989	1,19	0,86	0,64	0,51	1,08	0,70	0,44	0,28
CHE18	0,999	1,21	0,88	0,65	0,50	1,11	0,74	0,46	0,28
DRA69	3,010	1,62	1,31	0,92	0,71	1,41	0,85	0,49	0,31
ECL28	3,088	1,59	1,23	0,83	0,66	1,38	0,84	0,51	0,32
EDC35	1,045	1,18	0,85	0,64	0,48	1,14	0,74	0,47	0,29
EGM55	1,001	1,19	0,88	0,66	0,50	1,09	0,72	0,45	0,29
EGR51	1,456	1,33	0,98	0,71	0,51	1,16	0,75	0,45	0,29
ESQ78	2,500	1,57	1,21	0,86	0,64	1,30	0,82	0,50	0,31
FRA25	1,290	1,28	0,99	0,71	0,55	1,13	0,74	0,46	0,29
GBB43	0,986	1,24	0,87	0,66	0,47	1,11	0,72	0,45	0,28
GEB69	2,841	1,64	1,18	0,92	0,64	1,30	0,85	0,52	0,31
GOR59	0,921	1,21	0,92	0,65	0,52	1,12	0,71	0,45	0,29
HER51c	0,796	1,12	0,85	0,61	0,44	1,11	0,69	0,43	0,27
HOR52	0,807	1,14	0,84	0,60	0,47	1,08	0,71	0,45	0,28
JAB77	4,889	1,86	1,40	1,02	0,75	1,55	0,89	0,55	0,32
JOU11	2,627	1,57	1,15	0,87	0,67	1,32	0,85	0,51	0,31
LAC55	2,250	1,53	1,15	0,86	0,63	1,25	0,78	0,48	0,30
LER27a	12,272	2,40	1,79	1,29	0,98	1,88	1,09	0,62	0,37
LET57	1,746	1,40	1,06	0,80	0,59	1,30	0,78	0,50	0,29
LIN55	2,070	1,47	1,08	0,77	0,58	1,29	0,77	0,50	0,28
MAL90	1,201	1,29	0,93	0,72	0,53	1,14	0,75	0,44	0,29
MAR21	0,983	1,16	0,84	0,66	0,48	1,11	0,72	0,46	0,28
MEB01	4,000	1,78	1,29	0,97	0,74	1,45	0,89	0,55	0,32
MON71	5,591	1,91	1,45	1,06	0,81	1,58	0,94	0,55	0,32
MOU01	1,075	1,22	0,88	0,68	0,50	1,14	0,72	0,45	0,28
MUN67	5,375	1,84	1,41	0,99	0,78	1,55	0,94	0,54	0,33
PPE14	3,025	1,66	1,21	0,87	0,68	1,34	0,86	0,53	0,31
RGL69	1,591	1,37	1,02	0,76	0,58	1,21	0,75	0,47	0,29
RIV35	2,824	1,55	1,13	0,87	0,66	1,39	0,82	0,50	0,30
SDB01	8,000	2,20	1,54	1,09	0,82	1,72	0,98	0,58	0,34
TOU27	3,105	1,64	1,27	0,87	0,62	1,39	0,86	0,52	0,31
TRA02	2,263	1,50	1,15	0,81	0,63	1,28	0,80	0,48	0,29
VAR72	1,037	1,18	0,89	0,66	0,49	1,17	0,73	0,44	0,29
VEN27	6,126	1,96	1,38	1,05	0,78	1,66	0,99	0,57	0,34
VIG59	1,620	1,41	1,00	0,71	0,55	1,19	0,74	0,46	0,28
VSM77	4,000	1,72	1,27	0,97	0,71	1,50	0,88	0,51	0,32
VVE70	1,978	1,50	1,10	0,85	0,62	1,23	0,74	0,48	0,29

Annexe: Seuils physico-chimiques pour le phosphore total (P)

Phosphore total (P), valeur médiane (µg P.L⁻¹)

	Profondeur	MBA				MCS			
Code Lac	moyenne théorique	тв в	3	Мо	Me	ТВ	В	Mo M	e Ma
ABB39	7,119	24	34	47	66	32	60	114	209
AIG15	31,598	15	20	30	43	21	38	83	174
AIG73	32,188	14	21	30	41	21	41	86	174
AILO2	2,088	34	49	68	97	42	77	133	238
ALB85	3,099	30	44	60	88	41	76	128	236
ALE2B	22,647	17	23	33	47	23	45	93	179
ALL01	11,038	20	28	40	56	28	54	100	196
ALL04	18,500	17	26	34	49	23	45	92	176
ALZ81	9,673	22	30	45	64	29	55	112	216
AMA10	4,385	27	39	56	82	40	69	118	228
ANG85	4,074	28	39	57	78	38	68	126	224
ANN74	41,751	13	19	26	37	19	37	79	161
ANT74	6,915	24	35	47	68	32	60	108	208
APR85	2,378	32	45	66	94	42	78	128	245
ARG19	5,801	25	35	50	71	35	64	114	219
ART64	41,057	14	19	26	38	19	38	80	161
ARZ35	8,306	22	32	43	61	31	57	106	213
AST32	6,188	24	33	49	71	33	64	109	208
AUL13	3,816	27	38	52	74	36	65	126	229
AUM44	2,012	34	46	64	87	43	78	136	240
AUR40	2,000	36	48	69	99	43	76	134	251
AVE34	28,202	16	21	31	44	21	41	86	169
AYD63	7,462	23	34	49	68	31	57	111	197
AYG64	5,704	24	35	50	77	35	62	117	221
BAG12	8,695	22	31	42	66	31	61	118	211
BAI08	4,806	27	36	53	73	35	60	118	214
BAI36	1,004	42	59	83	119	51	81	149	264
BAR01	8,000	23	33	47	66	33	57	101	200
BAR32	4,149	28	41	56	76	38	65	118	235
BAY58	2,791	32	44	62	82	38	73	131	236
BCL12	18,907	16	25	35	50	23	49	92	175
BDB40	10,597	22	30	41	59	30	53	102	196
BEA36	0,990	43	61	86	113	49	94	143	256
BEL36	1,003	43	62	87	130	53	86	159	252
BEZ41	0,977	44	63	87	123	49	86	145	255
BIG36	1,002	44	56	77	110	53	89	151	269
BIM13	11,798	20	29	40	58	27	52	99	198

BIS40	0,913	43	64	90	125	50	88	139	263	
BIS73	34,629	15	21	29	43	20	44	80	166	
BLA40	0,600	52	74	104	154	55	91	156	273	
BLC19	13,609	20	27	40	52	28	53	101	193	
BLE65	22,367	17	23	33	46	23	45	86	174	
BLI36	0,671	49	68	95	135	54	84	152	254	
BLI44	1,493	39	54	73	105	50	83	146	257	
BMC16	10,568	20	28	41	58	28	54	106	202	
BMS40	2,834	32	46	62	89	41	73	130	227	
BOR63	1,308	40	56	78	106	49	82	139	247	
BOS22	5,969	23	36	49	69	33	61	112	210	
BOU35	2,876	31	45	59	85	40	67	126	223	
BOU43	16,754	18	25	35	51	27	51	99	189	
BOU63	2,995	31	45	59	87	43	75	133	240	
BOU66	11,506	20	29	41	59	29	56	102	195	
BOU73	82,348	11	16	22	32	16	33	68	154	
BOU88	8,061	22	32	45	66	31	58	112	194	
BOU89	4,984	26	38	56	74	37	64	121	215	
BRA47	5,593	25	35	48	68	33	63	113	220	
BSA58	3,466	28	40	56	77	39	68	126	223	
BSF31	10,329	20	30	42	60	28	54	101	195	
BSJ32	4,103	28	39	54	74	38	70	121	230	
BUJ87	8,597	22	31	48	63	31	57	107	212	
BUL85	8,441	22	31	41	62	31	61	107	202	
CAE35	0,400	60	82	117	160	59	96	160	259	
CAL2B	21,703	17	24	34	48	22	44	94	177	
CAN32	3,028	30	42	59	80	39	73	131	231	
CAR35	0,796	46	67	90	132	55	87	158	267	
CAR66	15,028	19	26	38	53	25	47	98	186	
CAR83	8,633	23	32	45	62	31	56	102	211	
CAS04	30,513	15	21	31	43	21	42	85	171	
CAS63	2,027	35	48	69	96	44	76	135	244	
CAU19	3,408	31	41	59	83	42	70	127	222	
CAZ23	1,986	34	48	71	98	44	79	135	241	
CAZ40	10,328	22	30	42	61	29	56	105	195	
CEB79	7,445	24	31	47	69	32	58	113	216	
CER21	5,875	25	37	49	71	33	60	112	212	
CHA21	7,799	24	32	47	67	32	61	114	203	
CHA23	8,353	22	33	45	63	30	59	111	207	
CHA25	23,842	16	21	33	45	22	46	91	181	
CHA35	2,447	33	45	61	85	42	79	136	236	
CHA38	38,485	14	21	28	39	20	40	82	161	
CHA39	22,061	17	23	33	45	24	48	91	184	

		27	37	54	76	I	36	67	116	227	I
CHA48	4,378	25	34	51	76 73		31	62	117	211	
CHA52	5,970	18	27	39	73 54		27	52	98	188	
CHA58	14,301	29	41	57	79		41	71	136	252	
CHA63	3,037	31	48	63	86		43	81	138	237	
CHA86	2,203	30	40	60	85		39	72	125	229	
CHA87	3,622				59		29	53	103	192	
CHE38	10,474	21	29 15	43				32	69	192	
CHE73	95,221	10	23	21 32	29		15 23	32 44	87		
CHO04	23,594	17			47					177	
COD2B	13,796	19	27	39	54		25	48	101	182	
CO139	11,613	21	29	40	57		28	52	102	199	
COM23	12,452	19	27	40	57		27	53	100	190	
COR22	4,442	27	38	52	78		36	68	118	230	
COR41	0,365	61	86	121	167		60	94	157	280	
CRA18	1,771	36	52	73	98		46	79	140	241	
CRE89	11,076	21	29	41	58		29	57	105	201	
DEV07	4,821	26	38	53	76		36	65	122	215	
DRE29	7,548	24	32	46	64		32	60	113	216	
DUC56	2,359	33	48	65	93		45	75	134	238	
ECH33	3,648	28	38	57	71		40	71	133	229	
EDC23	2,688	32	44	63	87		40	73	129	223	
EDC63	4,325	28	37	49	71		39	67	118	228	
EDG36	1,003	44	61	85	122		50	84	148	262	
EGR45	4,355	28	39	52	75		40	67	124	224	
EGU36	20,673	18	24	36	48		25	47	93	190	
ENC15	24,613	16	24	33	43		23	46	90	177	
ENT13	4,800	27	39	56	76		34	65	120	221	
ENT25	3,348	29	42	58	81		39	73	125	232	
EPT35	2,397	33	43	58	77		45	72	138	236	
ESP04	30,796	15	22	30	44		22	44	87	172	
EST11	9,841	22	31	44	61		29	56	106	206	
ETI39	4,600	27	39	53	77		38	67	115	232	
ETR23	8,577	22	32	44	62		28	57	108	200	
EVJ59	3,353	30	42	59	81		40	72	123	230	
EYC05	9,374	22	31	43	62		28	58	103	195	
FEY19	4,325	27	39	53	75		36	62	117	216	
FIG2B	8,161	22	32	45	64		31	58	107	207	
FIL09	9,394	22	30	44	61		30	59	103	204	
FON36	1,027	43	59	85	116		50	85	153	243	
FOR35	0,864	47	65	87	126		54	91	148	257	
GAB36	1,006	45	61	83	114		50	83	144	249	
GAB64	12,087	19	27	39	57		27	51	103	195	
GAR09	6,906	24	34	48	67		34	61	112	217	

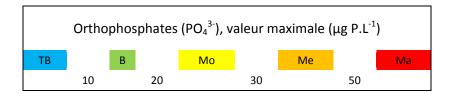
GAS14	4,386	27	37	54	78	36	66	124	227	
GDL44	1,799	36	48	70	97	45	78	143	245	
GEN82	4,696	27	35	53	72	35	63	119	231	
GER88	16,854	17	25	38	51	25	49	95	182	
GIO40	4,381	26	38	55	76	37	68	121	224	
GIR73	67,720	11	15	22	32	17	35	72	151	
GLC39	12,015	21	29	40	60	28	53	107	190	
GON57	3,072	31	41	61	80	40	72	130	238	
GOU03	2,573	33	47	62	95	40	70	130	236	
GOU22	9,884	22	30	41	59	31	54	105	199	
GOU82	7,482	24	33	47	69	32	61	107	195	
GRA15	25,625	15	21	33	47	23	45	86	174	
GRA42	14,143	18	27	38	55	27	51	97	193	
GRA85	5,420	26	38	51	75	34	63	117	206	
GRO21b	9,183	21	31	45	63	31	55	106	201	
GUE22	17,497	18	25	36	48	26	49	95	184	
HAG40	5,299	25	36	51	73	34	66	115	220	
HAR22	1,983	34	48	66	92	43	76	135	241	
HAU19	20,050	17	25	34	49	25	46	92	174	
ILA39	10,868	22	29	41	57	28	55	99	199	
ISS07	98,163	11	14	21	30	14	30	68	145	
JUG22	4,169	27	37	48	64	37	68	119	221	
LAC21	0,995	45	57	85	116	50	83	155	257	
LAC33	3,269	30	40	61	87	41	73	126	235	
LAD16	2,320	33	45	61	82	45	77	142	250	
LAF38	24,669	16	22	32	44	23	46	84	181	
LAN23	1,037	44	58	83	117	51	84	149	260	
LAN66	40,814	14	19	28	39	19	41	79	161	
LAO81	16,336	18	26	36	52	26	49	91	186	
LAR31	5,436	26	34	52	68	36	65	114	220	
LAS15	10,717	20	29	42	60	29	54	103	197	
LAT10	8,768	22	32	44	63	31	57	108	202	
LAU38	29,240	16	22	32	43	21	42	90	171	
LAV16	8,246	22	32	47	65	30	55	109	199	
LAV23	9,580	22	30	42	60	30	59	105	210	
LAV43	19,888	18	24	35	50	24	47	97	185	
LDC21	3,237	31	44	61	81	40	71	124	226	
LDC25	8,596	23	31	41	59	31	56	110	193	
LDC51	7,775	24	33	48	66	30	56	104	201	
LDC63	27,090	16	22	31	44	21	42	82	173	
LEJ85	3,490	31	42	60	83	39	70	121	210	
LEM74	154,213	9	13	18	27	13	29	62	133	
LEM85	6,361	24	35	46	71	33	61	110	208	

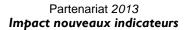
LEO40	0,778	48	69	96	134	52	88	157	266	
LES24	8,326	23	30	43	62	30	55	102	203	
LGA36	0,934	42	59	79	115	48	90	153	256	
LGM27	0,288	64	94	130	186	56	97	165	270	
LGM39	11,511	21	28	40	56	28	50	104	202	
LIE52	5,842	24	35	50	72	34	61	116	214	
LKW68	16,850	18	25	37	53	25	47	89	179	
LLI66	4,374	28	38	56	79	36	66	129	215	
LNC04	12,900	20	27	40	56	29	51	103	194	
LON88	13,271	19	28	38	53	26	51	99	200	
LOU37	1,021	45	59	87	112	48	88	150	249	
LOU64	12,878	20	28	40	55	27	55	104	200	
LPC38	6,624	24	35	49	65	32	60	110	209	
LRO39	7,681	24	34	46	65	31	56	110	207	
LSF43	0,987	44	64	85	123	50	87	153	273	
LSG81	18,189	17	24	33	51	24	47	92	186	
LUN32	11,229	20	30	42	60	29	57	105	197	
MAD55	3,345	31	41	58	84	39	70	128	217	
MAR35	1,012	42	58	82	111	50	84	148	264	
MAT66	9,376	22	30	43	63	29	56	104	199	
MAU12	20,359	17	25	34	46	24	46	92	183	
MIC68	9,793	22	30	44	62	28	53	103	199	
MIE32	5,572	25	36	51	66	36	62	118	220	
MON38	53,331	13	18	23	35	17	36	78	160	
MON63	7,822	22	33	46	65	33	62	111	203	
MON74	12,074	21	28	38	56	27	48	99	193	
MOU52	9,100	21	32	44	60	30	58	104	205	
MUS35	1,336	41	56	78	107	47	83	149	252	
NAG09	52,624	12	18	25	37	18	37	76	161	
NAN01	30,300	15	21	31	45	22	42	91	172	
NAU48	18,118	18	26	35	51	23	47	92	188	
NAU48bis	18,118	18	25	36	48	24	46	95	187	
NAU48ter	18,118	17	25	36	52	25	46	91	187	
NDC38	20,457	17	24	33	50	24	44	91	177	
NEG06	12,900	19	29	39	54	27	52	99	194	
NOY56	1,713	38	52	75	102	46	79	138	249	
ORE65	16,142	18	25	39	53	25	48	97	186	
ORX40	0,571	51	76	102	147	56	93	157	266	
OSP2A	7,219	23	34	46	68	33	60	110	215	
OUE35	1,929	33	49	70	97	44	75	138	234	
PAI35	1,713	35	51	75	95	46	78	137	242	
PAL07	20,725	17	25	34	47	25	47	94	177	
PAL38	27,410	16	22	30	45	22	43	87	172	

PAN21	6,860	24	35	47	71	30	59	110	216	
PAN58	15,270	18	26	36	53	27	49	95	189	
PAR12	15,575	19	26	36	54	25	51	97	181	
PAR40	7,559	23	33	46	67	30	59	110	200	
PAR54	2,152	35	49	66	96	46	79	138	238	
PAV63	50,832	12	17	25	36	18	36	78	159	
PDF44	1,586	37	53	72	102	47	75	148	247	
PDH35	2,865	31	44	61	88	43	74	131	229	
PET38	10,775	21	29	40	58	28	55	103	196	
PIE36	1,003	44	56	82	116	52	83	148	256	
PIN49	2,645	32	46	65	93	42	71	127	237	
PIRO3	6,394	24	34	51	70	33	61	114	212	
POI44	0,980	44	59	85	112	47	86	149	252	
PON21	8,967	23	32	44	66	29	55	109	209	
PON22	2,547	34	46	65	94	42	78	134	231	
POU31	6,529	23	33	50	69	33	60	111	209	
POU43	6,908	25	33	47	69	31	59	109	215	
PRA03	12,918	19	27	41	55	27	51	100	195	
PRA33	1,075	41	58	81	117	49	86	145	246	
PRA66	4,975	28	37	52	74	37	64	119	217	
PRO44	2,009	34	49	70	91	45	76	129	253	
PUI18	3,261	31	42	58	79	39	72	129	233	
PUY48	24,216	16	22	33	48	22	45	87	177	
PUY66	11,121	21	30	40	58	28	53	105	202	
QUE63	12,730	20	28	40	58	27	51	102	192	
QUI04	11,676	21	29	40	55	29	55	105	201	
RAB61	7,164	24	32	48	68	33	59	110	205	
RAM23	1,290	41	56	77	112	49	85	142	238	
RAV34	11,144	21	30	41	58	29	56	101	195	
RBO63	45,225	13	18	27	38	19	39	76	157	
RCB01	8,418	23	31	46	63	32	57	104	201	
RCE35	7,283	25	35	48	65	33	61	108	205	
RCM01	6,481	25	34	48	70	32	61	112	214	
RCS70	12,769	20	29	40	56	27	52	107	198	
RDC23	8,945	22	32	46	62	31	57	109	200	
RDV35	5,596	26	34	51	71	34	63	117	210	
REA13	1,628	37	52	71	101	47	78	143	242	
REM25	9,878	21	29	43	59	29	54	103	194	
RFB63	19,608	17	24	35	51	24	47	91	169	
RGM38	59,665	12	16	25	36	17	37	73	160	
RIN53	2,249	32	46	64	88	44	77	132	233	
RKU22	3,911	27	40	56	76	38	70	121	214	
RLB11	9,001	23	32	44	64	29	56	106	206	

RMC73	51,132	12	18	25	37	18	37	77	161	ĺ
RMN29	2,988	30	44	59	86	37	69	131	234	
RMP85	5,166	26	36	51	73	36	65	120	224	
RMR49	4,032	28	40	57	81	37	73	126	219	
ROC85	4,236	27	37	54	74	35	62	117	219	
ROP22	5,934	25	34	52	73	34	64	113	223	
ROS73	67,116	12	17	25	34	17	34	74	148	
ROU21	1,003	44	62	81	124	50	88	147	257	
RPR71	8,809	22	31	44	60	29	57	102	201	
RST35	8,444	22	33	46	66	31	59	112	199	
RSV34	5,655	25	37	51	68	35	61	120	227	
RTN71	6,206	26	34	50	69	34	59	113	211	
RTV71	3,976	27	40	58	80	36	67	130	228	
RVH22	7,123	24	34	48	66	34	61	113	202	
SAL34	14,146	19	27	36	55	26	48	94	188	
SAU36	0,947	43	58	81	111	46	81	145	262	
SAU38	34,149	14	21	30	41	20	42	82	172	
SCA83	16,321	18	26	36	51	24	49	95	176	
SCR04	34,883	14	20	29	40	21	40	82	166	
SEC15	24,461	16	23	32	46	22	46	86	176	
SEI10	9,572	22	31	44	63	29	56	106	204	
SER63	9,915	21	31	43	62	28	56	100	203	
SET58	6,596	24	34	49	66	34	59	113	212	
SFP53	4,211	28	38	53	75	37	70	125	230	
SID18	7,474	24	34	48	67	31	57	107	217	
SIL85	7,520	23	32	48	64	32	58	111	210	
SMI29	3,001	31	43	59	86	39	72	131	227	
SOR71	5,358	26	37	51	73	33	65	117	225	
SOU09	34,606	14	20	28	39	21	39	82	162	
SOU40	0,596	51	69	97	128	53	90	149	260	
SPA87	6,976	23	35	46	66	33	63	111	200	
SPC38	26,119	15	22	31	44	22	44	87	182	
SPO04	46,262	13	19	26	36	19	38	78	163	
SPO25	23,528	16	23	32	44	24	47	90	184	
STO57	3,038	31	41	59	81	40	73	130	229	
SUD41	1,008	42	61	90	122	48	83	146	256	
SYL01	13,253	20	28	38	55	26	47	96	189	
TAI40	3,583	29	41	60	81	39	72	124	218	
TAZ63	38,950	13	20	28	37	19	40	82	174	
TOL2A	48,066	13	18	27	39	18	36	75	164	
TOR82	4,232	28	39	55	75	36	66	125	228	
TOU79	11,055	21	30	42	57	28	52	103	201	
TRE19	8,731	22	31	45	61	30	56	107	204	

TDE25	4.062	34	51	72	104	1	44	75	135	253
TRE35	1,863	24	33	47	64		32	58	106	212
TRI19	7,668	26	36	52	70		35	61	116	222
TSC32	5,837	29	40	55	82		38	67	132	232
TUI45	3,632	41	56	76	108		48	83	143	269
TYX63	1,405	28	39	76 57	79		46 37	64		209
UBY32	3,822		23					46	122	
VAL38	20,210	18		33	47		24		95 06	189
VAL39	16,943	18	26	37	52		25	48	96	181
VAL45	2,017	36	49	70	99		44	77	137	243
VAS87	11,998	19	29	39	58		27	54	101	190
VAU58	3,237	30	42	60	82		39	72	130	229
VEN06	8,600	22	32	45	61		31	56	109	206
VER38	23,761	16	23	32	44		23	44	91	177
VER83	19,822	16	26	34	49		24	46	95	183
VEZ50	11,701	20	29	41	58		28	53	101	203
VFO08	3,739	27	38	54	75		38	67	128	220
VIG36	0,790	49	67	93	134		53	91	160	270
VIL12	6,292	25	34	48	67		32	62	116	215
VIL35	4,136	28	40	57	79		39	67	120	227
VIL42	26,888	16	23	30	48		22	44	84	169
VIL48	21,933	17	23	33	47		24	45	88	177
VIL52	5,497	25	37	51	79		34	64	112	220
VIL66	9,651	20	32	44	62		31	55	102	202
VIN66	15,958	18	26	38	52		27	50	93	189
VIO44	3,830	29	39	56	80		38	66	125	225
VOU39	38,035	14	20	27	39		20	40	81	164
VPR88	18,346	17	25	35	51		25	47	95	182
YRI40	5,160	26	38	51	72		35	65	122	214
AME54	0,693	50	69	95	142		53	91	152	265
ANS69	7,000	23	35	49	67		33	62	104	201
ARD62	1,288	41	54	75	100		48	83	147	243
ARJ40	16,000	18	27	37	53		25	50	91	188
ARM77	1,000	44	58	81	113		51	86	145	248
AUD62	1,736	36	51	70	98		44	74	142	246
BEA53	1,001	43	60	83	119		50	82	149	250
BGP77	5,000	25	38	52	74		36	66	119	224
BIR01	0,645	50	71	98	135		55	91	157	267
BIS55	1,621	37	53	72	100		45	79	140	240
BMM78	7,901	23	33	46	65		32	61	108	205
BOR33	6,450	24	34	47	69		33	59	115	212
BOU27	6,220	25	35	48	71		33	61	113	215
BOU33	7,740	23	33	46	65		31	59	112	205
CAN77c	3,000	30	41	59	84		40	71	130	238


CER95	3,000	30	42	59	82	41	72	125	235
CHA01	0,989	42	60	83	119	52	87	145	267
CHE18	0,999	44	58	82	116	49	83	145	260
DRA69	3,010	31	42	59	79	40	71	131	233
ECL28	3,088	30	43	60	89	43	72	131	234
EDC35	1,045	44	61	89	127	50	81	148	251
EGM55	1,001	43	60	87	118	48	88	150	256
EGR51	1,456	39	54	75	108	50	81	153	249
ESQ78	2,500	32	46	63	91	41	74	132	230
FRA25	1,290	40	57	78	113	48	82	142	263
GBB43	0,986	44	61	85	124	50	85	150	258
GEB69	2,841	32	42	62	79	40	70	127	229
GOR59	0,921	44	60	80	109	54	82	140	246
HER51c	0,796	47	64	90	130	52	83	153	260
HOR52	0,807	46	66	92	127	50	92	148	256
JAB77	4,889	27	36	50	68	35	63	119	222
JOU11	2,627	33	44	61	88	43	73	127	229
LAC55	2,250	35	47	64	91	44	76	132	242
LER27a	12,272	21	28	40	57	28	51	102	198
LET57	1,746	37	50	69	96	46	81	136	245
LIN55	2,070	36	49	66	96	44	78	142	242
MAL90	1,201	42	58	78	108	46	87	154	253
MAR21	0,983	43	61	87	118	50	89	147	259
MEB01	4,000	28	40	56	77	38	68	125	218
MON71	5,591	25	35	49	71	33	62	114	216
MOU01	1,075	43	59	86	116	48	83	145	255
MUN67	5,375	26	36	52	76	33	61	118	220
PPE14	3,025	31	43	61	89	40	70	120	226
RGL69	1,591	35	51	72	101	46	81	135	250
RIV35	2,824	32	44	63	85	40	71	129	240
SDB01	8,000	21	32	44	68	31	60	107	201
TOU27	3,105	31	42	60	86	41	72	132	224
TRA02	2,263	34	46	68	90	42	78	126	240
VAR72	1,037	43	57	85	115	49	84	152	257
VEN27	6,126	25	35	51	72	34	62	113	208
VIG59	1,620	36	53	73	105	46	81	139	241
VSM77	4,000	28	38	55	81	37	68	123	221
VVE70	1,978	35	47	67	87	42	79	131	246



Annexe: Seuils physico-chimiques pour orthophosphates (PO₄³⁻)

Pour tous les plans d'eau les seuils sont les mêmes et sont ceux du SEQ-PE 2003 :

Annexe: Seuils physico-chimiques pour l'ammonium (NH₄⁺)

Ammonium (NH_4^+), valeur maximale (µg NH_4^+ .L $^{-1}$)

	Profondeur				mam (ivii) j, vaica		FO . 11.14		
	moyenne	TD		MBA		TD		MCS	
Code Lac	théorique		3	Mo	Me	ТВ		Мо	Me
ABB39	7,119	134	191	237	335	135	212	331	498
AIG15	31,598	92	119	159	202	98	165	251	423
AIG73	32,188	94	113	175	225	96	161	264	412
AIL02	2,088	194	229	326	428	166	236	361	556
ALB85	3,099	158	209	271	401	156	233	377	546
ALE2B	22,647	100	131	169	245	109	168	273	451
ALL01	11,038	119	153	201	295	119	180	300	467
ALL04	18,500	101	137	196	258	109	175	281	450
ALZ81	9,673	125	159	213	321	140	200	305	482
AMA10	4,385	163	199	265	336	144	207	354	556
ANG85	4,074	156	195	253	360	150	224	347	515
ANN74	41,751	88	115	164	206	92	150	246	425
ANT74	6,915	134	173	229	342	134	203	318	469
APR85	2,378	190	238	334	400	167	264	362	529
ARG19	5,801	138	185	247	312	151	209	329	502
ART64	41,057	86	112	144	202	90	148	244	417
ARZ35	8,306	125	168	216	324	137	189	319	499
AST32	6,188	144	175	245	324	138	205	323	485
AUL13	3,816	170	209	251	317	153	210	335	533
AUM44	2,012	179	239	301	390	163	246	362	571
AUR40	2,000	180	235	323	406	158	247	369	530
AVE34	28,202	99	127	170	209	99	157	269	432
AYD63	7,462	142	180	231	305	130	200	331	505
AYG64	5,704	138	188	268	314	144	213	320	533
BAG12	8,695	137	180	218	283	122	200	320	472
BAI08	4,806	150	188	241	332	142	231	330	472
BAI36	1,004	230	289	377	527	189	258	400	573
BAR01	8,000	128	168	243	331	134	205	317	494
BAR32	4,149	153	201	257	356	134	215	355	503
BAY58	2,791	162	206	280	356	157	226	350	508
BCL12	18,907	102	148	175	237	110	177	285	440
BDB40	10,597	128	170	206	275	127	200	284	464
BEA36	0,990	232	275	364	482	189	270	404	589
BEL36	1,003	244	301	378	490	180	266	402	573
BEZ41	0,977	220	314	363	504	191	271	379	583
BIG36	1,002	208	282	341	447	192	287	396	602
BIM13	11,798	122	156	214	266	118	182	294	469
-	,	ı				I			

		226	200	422	F00	170	275	271	F70
BIS40	0,913	236	288	422	500	170	275	371	570
BIS73	34,629	96	119	161	210	100	153	250	405
BLA40	0,600	253	331	454	555	186	290	377	605
BLC19	13,609	123	149	212	284	115	193	304	453
BLE65	22,367	105	126	188	225	109	165	282	442
BLI36	0,671	269	336	396	527	183	267	408	576
BLI44	1,493	211	265	369	429	174	255	391	556
BMC16	10,568	132	167	205	280	121	198	308	481
BMS40	2,834	165	215	280	382	164	243	359	515
BOR63	1,308	199	303	353	463	174	256	375	552
BOS22	5,969	151	172	234	350	134	207	339	496
BOU35	2,876	166	220	318	371	151	234	323	527
BOU43	16,754	113	151	186	249	111	179	292	447
BOU63	2,995	166	212	275	392	155	229	340	516
BOU66	11,506	125	165	219	269	120	190	297	483
BOU73	82,348	70	97	137	164	79	136	221	401
BOU88	8,061	131	172	223	296	124	206	293	499
BOU89	4,984	145	195	253	320	138	222	333	475
BRA47	5,593	138	183	255	299	133	217	343	511
BSA58	3,466	156	201	297	351	149	226	354	506
BSF31	10,329	119	162	218	274	120	198	290	476
BSJ32	4,103	145	212	248	340	142	227	326	546
BUJ87	8,597	132	194	227	321	124	196	322	487
BUL85	8,441	129	174	228	275	134	200	308	483
CAE35	0,400	266	368	485	646	201	290	415	583
CAL2B	21,703	98	136	189	230	107	175	273	423
CAN32	3,028	156	220	302	339	162	221	365	519
CAR35	0,796	247	296	389	514	193	273	395	569
CAR66	15,028	116	147	191	241	115	178	296	466
CAR83	8,633	132	176	225	292	133	204	311	472
CAS04	30,513	96	123	162	213	101	163	259	433
CAS63	2,027	188	243	302	403	167	231	368	540
CAU19	3,408	167	225	281	347	142	230	354	524
CAZ23	1,986	186	251	304	463	176	248	392	527
CAZ40	10,328	122	156	226	294	122	190	299	449
CEB79	7,445	133	170	226	307	132	205	314	488
CER21	5,875	137	180	246	315	135	204	321	496
CHA21	7,799	130	181	221	299	131	198	320	473
CHA23	8,353	134	184	228	293	127	192	314	490
CHA25	23,842	100	132	179	228	113	171	282	438
CHA35	2,447	174	235	277	357	161	241	388	536
CHA38	38,485	86	117	166	207	87	151	249	434
CHA39	22,061	105	131	174	259	106	174	263	447
	,_,					I			

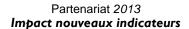
	I			• • •	222	l	•	0.45	
CHA48	4,378	163	197	246	332	142	211	345	487
CHA52	5,970	141	178	242	315	136	203	320	505
CHA58	14,301	121	158	194	266	116	190	314	475
CHA63	3,037	175	221	264	366	159	216	340	500
CHA86	2,203	172	230	302	373	157	234	361	546
CHA87	3,622	156	207	278	355	163	220	358	532
CHE38	10,474	126	173	205	302	122	200	290	490
CHE73	95,221	70	87	122	156	79	134	233	386
CHO04	23,594	99	130	178	225	107	167	260	454
COD2B	13,796	116	155	216	260	108	182	312	464
COI39	11,613	116	150	207	264	115	197	304	455
COM23	12,452	113	162	197	288	125	190	295	462
COR22	4,442	163	200	270	333	141	217	344	504
COR41	0,365	281	360	510	651	215	295	421	636
CRA18	1,771	195	263	329	434	171	257	370	560
CRE89	11,076	126	171	208	280	120	198	311	462
DEV07	4,821	143	203	255	338	151	219	349	541
DRE29	7,548	140	169	228	329	138	202	328	491
DUC56	2,359	176	233	297	394	159	232	363	557
ECH33	3,648	169	211	277	334	147	223	362	541
EDC23	2,688	170	220	309	371	156	232	370	519
EDC63	4,325	143	185	242	321	144	229	349	533
EDG36	1,003	209	278	381	477	168	264	390	610
EGR45	4,355	160	191	273	339	142	218	334	566
EGU36	20,673	101	132	171	229	108	176	290	463
ENC15	24,613	99	134	185	231	101	156	272	441
ENT13	4,800	153	192	252	356	142	213	331	486
ENT25	3,348	168	208	269	354	152	243	354	530
EPT35	2,397	182	214	263	338	154	245	353	524
ESP04	30,796	88	126	163	230	98	161	272	422
EST11	9,841	123	159	223	304	127	200	311	486
ETI39	4,600	153	191	258	364	150	215	349	528
ETR23	8,577	136	163	217	306	130	210	304	475
EVJ59	3,353	161	206	288	351	147	245	343	518
EYC05	9,374	133	181	222	276	126	200	312	499
FEY19	4,325	154	191	250	338	136	213	328	528
FIG2B	8,161	127	174	243	291	126	203	316	475
FIL09	9,394	125	165	217	281	125	191	307	457
FON36	1,027	218	279	390	488	175	280	380	561
FOR35	0,864	232	294	373	510	186	265	403	612
GAB36	1,006	213	275	356	460	173	258	375	543
GAB64	12,087	119	154	191	278	119	185	289	476
GAR09	6,906	142	178	241	336	134	204	334	513

	i					i			
GAS14	4,386	159	192	270	337	138	217	327	503
GDL44	1,799	193	263	320	416	171	254	364	566
GEN82	4,696	161	199	259	320	146	224	338	500
GER88	16,854	108	156	184	258	109	169	272	453
GIO40	4,381	148	198	279	340	142	219	361	531
GIR73	67,720	75	98	128	180	82	147	236	392
GLC39	12,015	120	154	195	286	116	194	300	471
GON57	3,072	165	213	280	354	155	244	346	557
GOU03	2,573	171	221	292	396	155	236	353	516
GOU22	9,884	121	158	205	296	130	194	295	477
GOU82	7,482	138	178	231	307	129	206	314	504
GRA15	25,625	99	121	182	235	109	165	273	439
GRA42	14,143	113	144	209	269	115	179	292	486
GRA85	5,420	151	193	245	318	140	227	322	496
GRO21b	9,183	138	174	214	331	138	189	313	465
GUE22	17,497	106	153	186	260	115	179	279	489
HAG40	5,299	139	185	247	326	139	211	330	488
HAR22	1,983	200	226	301	378	171	245	367	567
HAU19	20,050	101	140	177	255	102	173	284	441
ILA39	10,868	132	167	224	266	124	178	307	481
ISS07	98,163	69	92	131	163	77	127	237	373
JUG22	4,169	159	186	231	329	151	229	354	515
LAC21	0,995	232	284	357	512	176	266	381	587
LAC33	3,269	172	210	278	359	152	237	356	546
LAD16	2,320	190	239	295	351	169	250	376	534
LAF38	24,669	101	139	184	224	103	168	269	440
LAN23	1,037	202	276	356	489	198	273	395	610
LAN66	40,814	89	102	151	195	90	144	248	426
LAO81	16,336	109	141	180	248	119	168	276	464
LAR31	5,436	153	188	243	309	138	215	334	522
LAS15	10,717	116	170	205	276	124	205	302	491
LAT10	8,768	128	167	212	303	127	202	312	487
LAU38	29,240	97	133	156	211	100	149	276	428
LAV16	8,246	133	180	224	317	127	194	297	500
LAV23	9,580	127	163	212	278	123	191	319	488
LAV43	19,888	108	134	192	229	109	177	283	443
LDC21	3,237	167	211	286	370	152	229	367	530
LDC25	8,596	132	159	205	268	123	202	309	489
LDC51	7,775	141	176	214	331	128	196	302	471
LDC63	27,090	91	126	172	231	97	157	240	463
LEJ85	3,490	161	224	275	365	150	232	323	548
LEM74	154,213	65	85	105	145	68	122	209	365
LEM85	6,361	153	178	241	308	134	211	314	489

15040	0.770	231	309	433	553	187	282	396	567
LEO40	0,778	121	162	216	279	129	197	315	468
LES24	8,326	221	276	358	445	182	272	385	565
LGA36	0,934	314	400	519	742	192	291	407	611
LGM27	0,288	118	158	208	257	125	196	299	507
LGM39	11,511	141	185	244	304	143	217	333	538
LIE52	5,842	103	151	202	239	116	181	293	454
LKW68	16,850								
LLI66	4,374	159	212	280	338	144	217 188	344 306	516 499
LNC04	12,900	114	151	201	264	123			
LON88	13,271	114	161	198	258	111	182	292	458
LOU37	1,021	214	273	362	476	181	256	371	555
LOU64	12,878	119	149	205	266	113	193	281	486
LPC38	6,624	135	175	228	339	135	207	324	493
LRO39	7,681	129	182	226	316	128	195	313	492
LSF43	0,987	237	314	374	515	180	268	376	584
LSG81	18,189	107	139	182	241	111	164	278	460
LUN32	11,229	130	152	205	279	126	191	315	489
MAD55	3,345	159	210	275	356	160	219	347	526
MAR35	1,012	211	290	379	453	182	248	385	592
MAT66	9,376	125	167	242	279	125	198	321	503
MAU12	20,359	101	139	174	242	109	176	282	430
MIC68	9,793	119	161	213	284	117	183	301	478
MIE32	5,572	135	183	235	300	141	204	323	528
MON38	53,331	79	106	149	176	89	145	242	404
MON63	7,822	124	169	220	298	138	218	331	493
MON74	12,074	114	149	207	274	117	179	287	479
MOU52	9,100	128	169	229	284	120	197	311	491
MUS35	1,336	217	277	348	423	169	253	373	557
NAG09	52,624	84	115	139	179	83	138	254	401
NAN01	30,300	93	131	170	223	99	169	269	417
NAU48	18,118	108	145	191	263	115	179	277	444
NAU48bis	18,118	104	136	184	257	109	177	301	453
NAU48ter	18,118	107	142	187	238	117	178	286	441
NDC38	20,457	102	135	175	238	102	173	271	442
NEG06	12,900	121	151	216	271	118	179	299	471
NOY56	1,713	195	272	315	447	178	258	370	592
ORE65	16,142	109	148	199	266	114	175	290	458
ORX40	0,571	257	323	429	548	192	304	416	582
OSP2A	7,219	134	169	224	295	139	217	320	497
OUE35	1,929	180	259	307	442	165	244	349	549
PAI35	1,713	186	238	347	422	170	239	363	525
PAL07	20,725	110	131	176	231	114	172	282	439
PAL38	27,410	97	132	166	218	99	165	257	413

	i								
PAN21	6,860	136	200	239	307	133	201	314	540
PAN58	15,270	111	143	203	258	115	179	291	487
PAR12	15,575	103	154	198	247	108	177	271	445
PAR40	7,559	135	174	235	298	133	207	311	475
PAR54	2,152	179	251	304	437	152	246	363	541
PAV63	50,832	81	110	137	198	90	152	239	395
PDF44	1,586	193	246	325	407	177	255	378	528
PDH35	2,865	168	229	296	414	164	227	352	528
PET38	10,775	121	154	227	267	117	191	313	499
PIE36	1,003	214	270	340	476	187	267	383	573
PIN49	2,645	166	237	290	401	168	234	359	540
PIRO3	6,394	139	178	233	334	137	204	313	486
POI44	0,980	218	310	369	467	177	269	370	585
PON21	8,967	125	171	225	289	124	198	308	510
PON22	2,547	171	223	292	384	160	234	362	535
POU31	6,529	143	185	230	314	130	216	315	500
POU43	6,908	131	184	226	317	128	200	324	498
PRA03	12,918	120	162	194	270	122	190	293	489
PRA33	1,075	213	283	368	441	176	265	409	567
PRA66	4,975	154	188	253	321	142	203	329	468
PRO44	2,009	175	233	323	405	176	256	345	566
PUI18	3,261	159	227	276	354	145	232	353	557
PUY48	24,216	104	131	169	226	111	174	260	446
PUY66	11,121	120	159	206	280	122	188	301	467
QUE63	12,730	113	147	204	260	121	184	278	465
QUI04	11,676	126	152	213	261	119	185	312	484
RAB61	7,164	134	169	251	321	137	208	333	484
RAM23	1,290	208	267	347	459	170	265	371	588
RAV34	11,144	119	160	203	290	123	181	304	478
RBO63	45,225	86	111	140	188	93	144	255	408
RCB01	8,418	135	171	241	280	124	198	321	487
RCE35	7,283	135	182	232	309	144	209	313	491
RCM01	6,481	132	184	252	350	131	214	325	514
RCS70	12,769	120	155	195	264	116	196	296	491
RDC23	8,945	121	165	216	315	132	197	305	485
RDV35	5,596	145	193	251	311	144	206	338	502
REA13	1,628	190	275	327	425	178	242	381	539
REM25	9,878	124	175	211	272	125	202	303	489
RFB63	19,608	106	142	177	236	114	174	290	442
RGM38	59,665	79	102	141	189	86	143	227	413
RIN53	2,249	173	240	284	394	161	249	362	555
RKU22	3,911	160	219	282	339	145	217	341	514
RLB11	9,001	129	181	217	314	125	198	302	470

	i									
RMC73	51,132	78	111	140	186	91	151	240	394	
RMN29	2,988	165	237	283	370	154	221	342	517	
RMP85	5,166	143	206	262	351	149	216	326	504	
RMR49	4,032	166	199	259	348	141	224	333	539	
ROC85	4,236	157	192	261	370	137	229	335	510	
ROP22	5,934	144	189	243	313	148	208	317	540	
ROS73	67,116	75	104	139	196	81	139	253	389	
ROU21	1,003	228	280	355	488	192	260	401	592	
RPR71	8,809	125	163	207	287	135	197	309	458	
RST35	8,444	139	170	225	287	135	200	292	473	
RSV34	5,655	150	186	237	306	138	214	313	504	
RTN71	6,206	147	188	243	335	135	204	322	495	
RTV71	3,976	158	207	258	369	147	241	327	490	
RVH22	7,123	130	187	250	314	137	204	330	483	
SAL34	14,146	122	152	208	251	115	191	280	445	
SAU36	0,947	213	276	367	459	177	264	406	584	
SAU38	34,149	94	131	157	210	100	159	261	442	
SCA83	16,321	113	144	195	255	107	173	281	443	
SCR04	34,883	94	118	164	201	96	161	258	407	
SEC15	24,461	99	126	170	238	104	168	267	433	
SEI10	9,572	126	157	227	294	124	194	295	481	
SER63	9,915	123	164	231	278	125	184	299	470	
SET58	6,596	140	178	233	306	144	212	326	498	
SFP53	4,211	146	212	267	315	145	227	348	526	
SID18	7,474	129	181	236	325	131	204	308	509	
SIL85	7,520	139	168	240	294	133	204	315	496	
SMI29	3,001	170	231	298	357	158	239	352	535	
SOR71	5,358	148	189	264	322	140	211	342	539	
SOU09	34,606	96	114	167	202	97	149	268	427	
SOU40	0,596	267	307	417	522	187	275	386	571	
SPA87	6,976	135	176	224	299	132	216	340	493	
SPC38	26,119	100	130	167	216	102	171	286	426	
SPO04	46,262	85	107	148	188	94	150	262	413	
SPO25	23,528	102	129	165	237	107	166	283	458	
STO57	3,038	171	205	268	352	156	245	330	511	
SUD41	1,008	235	305	373	497	181	270	395	562	
SYL01	13,253	111	148	203	256	113	184	279	442	
TAI40	3,583	169	209	265	361	152	217	349	533	
TAZ63	38,950	87	113	157	208	91	154	259	404	
TOL2A	48,066	82	115	146	197	87	143	255	402	
TOR82	4,232	158	206	270	330	144	220	332	520	
TOU79	11,055	120	166	207	294	124	180	310	459	
TRE19	8,731	133	167	226	317	127	201	316	484	



	Ī								
TRE35	1,863	189	237	328	441	169	242	358	542
TRI19	7,668	135	168	225	291	138	207	322	490
TSC32	5,837	136	193	238	332	147	208	318	512
TUI45	3,632	159	219	268	358	152	234	335	520
TYX63	1,405	194	254	370	455	180	257	376	553
UBY32	3,822	157	214	276	340	146	216	340	515
VAL38	20,210	103	133	191	240	107	173	281	455
VAL39	16,943	107	139	190	242	106	170	291	464
VAL45	2,017	169	265	313	414	169	248	365	546
VAS87	11,998	117	156	208	260	117	197	298	486
VAU58	3,237	161	210	273	355	159	234	337	517
VEN06	8,600	130	172	210	332	131	206	312	461
VER38	23,761	99	138	181	224	100	158	270	434
VER83	19,822	105	138	182	239	111	174	266	449
VEZ50	11,701	114	158	187	266	120	187	300	466
VFO08	3,739	156	198	263	364	147	226	329	508
VIG36	0,790	227	343	411	541	191	287	393	585
VIL12	6,292	138	192	241	297	133	198	318	503
VIL35	4,136	157	199	290	332	152	223	335	534
VIL42	26,888	102	121	177	217	110	167	270	454
VIL48	21,933	105	131	175	248	105	173	280	479
VIL52	5,497	150	195	244	362	143	207	348	479
VIL66	9,651	121	168	225	274	120	195	318	475
VIN66	15,958	112	141	194	247	113	182	277	472
VIO44	3,830	156	216	252	339	141	223	333	531
VOU39	38,035	91	116	168	201	97	147	249	405
VPR88	18,346	116	142	198	248	107	176	285	466
YRI40	5,160	151	189	244	315	149	218	345	506
AME54	0,693	238	310	433	567	204	271	397	605
ANS69	7,000	142	177	232	304	130	204	322	502
ARD62	1,288	199	249	319	431	178	259	352	572
ARJ40	16,000	109	153	186	242	111	184	275	457
ARM77	1,000	210	298	362	453	178	274	403	599
AUD62	1,736	200	255	309	403	167	263	370	540
BEA53	1,001	221	296	404	516	172	272	392	586
BGP77	5,000	146	185	244	330	144	212	337	498
BIR01	0,645	261	305	427	546	186	281	395	573
BIS55	1,621	190	251	342	410	167	247	377	548
BMM78	7,901	121	185	227	302	134	209	301	488
BOR33	6,450	144	188	233	303	130	201	316	502
BOU27	6,220	138	179	236	320	128	225	330	488
BOU33	7,740	132	174	248	315	127	209	303	492
CAN77c	3,000	170	205	284	367	156	227	333	560

CER95	3,000	159	209	274	361	152	226	354	537	1
CHA01	0,989	232	274	358	497	184	262	392	583	
CHE18	0,999	243	275	365	478	184	261	388	560	
DRA69	3,010	171	203	286	355	148	237	338	521	
ECL28	3,088	158	226	281	372	152	245	347	531	
EDC35	1,045	205	280	365	476	194	259	409	554	
EGM55	1,001	217	285	406	485	181	259	386	558	
EGR51	1,456	193	264	350	446	165	266	392	592	
ESQ78	2,500	184	222	285	372	162	247	379	553	
FRA25	1,290	202	260	351	449	173	259	398	573	
GBB43	0,986	230	282	375	485	184	258	403	554	
GEB69	2,841	170	214	281	346	155	241	354	517	
GOR59	0,921	218	274	352	467	186	268	397	581	
HER51c	0,796	238	303	416	532	182	265	384	584	
HOR52	0,807	227	292	380	485	173	277	402	571	
JAB77	4,889	153	188	241	320	142	228	334	497	
JOU11	2,627	170	227	283	361	153	228	353	555	
LAC55	2,250	173	247	287	386	169	226	357	556	
LER27a	12,272	117	148	201	262	123	191	297	481	
LET57	, 1,746	186	249	309	417	174	248	350	533	
LIN55	2,070	182	239	301	398	169	252	368	550	
MAL90	1,201	206	275	336	447	183	267	395	601	
MAR21	0,983	229	303	371	497	194	256	406	612	
MEB01	4,000	152	197	259	379	153	224	353	514	
MON71	5,591	137	190	235	318	145	220	331	498	
MOU01	1,075	208	294	357	470	186	262	371	545	
MUN67	5,375	141	204	246	324	138	225	311	528	
PPE14	3,025	162	216	278	387	148	225	347	505	
RGL69	1,591	185	246	336	471	172	258	389	556	
RIV35	2,824	173	219	326	364	162	238	356	517	
SDB01	8,000	125	181	224	305	133	202	311	483	
TOU27	3,105	162	231	282	354	152	222	342	541	
TRA02	2,263	175	236	305	370	152	252	347	551	
VAR72	1,037	231	268	353	454	173	252	375	565	
VEN27	6,126	138	179	261	322	134	212	302	486	
VIG59	1,620	189	274	347	433	167	262	366	569	
VSM77	4,000	149	198	258	339	147	225	357	512	
VVE70	1,978	184	234	287	378	169	250	373	532	

Annexe: Seuils physico-chimiques pour les nitrates (NO₃⁻)

	Profondeur		Nitrates (NO ₃ -),	valeur maximale (mg	NO ₃ L ⁻¹)
Code Lac	moyenne théorique	ТВ	В	10 r	Me Ma
ABB39	7,119	2,2	5,3	12,6	30,1
AIG15	31,598	1,2	2,6	5,6	12,1
AIG73	32,188	1,2	2,6	5,6	12,1
AIL02	2,088	2,2	5,3	12,6	30,1
ALB85	3,099	2,2	5,3	12,6	30,1
ALE2B	22,647	1,2	2,6	5,6	12,1
ALL01	11,038	2,2	5,3	12,6	30,1
ALL04	18,500	1,2	2,6	5,6	12,1
ALZ81	9,673	2,2	5,3	12,6	30,1
AMA10	4,385	2,2	5,3	12,6	30,1
ANG85	4,074	2,2	5,3	12,6	30,1
ANN74	41,751	1,2	2,6	5,6	12,1
ANT74	6,915	2,2	5,3	12,6	30,1
APR85	2,378	2,2	5,3	12,6	30,1
ARG19	5,801	2,2	5,3	12,6	30,1
ART64	41,057	1,2	2,6	5,6	12,1
ARZ35	8,306	2,2	5,3	12,6	30,1
AST32	6,188	2,2	5,3	12,6	30,1
AUL13	3,816	2,2	5,3	12,6	30,1
AUM44	2,012	2,2	5,3	12,6	30,1
AUR40	2,000	2,2	5,3	12,6	30,1
AVE34	28,202	1,2	2,6	5,6	12,1
AYD63	7,462	2,2	5,3	12,6	30,1
AYG64	5,704	2,2	5,3	12,6	30,1
BAG12	8,695	2,2	5,3	12,6	30,1
BAI08	4,806	2,2	5,3	12,6	30,1
BAI36	1,004	2,2	5,3	12,6	30,1
BAR01	8,000	2,2	5,3	12,6	30,1
BAR32	4,149	2,2	5,3	12,6	30,1
BAY58	2,791	2,2	5,3	12,6	30,1
BCL12	18,907	1,2	2,6	5,6	12,1
BDB40	10,597	2,2	5,3	12,6	30,1
BEA36	0,990	2,2	5,3	12,6	30,1
BEL36	1,003	2,2	5,3	12,6	30,1
BEZ41	0,977	2,2	5,3	12,6	30,1
BIG36	1,002	2,2	5,3	12,6	30,1
BIM13	11,798	2,2	5,3	12,6	30,1

		1 22	F 2	12.6	20.4
BIS40	0,913	2,2	5,3	12,6	30,1
BIS73	34,629	1,2	2,6	5,6	12,1
BLA40	0,600	2,2	5,3	12,6	30,1
BLC19	13,609	2,2	5,3	12,6	30,1
BLE65	22,367	1,2	2,6	5,6	12,1
BLI36	0,671	2,2	5,3	12,6	30,1
BLI44	1,493	2,2	5,3	12,6	30,1
BMC16	10,568	2,2	5,3	12,6	30,1
BMS40	2,834	2,2	5,3	12,6	30,1
BOR63	1,308	2,2	5,3	12,6	30,1
BOS22	5,969	2,2	5,3	12,6	30,1
BOU35	2,876	2,2	5,3	12,6	30,1
BOU43	16,754	1,2	2,6	5,6	12,1
BOU63	2,995	2,2	5,3	12,6	30,1
BOU66	11,506	2,2	5,3	12,6	30,1
BOU73	82,348	1,2	2,6	5,6	12,1
BOU88	8,061	2,2	5,3	12,6	30,1
BOU89	4,984	2,2	5,3	12,6	30,1
BRA47	5,593	2,2	5,3	12,6	30,1
BSA58	3,466	2,2	5,3	12,6	30,1
BSF31	10,329	2,2	5,3	12,6	30,1
BSJ32	4,103	2,2	5,3	12,6	30,1
BUJ87	8,597	2,2	5,3	12,6	30,1
BUL85	8,441	2,2	5,3	12,6	30,1
CAE35	0,400	2,2	5,3	12,6	30,1
CAL2B	21,703	1,2	2,6	5,6	12,1
CAN32	3,028	2,2	5,3	12,6	30,1
CAR35	0,796	2,2	5,3	12,6	30,1
CAR66	15,028	1,2	2,6	5,6	12,1
CAR83	8,633	2,2	5,3	12,6	30,1
CAS04	30,513	1,2	2,6	5,6	12,1
CAS63	2,027	2,2	5,3	12,6	30,1
CAU19	3,408	2,2	5,3	12,6	30,1
CAZ23	1,986	2,2	5,3	12,6	30,1
CAZ40	10,328	2,2	5,3	12,6	30,1
CEB79	7,445	2,2	5,3	12,6	30,1
CER21	5,875	2,2	5,3	12,6	30,1
CHA21	7,799	2,2	5,3	12,6	30,1
CHA23	8,353	2,2	5,3	12,6	30,1
CHA25	23,842	1,2	2,6	5,6	12,1
CHA35	2,447	2,2	5,3	12,6	30,1
CHA38	38,485	1,2	2,6	5,6	12,1
CHA39	22,061	1,2	2,6	5,6	12,1

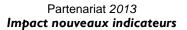
CHA48	4,378	2,2	5,3	12,6	30,1
CHA52	5,970	2,2	5,3	12,6	30,1
CHA58	14,301	2,2	5,3	12,6	30,1
CHA63	3,037	2,2	5,3	12,6	30,1
CHA86	2,203	2,2	5,3	12,6	30,1
CHA87	3,622	2,2	5,3	12,6	30,1
CHE38	10,474	2,2	5,3	12,6	30,1
CHE73	95,221	1,2	2,6	5,6	12,1
CHO04	23,594	1,2	2,6	5,6	12,1
COD2B	13,796	2,2	5,3	12,6	30,1
CO139	11,613	2,2	5,3	12,6	30,1
COM23	12,452	2,2	5,3	12,6	30,1
COR22	4,442	2,2	5,3	12,6	30,1
COR41	0,365	2,2	5,3	12,6	30,1
CRA18	1,771	2,2	5,3	12,6	30,1
CRE89	11,076	2,2	5,3	12,6	30,1
DEV07	4,821	2,2	5,3	12,6	30,1
DRE29	7,548	2,2	5,3	12,6	30,1
DUC56	2,359	2,2	5,3	12,6	30,1
ECH33	3,648	2,2	5,3	12,6	30,1
EDC23	2,688	2,2	5,3	12,6	30,1
EDC63	4,325	2,2	5,3	12,6	30,1
EDG36	1,003	2,2	5,3	12,6	30,1
EGR45	4,355	2,2	5,3	12,6	30,1
EGU36	20,673	1,2	2,6	5,6	12,1
ENC15	24,613	1,2	2,6	5,6	12,1
ENT13	4,800	2,2	5,3	12,6	30,1
ENT25	3,348	2,2	5,3	12,6	30,1
EPT35	2,397	2,2	5,3	12,6	30,1
ESP04	30,796	1,2	2,6	5,6	12,1
EST11	9,841	2,2	5,3	12,6	30,1
ETI39	4,600	2,2	5,3	12,6	30,1
ETR23	8,577	2,2	5,3	12,6	30,1
EVJ59	3,353	2,2	5,3	12,6	30,1
EYC05	9,374	2,2	5,3	12,6	30,1
FEY19	4,325	2,2	5,3	12,6	30,1
FIG2B	8,161	2,2	5,3	12,6	30,1
FIL09	9,394	2,2	5,3	12,6	30,1
FON36	1,027	2,2	5,3	12,6	30,1
FOR35	0,864	2,2	5,3	12,6	30,1
GAB36	1,006	2,2	5,3	12,6	30,1
GAB64	12,087	2,2	5,3	12,6	30,1
GAR09	6,906	2,2	5,3	12,6	30,1

		2.2	F 3	12.6	20.4
GAS14	4,386	2,2	5,3	12,6	30,1
GDL44	1,799	2,2	5,3	12,6	30,1
GEN82	4,696	2,2	5,3	12,6	30,1
GER88	16,854	1,2	2,6	5,6	12,1
GIO40	4,381	2,2	5,3	12,6	30,1
GIR73	67,720	1,2	2,6	5,6	12,1
GLC39	12,015	2,2	5,3	12,6	30,1
GON57	3,072	2,2	5,3	12,6	30,1
GOU03	2,573	2,2	5,3	12,6	30,1
GOU22	9,884	2,2	5,3	12,6	30,1
GOU82	7,482	2,2	5,3	12,6	30,1
GRA15	25,625	1,2	2,6	5,6	12,1
GRA42	14,143	2,2	5,3	12,6	30,1
GRA85	5,420	2,2	5,3	12,6	30,1
GRO21b	9,183	2,2	5,3	12,6	30,1
GUE22	17,497	1,2	2,6	5,6	12,1
HAG40	5,299	2,2	5,3	12,6	30,1
HAR22	1,983	2,2	5,3	12,6	30,1
HAU19	20,050	1,2	2,6	5,6	12,1
ILA39	10,868	2,2	5,3	12,6	30,1
ISS07	98,163	1,2	2,6	5,6	12,1
JUG22	4,169	2,2	5,3	12,6	30,1
LAC21	0,995	2,2	5,3	12,6	30,1
LAC33	3,269	2,2	5,3	12,6	30,1
LAD16	2,320	2,2	5,3	12,6	30,1
LAF38	24,669	1,2	2,6	5,6	12,1
LAN23	1,037	2,2	5,3	12,6	30,1
LAN66	40,814	1,2	2,6	5,6	12,1
LAO81	16,336	1,2	2,6	5,6	12,1
LAR31	5,436	2,2	5,3	12,6	30,1
LAS15	10,717	2,2	5,3	12,6	30,1
LAT10	8,768	2,2	5,3	12,6	30,1
LAU38	29,240	1,2	2,6	5,6	12,1
LAV16	8,246	2,2	5,3	12,6	30,1
LAV23	9,580	2,2	5,3	12,6	30,1
LAV43	19,888	1,2	2,6	5,6	12,1
LDC21	3,237	2,2	5,3	12,6	30,1
LDC25	8,596	2,2	5,3	12,6	30,1
LDC51	7,775	2,2	5,3	12,6	30,1
LDC63	27,090	1,2	2,6	5,6	12,1
LEJ85	3,490	2,2	5,3	12,6	30,1
LEM74	154,213	1,2	2,6	5,6	12,1
LEM85	6,361	2,2	5,3	12,6	30,1
	•	•			

LEO40	0,778	2,2	5,3	12,6	30,1
LES24	8,326	2,2	5,3	12,6	30,1
LGA36	0,934	2,2	5,3	12,6	30,1
LGM27	0,334	2,2	5,3	12,6	30,1
LGM39		2,2	5,3	12,6	30,1
	11,511	2,2	5,3	12,6	30,1
LIE52	5,842	1,2	2,6	5,6	12,1
LKW68	16,850	2,2	5,3	12,6	30,1
LLI66	4,374	2,2	5,3	12,6	30,1
LNC04	12,900	2,2	5,3	12,6	30,1
LON88	13,271	2,2	5,3	12,6	30,1
LOU37	1,021	2,2	5,3	12,6	30,1
LOU64	12,878	2,2	5,3	12,6	30,1
LPC38	6,624				
LRO39	7,681	2,2	5,3 5,3	12,6 12,6	30,1
LSF43	0,987	2,2		12,6	30,1
LSG81	18,189	1,2	2,6	5,6	12,1
LUN32	11,229	2,2	5,3	12,6	30,1
MAD55	3,345	2,2	5,3	12,6	30,1
MAR35	1,012	2,2	5,3	12,6	30,1
MAT66	9,376	2,2	5,3	12,6	30,1
MAU12	20,359	1,2	2,6	5,6	12,1
MIC68	9,793	2,2	5,3	12,6	30,1
MIE32	5,572	2,2	5,3	12,6	30,1
MON38	53,331	1,2	2,6	5,6	12,1
MON63	7,822	2,2	5,3 - .3	12,6	30,1
MON74	12,074	2,2	5,3	12,6	30,1
MOU52	9,100	2,2	5,3	12,6	30,1
MUS35	1,336	2,2	5,3	12,6	30,1
NAG09	52,624	1,2	2,6	5,6	12,1
NAN01	30,300	1,2	2,6	5,6	12,1
NAU48	18,118	1,2	2,6	5,6	12,1
NAU48bis	18,118	1,2	2,6	5,6	12,1
NAU48ter	18,118	1,2	2,6	5,6	12,1
NDC38	20,457	1,2	2,6	5,6	12,1
NEG06	12,900	2,2	5,3	12,6	30,1
NOY56	1,713	2,2	5,3	12,6	30,1
ORE65	16,142	1,2	2,6	5,6	12,1
ORX40	0,571	2,2	5,3	12,6	30,1
OSP2A	7,219	2,2	5,3	12,6	30,1
OUE35	1,929	2,2	5,3	12,6	30,1
PAI35	1,713	2,2	5,3	12,6	30,1
PAL07	20,725	1,2	2,6	5,6	12,1
PAL38	27,410	1,2	2,6	5,6	12,1

	I	2.2		40.6	20.4
PAN21	6,860	2,2	5,3	12,6	30,1
PAN58	15,270	1,2	2,6	5,6	12,1
PAR12	15,575	1,2	2,6	5,6	12,1
PAR40	7,559	2,2	5,3	12,6	30,1
PAR54	2,152	2,2	5,3	12,6	30,1
PAV63	50,832	1,2	2,6	5,6	12,1
PDF44	1,586	2,2	5,3	12,6	30,1
PDH35	2,865	2,2	5,3	12,6	30,1
PET38	10,775	2,2	5,3	12,6	30,1
PIE36	1,003	2,2	5,3	12,6	30,1
PIN49	2,645	2,2	5,3	12,6	30,1
PIR03	6,394	2,2	5,3	12,6	30,1
POI44	0,980	2,2	5,3	12,6	30,1
PON21	8,967	2,2	5,3	12,6	30,1
PON22	2,547	2,2	5,3	12,6	30,1
POU31	6,529	2,2	5,3	12,6	30,1
POU43	6,908	2,2	5,3	12,6	30,1
PRA03	12,918	2,2	5,3	12,6	30,1
PRA33	1,075	2,2	5,3	12,6	30,1
PRA66	4,975	2,2	5,3	12,6	30,1
PRO44	2,009	2,2	5,3	12,6	30,1
PUI18	3,261	2,2	5,3	12,6	30,1
PUY48	24,216	1,2	2,6	5,6	12,1
PUY66	11,121	2,2	5,3	12,6	30,1
QUE63	12,730	2,2	5,3	12,6	30,1
QUI04	11,676	2,2	5,3	12,6	30,1
RAB61	7,164	2,2	5,3	12,6	30,1
RAM23	1,290	2,2	5,3	12,6	30,1
RAV34	11,144	2,2	5,3	12,6	30,1
RBO63	45,225	1,2	2,6	5,6	12,1
RCB01	8,418	2,2	5,3	12,6	30,1
RCE35	7,283	2,2	5,3	12,6	30,1
RCM01	6,481	2,2	5,3	12,6	30,1
RCS70	12,769	2,2	5,3	12,6	30,1
RDC23	8,945	2,2	5,3	12,6	30,1
RDV35	5,596	2,2	5,3	12,6	30,1
REA13	1,628	2,2	5,3	12,6	30,1
REM25	9,878	2,2	5,3	12,6	30,1
RFB63	19,608	1,2	2,6	5,6	12,1
RGM38	59,665	1,2	2,6	5,6	12,1
RIN53	2,249	2,2	5,3	12,6	30,1
RKU22	3,911	2,2	5,3	12,6	30,1
RLB11	9,001	2,2	5,3	12,6	30,1

RMM29 2,988 2,2 5,3 12,6 30,1 RMR85 5,166 2,2 5,3 12,6 30,1 RMR89 4,092 2,2 5,3 12,6 30,1 RMR89 4,092 2,2 5,3 12,6 30,1 RMR89 4,092 2,2 5,3 12,6 30,1 ROPE2 5,934 2,2 5,3 12,6 30,1 ROPE2 5,934 2,2 5,3 12,6 30,1 ROPE2 1,003 2,2 5,3 12,6 30,1 ROPE2	RMC73	51,132	1,2	2,6	5,6	12,1
RMR89 5,166 2,2 5,3 12,6 30,1 RMR49 4,032 2,2 5,3 12,6 30,1 ROC85 4,236 2,2 5,3 12,6 30,1 ROC85 4,236 2,2 5,3 12,6 30,1 ROS73 67,116 1,2 2,6 5,6 12,1 ROU21 1,003 2,2 5,3 12,6 30,1 RFR71 8,809 2,2 5,3 12,6 30,1 RST35 8,444 2,2 5,3 12,6 30,1 RST35 8,444 2,2 5,3 12,6 30,1 RSV34 5,655 2,2 5,3 12,6 30,1 RTV71 3,976 2,2 5,3 12,6 30,1 RVH22 7,123 2,2 5,3 12,6 30,1 SAL34 14,146 2,2 5,3 12,6 30,1 SAL33 14,141 2,2						
RMR49 4,032 2,2 5,3 12,6 30,1 ROCRS 4,226 2,2 5,3 12,6 30,1 ROCRS 4,226 2,2 5,3 12,6 30,1 ROCRS 4,226 5,934 2,2 5,3 12,6 30,1 ROCRS 67,116 1,2 2,6 5,6 12,1 ROU21 1,003 2,2 5,3 12,6 30,1 RPR71 8,809 2,2 5,3 12,6 30,1 RFR71 8,809 2,2 5,3 12,6 30,1 RST35 8,444 2,2 5,3 12,6 30,1 RTV1 6,206 2,2 5,3 12,6 30,1 RTV1 6,206 2,2 5,3 12,6 30,1 RTV1 3,976 2,2 5,3 12,6 30,1 RTV1 3,0976 2,2 5,3 12,6 30,1 RTV1 3,004 0,947 2,2 5,3 12,6 30,1 SAL34 14,146 2,2 5,3 12,6 30,1 SAL34 14,146 2,2 5,3 12,6 30,1 SAL38 34,149 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SCR05 3,0 12,1						
ROC8S 4,236 2,2 5,3 12,6 30,1 ROP22 5,934 2,2 5,3 12,6 30,1 ROS73 67,116 1,2 2,6 5,6 12,1 ROS73 67,116 1,2 2,6 5,6 12,1 ROV21 1,003 2,2 5,3 12,6 30,1 RFR71 8,809 2,2 5,3 12,6 30,1 RSV34 5,655 2,2 5,3 12,6 30,1 RTN71 6,206 2,2 5,3 12,6 30,1 RTV71 3,976 2,2 5,3 12,6 30,1 RTV71 3,976 2,2 5,3 12,6 30,1 RVH22 7,123 2,2 5,3 12,6 30,1 SAU36 0,947 2,2 5,3 12,6 30,1 SAU36 34,149 1,2 2,6 5,6 12,1 SCC804 34,883 1,2						
ROP22 5,934 2,2 5,3 12,6 30,1 ROS73 67,116 1,2 2,6 5,6 12,1 ROU21 1,003 2,2 5,3 12,6 30,1 RFR71 8,809 2,2 5,3 12,6 30,1 RFT871 8,809 2,2 5,3 12,6 30,1 RFT873 8,444 2,2 5,3 12,6 30,1 RFV71 3,976 2,2 5,3 12,6 30,1 RTV71 3,976 2,2 5,3 12,6 30,1 RVH22 7,123 2,2 5,3 12,6 30,1 SAL34 14,146 2,2 5,3 12,6 30,1 SAL36 0,947 2,2 5,3 12,6 30,1 SAL38 14,149 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SEC15 24,461 1,2						
ROS73 67,116 1,2 2,6 5,6 12,1 ROU21 1,003 2,2 5,3 12,6 30,1 RPR71 8,809 2,2 5,3 12,6 30,1 RST35 8,444 2,2 5,3 12,6 30,1 RSV34 5,655 2,2 5,3 12,6 30,1 RTV71 6,206 2,2 5,3 12,6 30,1 RTV71 3,976 2,2 5,3 12,6 30,1 RTV71 3,976 2,2 5,3 12,6 30,1 RV122 7,123 2,2 5,3 12,6 30,1 SAL34 14,146 2,2 5,3 12,6 30,1 SAL34 14,146 2,2 5,3 12,6 30,1 SAL34 14,146 2,2 5,3 12,6 30,1 SCA83 16,321 1,2 2,6 5,6 12,1 SCC15 24,461 1,2						
ROU21 1,003 2,2 5,3 12,6 30,1 RPR71 8,809 2,2 5,3 12,6 30,1 RRT35 8,444 2,2 5,3 12,6 30,1 RST35 8,444 2,2 5,3 12,6 30,1 RSV34 5,655 2,2 5,3 12,6 30,1 RTN71 6,206 2,2 5,3 12,6 30,1 RTN71 3,976 2,2 5,3 12,6 30,1 RVH22 7,123 2,2 5,3 12,6 30,1 SAU36 0,947 2,2 5,3 12,6 30,1 SAU36 0,947 2,2 5,3 12,6 30,1 SAU38 34,149 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SCR05 39,915 2,2 5,3 12,6 30,1 SCR05 30,1 SCR0						
RPR71 8,809 2,2 5,3 12,6 30,1 RST35 8,444 2,2 5,3 12,6 30,1 RSV34 5,655 2,2 5,3 12,6 30,1 RTN71 6,206 2,2 5,3 12,6 30,1 RTN71 3,976 2,2 5,3 12,6 30,1 RVH22 7,123 2,2 5,3 12,6 30,1 SAL34 14,146 2,2 5,3 12,6 30,1 SAU36 0,947 2,2 5,3 12,6 30,1 SAU38 34,149 1,2 2,6 5,6 12,1 SCA83 16,321 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SEC15 24,461 1,2 2,6 5,6 12,1 SEC16 9,915 2,2 5,3 12,6 30,1 SFP53 4,211 2,2						
RST35						
RSV34 5,655 2,2 5,3 12,6 30,1 RTN71 6,206 2,2 5,3 12,6 30,1 RTV71 3,976 2,2 5,3 12,6 30,1 RVH22 7,123 2,2 5,3 12,6 30,1 SAL34 14,146 2,2 5,3 12,6 30,1 SAU36 0,947 2,2 5,3 12,6 30,1 SAU36 0,947 2,2 5,3 12,6 30,1 SAU38 34,149 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SER10 9,572 2,2 5,3 12,6 30,1 SER63 9,915 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SFP53 4,211 2,2						
RTN71 6,206 2,2 5,3 12,6 30,1 RTV71 3,976 2,2 5,3 12,6 30,1 RVH22 7,123 2,2 5,3 12,6 30,1 SAL34 14,146 2,2 5,3 12,6 30,1 SAU36 0,947 2,2 5,3 12,6 30,1 SAU38 34,149 1,2 2,6 5,6 12,1 SCR83 16,321 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SEC15 24,461 1,2 2,6 5,6 12,1 SER63 9,915 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SILB5 7,520 2,2 5,3 12,6 30,1 SILB5 7,520 2,2						
RTV71 3,976 2,2 5,3 12,6 30,1 RVH22 7,123 2,2 5,3 12,6 30,1 SAU34 14,146 2,2 5,3 12,6 30,1 SAU36 0,947 2,2 5,3 12,6 30,1 SAU38 34,149 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SEC15 24,461 1,2 2,6 5,6 12,1 SET10 9,572 2,2 5,3 12,6 30,1 SER63 9,915 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SILBS 7,520 2,2 5,3 12,6 30,1 SILBS 7,520 2,2 5,3 12,6 30,1 SOW19 3,606 1,2						
RVH22 7,123 2,2 5,3 12,6 30,1 SAL34 14,146 2,2 5,3 12,6 30,1 SAU36 0,947 2,2 5,3 12,6 30,1 SAU38 34,149 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SEC15 24,461 1,2 2,6 5,6 12,1 SE110 9,572 2,2 5,3 12,6 30,1 SER63 9,915 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SOR71 5,388 2,2 5,3 12,6 30,1 SOW19 34,606 1,2						
SAL34 14,146 2,2 5,3 12,6 30,1 SAU36 0,947 2,2 5,3 12,6 30,1 SAU38 34,149 1,2 2,6 5,6 12,1 SCA83 16,321 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SEC15 24,461 1,2 2,6 5,6 12,1 SEC10 9,572 2,2 5,3 12,6 30,1 SER63 9,915 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SID18 7,474 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOW19 34,606 1,2						
SAU36 0,947 2,2 5,3 12,6 30,1 SAU38 34,149 1,2 2,6 5,6 12,1 SCA83 16,321 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SEC15 24,461 1,2 2,6 5,6 12,1 SEI10 9,572 2,2 5,3 12,6 30,1 SER63 9,915 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SID18 7,474 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOR71 5,358 2,2 5,3 12,6 30,1 SPA87 6,976 2,2						
SAU38 34,149 1,2 2,6 5,6 12,1 SCA83 16,321 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SEC15 24,461 1,2 2,6 5,6 12,1 SEI10 9,572 2,2 5,3 12,6 30,1 SER63 9,915 2,2 5,3 12,6 30,1 SER63 9,915 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SID18 7,474 2,2 5,3 12,6 30,1 SILSS 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOU99 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2						
SCABS 16,321 1,2 2,6 5,6 12,1 SCR04 34,883 1,2 2,6 5,6 12,1 SEC15 24,461 1,2 2,6 5,6 12,1 SEI10 9,572 2,2 5,3 12,6 30,1 SER63 9,915 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SID18 7,474 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOR71 5,358 2,2 5,3 12,6 30,1 SOU99 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2						
SCR04 34,883 1,2 2,6 5,6 12,1 SEC15 24,461 1,2 2,6 5,6 12,1 SEI10 9,572 2,2 5,3 12,6 30,1 SER63 9,915 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SID18 7,474 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOR71 5,358 2,2 5,3 12,6 30,1 SOU99 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2						
SEC15 24,461 1,2 2,6 5,6 12,1 SEI10 9,572 2,2 5,3 12,6 30,1 SER63 9,915 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SID18 7,474 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOW19 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPO28 26,119 1,2						
SEI10 9,572 2,2 5,3 12,6 30,1 SER63 9,915 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SID18 7,474 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOR71 5,358 2,2 5,3 12,6 30,1 SOU49 3,4606 1,2 2,6 5,6 12,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2						
SER63 9,915 2,2 5,3 12,6 30,1 SET58 6,596 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SID18 7,474 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOR71 5,358 2,2 5,3 12,6 30,1 SOU09 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2 2,6 5,6 12,1 SPO25 23,528 1,2 2,6 5,6 12,1 SPO25 23,528 1,2 2,6 5,6 12,1 SVL01 13,253 2,2						
SET58 6,596 2,2 5,3 12,6 30,1 SFP53 4,211 2,2 5,3 12,6 30,1 SID18 7,474 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOR71 5,358 2,2 5,3 12,6 30,1 SOU09 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2 2,6 5,6 12,1 SPO04 46,262 1,2 2,6 5,6 12,1 SPO25 23,528 1,2 2,6 5,6 12,1 STO57 3,038 2,2 5,3 12,6 30,1 SVL01 13,253 2,2						
SFP53 4,211 2,2 5,3 12,6 30,1 SID18 7,474 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOR71 5,358 2,2 5,3 12,6 30,1 SOU09 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2 2,6 5,6 12,1 SPO04 46,262 1,2 2,6 5,6 12,1 SPO25 23,528 1,2 2,6 5,6 12,1 STO57 3,038 2,2 5,3 12,6 30,1 SVL01 13,253 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2						
SID18 7,474 2,2 5,3 12,6 30,1 SIL85 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOR71 5,358 2,2 5,3 12,6 30,1 SOU09 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2 2,6 5,6 12,1 SPO04 46,262 1,2 2,6 5,6 12,1 SPO25 23,528 1,2 2,6 5,6 12,1 STO57 3,038 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>						
SIL85 7,520 2,2 5,3 12,6 30,1 SMI29 3,001 2,2 5,3 12,6 30,1 SOR71 5,358 2,2 5,3 12,6 30,1 SOU09 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2 2,6 5,6 12,1 SPO04 46,262 1,2 2,6 5,6 12,1 SPO25 23,528 1,2 2,6 5,6 12,1 STO57 3,038 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>						
SMI29 3,001 2,2 5,3 12,6 30,1 SOR71 5,358 2,2 5,3 12,6 30,1 SOU09 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2 2,6 5,6 12,1 SPO38 26,119 1,2 2,6 5,6 12,1 SPO4 46,262 1,2 2,6 5,6 12,1 SPO25 23,528 1,2 2,6 5,6 12,1 STO57 3,038 2,2 5,3 12,6 30,1 SUD41 1,008 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>						
SOR71 5,358 2,2 5,3 12,6 30,1 SOU09 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2 2,6 5,6 12,1 SPO04 46,262 1,2 2,6 5,6 12,1 SPO25 23,528 1,2 2,6 5,6 12,1 STO57 3,038 2,2 5,3 12,6 30,1 SUD41 1,008 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>						
SOU09 34,606 1,2 2,6 5,6 12,1 SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2 2,6 5,6 12,1 SPO04 46,262 1,2 2,6 5,6 12,1 SPO25 23,528 1,2 2,6 5,6 12,1 STO57 3,038 2,2 5,3 12,6 30,1 SUD41 1,008 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1			2,2		12,6	30,1
SOU40 0,596 2,2 5,3 12,6 30,1 SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2 2,6 5,6 12,1 SPO04 46,262 1,2 2,6 5,6 12,1 SPO25 23,528 1,2 2,6 5,6 12,1 STO57 3,038 2,2 5,3 12,6 30,1 SUD41 1,008 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1			1,2	2,6	5,6	12,1
SPA87 6,976 2,2 5,3 12,6 30,1 SPC38 26,119 1,2 2,6 5,6 12,1 SP004 46,262 1,2 2,6 5,6 12,1 SP025 23,528 1,2 2,6 5,6 12,1 ST057 3,038 2,2 5,3 12,6 30,1 SUD41 1,008 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1			2,2	5,3	12,6	
SPC38 26,119 1,2 2,6 5,6 12,1 SP004 46,262 1,2 2,6 5,6 12,1 SP025 23,528 1,2 2,6 5,6 12,1 ST057 3,038 2,2 5,3 12,6 30,1 SUD41 1,008 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1						30,1
SPO04 46,262 1,2 2,6 5,6 12,1 SPO25 23,528 1,2 2,6 5,6 12,1 STO57 3,038 2,2 5,3 12,6 30,1 SUD41 1,008 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1	SPC38		1,2	2,6	5,6	12,1
STO57 3,038 2,2 5,3 12,6 30,1 SUD41 1,008 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1	SPO04		1,2	2,6	5,6	12,1
SUD41 1,008 2,2 5,3 12,6 30,1 SYL01 13,253 2,2 5,3 12,6 30,1 TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1	SPO25	23,528	1,2	2,6	5,6	12,1
SYL01 13,253 2,2 5,3 12,6 30,1 TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1	STO57	3,038	2,2	5,3	12,6	30,1
TAI40 3,583 2,2 5,3 12,6 30,1 TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1	SUD41	1,008	2,2	5,3	12,6	30,1
TAZ63 38,950 1,2 2,6 5,6 12,1 TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1	SYL01	13,253	2,2	5,3	12,6	30,1
TOL2A 48,066 1,2 2,6 5,6 12,1 TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1	TAI40	3,583	2,2	5,3	12,6	30,1
TOR82 4,232 2,2 5,3 12,6 30,1 TOU79 11,055 2,2 5,3 12,6 30,1	TAZ63	38,950	1,2	2,6	5,6	12,1
TOU79 11,055 2,2 5,3 12,6 30,1	TOL2A	48,066	1,2	2,6	5,6	12,1
	TOR82	4,232	2,2	5,3	12,6	30,1
TRE19 8,731 2,2 5,3 12,6 30,1	TOU79	11,055	2,2	5,3	12,6	30,1
	TRE19	8,731	2,2	5,3	12,6	30,1



		2.2	E 2	12.6	20.1
TRE35	1,863	2,2	5,3 5,3	12,6 12,6	30,1 30,1
TRI19	7,668	2,2 2,2	5,3	12,6	30,1
TSC32	5,837		5,3	12,6	30,1
TUI45	3,632	2,2 2,2	5,3	12,6	30,1
TYX63	1,405	2,2	5,3	12,6	30,1
UBY32	3,822	2,2 1,2	3,3 2,6	5,6	12,1
VAL38	20,210	1,2	2,6 2,6	5,6	12,1
VAL39	16,943	2,2	2,0 5,3	12,6	30,1
VAL45	2,017				
VAS87	11,998	2,2	5,3	12,6	30,1
VAU58	3,237	2,2	5,3	12,6	30,1
VEN06	8,600	2,2	5,3	12,6	30,1
VER38	23,761	1,2	2,6	5,6	12,1
VER83	19,822	1,2	2,6	5,6	12,1
VEZ50	11,701	2,2	5,3	12,6	30,1
VFO08	3,739	2,2	5,3	12,6	30,1
VIG36	0,790	2,2	5,3	12,6	30,1
VIL12	6,292	2,2	5,3	12,6	30,1
VIL35	4,136	2,2	5,3	12,6	30,1
VIL42	26,888	1,2	2,6	5,6	12,1
VIL48	21,933	1,2	2,6	5,6	12,1
VIL52	5,497	2,2	5,3	12,6	30,1
VIL66	9,651	2,2	5,3	12,6	30,1
VIN66	15,958	1,2	2,6	5,6	12,1
VIO44	3,830	2,2	5,3	12,6	30,1
VOU39	38,035	1,2	2,6	5,6 - 6	12,1
VPR88	18,346	1,2	2,6	5,6	12,1
YRI40	5,160	2,2	5,3	12,6	30,1
AME54	0,693	2,2	5,3	12,6	30,1
ANS69	7,000	2,2	5,3	12,6	30,1
ARD62	1,288	2,2	5,3	12,6	30,1
ARJ40	16,000	1,2	2,6	5,6	12,1
ARM77	1,000	2,2	5,3	12,6	30,1
AUD62	1,736	2,2	5,3	12,6	30,1
BEA53	1,001	2,2	5,3	12,6	30,1
BGP77	5,000	2,2	5,3	12,6	30,1
BIR01	0,645	2,2	5,3	12,6	30,1
BIS55	1,621	2,2	5,3	12,6	30,1
BMM78	7,901	2,2	5,3	12,6	30,1
BOR33	6,450	2,2	5,3	12,6	30,1
BOU27	6,220	2,2	5,3	12,6	30,1
BOU33	7,740	2,2	5,3	12,6	30,1
CAN77c	3,000	2,2	5,3	12,6	30,1

CER95	3,000	2,2	5,3	12,6	30,1	Ī
CHA01	0,989	2,2	5,3	12,6	30,1	
CHE18	0,999	2,2	5,3	12,6	30,1	
DRA69	3,010	2,2	5,3	12,6	30,1	
ECL28	3,088	2,2	5,3	12,6	30,1	
EDC35	1,045	2,2	5,3	12,6	30,1	
EGM55	1,001	2,2	5,3	12,6	30,1	
EGR51	1,456	2,2	5,3	12,6	30,1	
ESQ78	2,500	2,2	5,3	12,6	30,1	
FRA25	1,290	2,2	5,3	12,6	30,1	
GBB43	0,986	2,2	5,3	12,6	30,1	
GEB69	2,841	2,2	5,3	12,6	30,1	
GOR59	0,921	2,2	5,3	12,6	30,1	
HER51c	0,796	2,2	5,3	12,6	30,1	
HOR52	0,807	2,2	5,3	12,6	30,1	
JAB77	4,889	2,2	5,3	12,6	30,1	
JOU11	2,627	2,2	5,3	12,6	30,1	
LAC55	2,250	2,2	5,3	12,6	30,1	
LER27a	12,272	2,2	5,3	12,6	30,1	
LET57	1,746	2,2	5,3	12,6	30,1	
LIN55	2,070	2,2	5,3	12,6	30,1	
MAL90	1,201	2,2	5,3	12,6	30,1	
MAR21	0,983	2,2	5,3	12,6	30,1	
MEB01	4,000	2,2	5,3	12,6	30,1	
MON71	5,591	2,2	5,3	12,6	30,1	
MOU01	1,075	2,2	5,3	12,6	30,1	
MUN67	5,375	2,2	5,3	12,6	30,1	
PPE14	3,025	2,2	5,3	12,6	30,1	
RGL69	1,591	2,2	5,3	12,6	30,1	
RIV35	2,824	2,2	5,3	12,6	30,1	
SDB01	8,000	2,2	5,3	12,6	30,1	
TOU27	3,105	2,2	5,3	12,6	30,1	
TRA02	2,263	2,2	5,3	12,6	30,1	
VAR72	1,037	2,2	5,3	12,6	30,1	
VEN27	6,126	2,2	5,3	12,6	30,1	
VIG59	1,620	2,2	5,3	12,6	30,1	
VSM77	4,000	2,2	5,3	12,6	30,1	
VVE70	1,978	2,2	5,3	12,6	30,1	

Annexe : Jeu de données utilisé pour l'étude d'impact

			2010			2013						
Code Lac	Période	Agence	Bio	PC	PSP	ECO	вю	PC SP	ECO SP	PC	ECO	Mixte
AIG15	2010	AG	Ma	Мо	Мо	Ma	Мо	Мо	Мо	Мо	Мо	Мо
ALZ81	2011	AG	В	Мо	Мо	Мо	В	В	Мо	В	Мо	Мо
ARG19	2011	AG	ТВ	Me	Мо	Мо	ТВ	В	Mo	В	Мо	Мо
ART64	2011	AG	ТВ	ТВ	Мо	ТВ	ТВ	ТВ	ТВ	ТВ	ТВ	ТВ
AST32	2010	AG	В	Ma	В	Мо	В	Mo	Mo	Мо	Мо	Мо
AUR40	2011	AG	Ma	Me	Мо	Ma	Мо	В	Mo	В	Мо	Мо
AYG64	2009	AG	Ma	Ma	В	Ma	Мо	Ma	Мо	Ma	Мо	Мо
BAG12	2011	AG	ТВ	Ma	В	Мо	NA	Me	NA	Me	NA	NA
BAR19	2010	AG	Me	Me	Мо	Me	NA	NA	NA	NA	NA	NA
BAR32	2009	AG	В	Ma	Мо	Мо	В	Ma	Mo	Ma	Мо	Мо
BIS40	2010 - 2011	AG	ТВ	Me	В	Мо	TB	В	В	В	В	Мо
BLA40	2009	AG	Me	Me	В	Me	В	Mo	Mo	Mo	Мо	Мо
BLE65	2010	AG	TB	В	В	В	TB	ТВ	ТВ	ТВ	ТВ	В
BOU33	2009	AG	TB	Me	В	Мо	TB	В	В	В	В	Мо
CAL12	2011	AG	Мо	Мо	В	Мо	NA	NA	NA	NA	NA	NA
CAM32	2010 - 2011	AG	TB	Ma	В	Мо	NA	NA	NA	NA	NA	NA
CAN32	2009	AG	Мо	Ma	В	Мо	В	Ma	Mo	Ma	Мо	Мо
CAR33	2010 - 2011	AG	Мо	Me	В	Мо	NA	NA	NA	NA	NA	NA
CAZ40	2010 - 2011	AG	TB	В	В	В	TB	NA	NA	NA	NA	В
CHA63	2011	AG	Мо	ТВ	Мо	Мо	NA	NA	NA	NA	NA	NA
CHM19	2010	AG	Me	Me	В	Me	NA	NA	NA	NA	NA	NA
DUH40	2009	AG	Me	Ma	В	Me	NA	NA	NA	NA	NA	NA
ENC15	2011	AG	ТВ	Мо	Мо	Мо	В	Мо	Mo	Mo	Мо	Mo
FEY19	2011	AG	Мо	Me	Мо	Мо	Мо	Mo	Mo	Mo	Мо	Mo
FIL09	2011	AG	TB	В	Мо	Мо	ТВ	NA	NA	NA	NA	Mo
GAB64	2009	AG	Мо	Ma	В	Мо	В	Ma	Mo	Ma	Мо	Mo
GAR09	2011	AG	В	В	Мо	Мо	В	ТВ	Mo	TB	Мо	Mo
GIO40	2009	AG	Мо	Ma	В	Мо	Me	Me	Me	Me	Me	Me
GOU82	2010	AG	Me	Me	В	Me	Мо	Mo	Mo	Mo	Мо	Мо
HAG40	2009	AG	Мо	Ma	В	Мо	Мо	Ma	Mo	Ma	Мо	Мо
HAU19	2011	AG	TB	Мо	Мо	Мо	Мо	Mo	Mo	Mo	Мо	Мо
LAC33	2011	AG	В	Мо	В	Мо	ТВ	ТВ	ТВ	TB	ТВ	Mo
LAM16	2010	AG	Me	Ma	В	Me	NA	NA	NA	NA	NA	NA
LAO81	2010	AG	Мо	Мо	Mo	Мо	В	NA	NA	NA	NA	Mo
LAR31	2010	AG	Мо	Me	В	Мо	Мо	Мо	Mo	Мо	Мо	Mo
LAS15	2010	AG	Мо	Me	В	Мо	В	В	В	В	В	Mo
LAV16	2010	AG	Me	Ma	В	Me	В	Mo	Mo	Мо	Мо	Mo
LEO40	2009	AG	Me	Me	В	Me	Мо	В	Мо	Me	Мо	Mo

LES24	2009	AG	Мо	Ma	В	Мо	Мо	Ma	Мо	Ma	Мо	Мо
LOU64	2009	AG	В	Ma	В	Мо	ТВ	Ma	Мо	Ma	Мо	Мо
MAS16	2010	AG	В	Ma	В	Мо	NA	NA	NA	NA	NA	NA
MAU12	2011	AG	ТВ	Мо	В	Мо	В	Mo	Мо	Мо	Мо	Мо
MIE32	2009	AG	Мо	Ma	В	Мо	Мо	NA	NA	NA	NA	Мо
MIR40	2009	AG	Ma	Ma	В	Ma	NA	NA	NA	NA	NA	NA
NAG09	2010	AG	ТВ	ТВ	Мо	ТВ	В	ТВ	Мо	ТВ	Мо	Мо
ORE65	2010	AG	ТВ	ТВ	В	ТВ						
ORX40	2009	AG	Me	Ma	Мо	Me	Me	Ma	Me	Ma	Me	Me
PAR40	2010 - 2011	AG	Мо	Мо	В	Мо	В	ТВ	В	ТВ	В	Мо
POU31	2010	AG	Ma	Me	В	Ma	Мо	Me	Мо	Me	Мо	Мо
PRA33	2009	AG	Ma	Ma	В	Ma	NA	Ma	NA	Ma	NA	NA
RAV34	2011	AG	В	Мо	В	Мо	ТВ	Me	Мо	Me	Мо	Мо
SEC15	2011	AG	Ma	Мо	В	Ma	Me	Mo	Me	Мо	Me	Me
SFE31	2011	AG	Мо	Me	Мо	Мо	NA	NA	NA	NA	NA	NA
SGE81	2011	AG	ТВ	Ma	Мо	Мо	NA	NA	NA	NA	NA	NA
SJE32	2009	AG	Мо	Ma	В	Мо	NA	NA	NA	NA	NA	NA
SOU40	2009	AG	Ma	Me	В	Ma	Мо	NA	NA	NA	NA	Мо
TAI40	2009	AG	Me	Ma	Мо	Me	Мо	Ma	Мо	Ma	Мо	Мо
THO32	2009	AG	ТВ	Мо	В	Мо	NA	NA	NA	NA	NA	NA
TOR82	2011	AG	ТВ	Ma	В	Мо	В	Mo	Мо	Мо	Мо	Мо
TRI19	2010	AG	В	Мо	Мо	Мо	Мо	В	Мо	В	Мо	Мо
UBY32	2009	AG	Me	Me	В	Me	Мо	Ma	Мо	Ma	Мо	Мо
VIL12	2010	AG	ТВ	Ma	В	Мо	ТВ	Mo	Мо	Мо	Мо	Мо
YRI40	2009	AG	Мо	Мо	В	Мо	В	Me	Мо	Me	Мо	Мо
ARD62	2007 - 2012	AP	Me	Ma	В	Me	Me	Ma	Me	Ma	Me	Me
AUD62	2007 - 2012	AP	Me	Ma	В	Me	Me	Ma	Me	Ma	Me	Me
EVJ59	2007 - 2012	AP	Me	Me	Мо	Me	Мо	Me	Мо	Me	Мо	Мо
GOR59	2007 - 2012	AP	ТВ	Мо	Мо	Мо	В	Me	Мо	Ma	Мо	Мо
VIG59	2007 - 2012	AP	Мо	Ma	Me	Мо	Мо	Ma	Мо	Ma	Мо	Мо
ANG85	2008	LB	Me	Me	NA	Me	Me	Ma	Me	Ma	Me	Me
APR85	2007 - 2010	LB	Me	Ma	Мо	Me	Ma	Me	Ma	Ma	Ma	Ma
ARZ35	2007 - 2010	LB	Мо	Me	В	Мо	Me	Ma	Me	Ma	Me	Me
AUM44	2008	LB	В	Me	NA	Мо	В	Me	Мо	Me	Мо	Мо
AYD63	2005 - 2009	LB	Мо	Мо	В	Мо	Me	NA	NA	NA	NA	Me
BAI36	2009	LB	В	Мо	NA	Мо	Me	Ma	Me	Ma	Me	Me
BAY58	2006 - 2010	LB	ТВ	Мо	NA	Мо	В	Mo	Мо	Мо	Мо	Мо
BEA36	2009	LB	Me	Me	NA	Me	Me	Ma	Me	Ma	Me	Me
BEA53	2005 - 2009	LB	В	Ma	NA	Мо	В	Ma	Мо	Ma	Мо	Мо
BEL36	2010	LB	В	Me	Мо	Мо	Мо	Ma	Мо	Ma	Мо	Мо
BLI36	2006 - 2010	LB	В	Me	Мо	Мо	Мо	Ma	Мо	Ma	Мо	Мо
BLI44	2005 - 2009	LB	В	Мо	NA	Мо	В	ТВ	В	ТВ	В	Мо
BOR63	2005 - 2010	LB	Mo	В	NA	Мо	Ma	NA	NA	NA	NA	Ma

BOS22	2007 - 2010	LB	Мо	Me	В	Мо	Мо	Ma	Мо	Ma	Mo	Мо
BOU35	2006 - 2010	LB	В	Мо	В	Мо	Мо	Me	Мо	Me	Mo	Мо
BOU43	2005 - 2007	LB	Мо	ТВ	NA	Мо	В	NA	NA	NA	NA	В
BOU63	2005	LB	Me	В	NA	Me	В	NA	NA	NA	NA	В
BUL85	2007 - 2010	LB	Ma	Ma	NA	Ma	Me	Ma	Me	Ma	Me	Me
CAE35	2006 - 2010	LB	Мо	Ma	В	Мо	Me	Ma	Me	Ma	Me	Me
CAR35	2006 - 2010	LB	Me	Ma	В	Me	Me	Ma	Me	Ma	Me	Me
CAS63	2005 - 2009	LB	В	Мо	В	Мо	Ma	NA	NA	NA	NA	Ma
CAZ23	2010	LB	Me	Me	NA	Me	Мо	Ma	Мо	Ma	Мо	Мо
CEB79	2008	LB	Me	Me	В	Me	Me	Ma	Me	Ma	Me	Me
CHA21	2008 - 2011	LB	В	Мо	NA	Мо	В	В	В	В	В	Мо
CHA23	2006	LB	В	Мо	NA	Мо	В	В	В	Me	Мо	Мо
CHA35	2010	LB	Me	Ma	В	Me	Me	NA	NA	NA	NA	Me
CHA63	2005 - 2009	LB	Мо	Мо	В	Мо	Ma	NA	NA	NA	NA	Ma
CHA86	2006 - 2010	LB	В	Me	NA	Мо	Мо	Me	Мо	Me	Мо	Мо
CHE18	2009	LB	Me	Ma	NA	Me	Me	Ma	Me	Ma	Me	Me
COM23	2009	LB	Me	Мо	NA	Me	Мо	Me	Мо	Me	Мо	Мо
COR22	2005	LB	ТВ	Мо	В	Мо	В	Me	Мо	Me	Мо	Мо
CRA18	2009	LB	В	Me	В	Мо	Мо	Ma	Мо	Ma	Мо	Мо
DRE29	2008 - 2011	LB	Me	Мо	В	Me	В	Me	Мо	Me	Мо	Мо
DUC56	2008 - 2011	LB	Me	Ma	В	Me	Мо	Ma	Мо	Ma	Мо	Мо
EDC35	2008	LB	Мо	Мо	NA	Мо	Me	В	Me	В	Me	Me
EDC63	2005 - 2010	LB	Me	Me	NA	Me	В	В	В	В	В	Мо
EGR45	2005 - 2009	LB	В	Me	NA	Мо						
EGU36	2007 - 2010	LB	Мо	Мо	В	Мо	Мо	Me	Мо	Me	Мо	Мо
EPT35	2006 - 2010	LB	Мо	Ma	Мо	Мо	Мо	Me	Мо	Me	Мо	Мо
FON36	2008	LB	Me	Me	NA	Me	Мо	Me	Мо	Me	Мо	Мо
FOR35	2008 - 2011	LB	В	Ma	В	Мо	Мо	Ma	Мо	Ma	Мо	Мо
GBB43	2010	LB	В	Мо	NA	Мо	Мо	Ma	Мо	Ma	Мо	Мо
GDL44	2010	LB	Ma	Ma	Мо	Ma	Me	NA	NA	NA	NA	Me
GOU03	2005 - 2009	LB	Мо	Me	В	Мо	В	Mo	Мо	Мо	Мо	Мо
GOU22	2008 - 2011	LB	Me	Мо	В	Me	Мо	Ma	Мо	Ma	Мо	Мо
GRA42	2007 - 2010	LB	Me	Me	NA	Me	Me	Ma	Me	Ma	Me	Me
GRA85	2008	LB	Мо	Мо	NA	Мо	Мо	Ma	Мо	Ma	Мо	Мо
GUE22	2007 - 2010	LB	Мо	Мо	В	Мо	Мо	Ma	Мо	Ma	Мо	Мо
HAR22	2008	LB	В	Мо	NA	Мо	В	Mo	Мо	Мо	Мо	Мо
ISS07	2005 - 2009	LB	В	В	В	В	Me	NA	NA	NA	NA	Me
LAC21	2006 - 2010	LB	В	Мо	NA	Мо	Мо	Mo	Мо	Мо	Мо	Мо
LAN23	2005 - 2009	LB	В	Me	NA	Мо	Мо	В	Мо	В	Мо	Мо
LAV23	2007	LB	Мо	В	NA	Мо	Me	ТВ	Me	ТВ	Me	Me
LEJ85	2008	LB	Me	Ma	NA	Me	Me	Ma	Me	Ma	Me	Me
LEM85	2008	LB	Me	Мо	NA	Me	Мо	Ma	Мо	Ma	Мо	Мо
LGA36	2010	LB	ТВ	В	NA	В	В	Me	Мо	Me	Мо	В

LOU37	2008	LB	В	Ma	NA	Мо	Мо	Ma	Мо	Ma	Мо	Мо
LSF43	2008	LB	В	В	NA	В	В	NA	NA	NA	NA	В
MON63	2005 - 2007	LB	Мо	В	NA	Мо	Мо	NA	NA	NA	NA	Мо
MUS35	2005 - 2011	LB	В	Мо	В	Мо						
NOY56	2007 - 2010	LB	В	Ma	Мо	Мо	Мо	Ma	Мо	Ma	Мо	Мо
OUE35	2006 - 2010	LB	Мо	Me	В	Мо	В	В	В	Me	Мо	Мо
PAI35	2005	LB	ТВ	Мо	В	Мо	ТВ	ТВ	ТВ	ТВ	ТВ	Мо
PAL07	2009	LB	ТВ	В	В	В	ТВ	Ma	Мо	Ma	Мо	В
PAV63	2005 - 2012	LB	Мо	В	В	Мо	В	NA	NA	NA	NA	В
PDF44	2006 - 2010	LB	Мо	Me	NA	Мо	Мо	Me	Мо	Me	Мо	Мо
PIB35	2005	LB	ТВ	В	В	В	ТВ	NA	NA	NA	NA	В
PIE36	2010	LB	Me	Me	Мо	Me	Me	Ma	Me	Ma	Me	Me
PIN49	2005 - 2010	LB	В	Мо	В	Мо	В	Мо	Мо	Мо	Мо	Мо
PIR03	2010	LB	В	Мо	NA	Мо	Мо	Me	Мо	Me	Мо	Мо
POI44	2009	LB	Мо	Me	NA	Мо	Me	NA	NA	NA	NA	Me
POU43	2010	LB	ТВ	В	NA	В	ТВ	В	В	В	В	В
PRO44	2006 - 2010	LB	В	Me	NA	Мо	Мо	Me	Mo	Me	Мо	Мо
PUI18	2007	LB	ТВ	В	NA	В	В	В	В	В	В	В
QUE63	2005	LB	ТВ	Мо	Мо	Мо	В	Ma	Mo	Ma	Мо	Мо
RCE35	2008 - 2011	LB	Мо	Me	В	Мо	В	Me	Mo	Me	Мо	Мо
RDV35	2008 - 2011	LB	Мо	Me	В	Мо	Мо	Me	Mo	Ma	Мо	Мо
RIN53	2006 - 2010	LB	Me	Me	NA	Me	Мо	Ma	Mo	Ma	Мо	Мо
RIV35	2008	LB	В	Мо	NA	Мо	Me	NA	NA	NA	NA	Me
RKU22	2008 - 2011	LB	Мо	Me	В	Мо	В	Me	Mo	Me	Мо	Мо
RMN29	2008 - 2011	LB	Me	Мо	NA	Me	В	Me	Mo	Me	Мо	Мо
RMP85	2008	LB	В	Me	NA	Мо	Мо	Ma	Mo	Ma	Мо	Мо
RMR49	2008	LB	Ma	Ma	NA	Ma	Me	Me	Me	Me	Me	Me
ROC85	2008	LB	Ma	Мо	NA	Ma	Me	Ma	Me	Ma	Me	Me
ROP22	2007 - 2010	LB	Мо	Me	В	Мо	Мо	Me	Mo	Me	Мо	Мо
ROU21	2009	LB	ТВ	Мо	В	Мо	ТВ	Me	Mo	Me	Мо	Мо
RPR71	2008 - 2011	LB	В	Мо	NA	Мо	В	В	В	В	В	Мо
RST35	2008 - 2011	LB	В	Me	NA	Мо	В	Me	Mo	Me	Мо	Мо
RTN71	2006 - 2010	LB	Мо	Мо	NA	Мо	Мо	Me	Mo	Me	Мо	Мо
RTV71	2008 - 2011	LB	Мо	Me	В	Мо	Мо	Me	Mo	Me	Мо	Мо
RVH22	2008 - 2011	LB	Me	Мо	В	Me	Мо	Ma	Mo	Ma	Mo	Мо
SER63	2006 - 2007	LB	Мо	В	NA	Мо	ТВ	NA	NA	NA	NA	В
SFP53	2006 - 2010	LB	Me	Ma	NA	Me	Мо	Ma	Mo	Ma	Мо	Мо
SID18	2008	LB	Мо	Мо	NA	Мо	Мо	Me	Mo	Me	Мо	Мо
SIL85	2008	LB	Ma	Me	NA	Ma	Мо	Me	Mo	Me	Мо	Мо
SMI29	2006	LB	ТВ	В	NA	В	В	ТВ	В	Me	Мо	В
SOR71	2008 - 2011	LB	В	Мо	В	Мо	Мо	Me	Mo	Me	Мо	Мо
SPA87	2008	LB	Me	Мо	NA	Me	В	ТВ	В	ТВ	В	Мо
SUD41	2008	LB	Me	Me	NA	Me	Мо	Ma	Mo	Ma	Мо	Мо

TAZ63	2010	LB	В	Мо	NA	Мо	В	NA	NA	NA	NA	Мо
TOU79	2007 - 2010	LB	В	В	NA	В	Мо	Mo	Мо	Мо	Мо	Мо
TRE35	2006 - 2010	LB	Мо	Мо	В	Мо	Мо	В	Мо	В	Мо	Мо
TUI45	2006	LB	Мо	Мо	NA	Мо	Me	Ma	Me	Ma	Me	Me
TYX63	2006	LB	Me	Me	NA	Me	Me	Mo	Me	Мо	Me	Me
VAL45	2007	LB	В	Me	NA	Мо	Мо	Me	Мо	Me	Мо	Мо
VAR72	2009	LB	Мо	Мо	NA	Мо	Мо	NA	NA	NA	NA	Мо
VAS87	2005 - 2009	LB	ТВ	В	NA	В	В	ТВ	В	В	В	В
VAU58	2005 - 2009	LB	ТВ	В	В	В	В	Mo	Мо	Мо	Мо	В
VIG36	2005 - 2010	LB	Мо	Me	Мо	Мо	Мо	Ma	Мо	Ma	Мо	Мо
VIL35	2007 - 2010	LB	Мо	Me	В	Мо	Мо	Ma	Мо	Ma	Мо	Мо
VIO44	2006	LB	В	Мо	NA	Мо	В	Me	Мо	Me	Мо	Мо
LIN55	2007_2008	RM	Me	Ma	Мо	Me	Me	Ma	Me	Ma	Me	Me
AME54	2009	RM	ТВ	Me	Мо	Мо	NA	Mo	NA	Мо	NA	NA
LAC55	2007_2011	RM	В	Me	Мо	Мо	ТВ	Mo	Мо	Мо	Мо	Мо
BIS55	2007_2008	RM	Me	Ma	Мо	Me	Me	Ma	Me	Ma	Me	Me
MUN67	2009	RM	В	Ma	Мо	Мо	NA	Ma	NA	Ma	NA	NA
LKW68	2009	RM	ТВ	Мо	Мо	Мо	ТВ	Me	Мо	Me	Mo	Мо
VPR88	2011	RM	ТВ	В	В	В	В	В	В	В	В	В
VFO08	2008	RM	В	Мо	Мо	Мо	NA	В	NA	В	NA	NA
BOU88	2010	RM	ТВ	Мо	Мо	Мо	ТВ	В	Мо	В	Мо	Mo
MIC68	2010	RM	ТВ	В	В	В	ТВ	В	В	Мо	Мо	В
BAI08	2008_2011	RM	Me	Me	Мо	Me	NA	Mo	NA	Me	NA	NA
MAD55	2011	RM	ТВ	Мо	В	Мо	ТВ	ТВ	ТВ	ТВ	ТВ	Мо
GON57	2012	RM	NA	NA	NA	NA	В	ТВ	В	ТВ	В	NA
STO57	2012	RM	NA	NA	NA	NA	В	Me	Мо	Me	Мо	NA
PAR54	2008_2011	RM	В	Ma	Мо	Мо	В	Me	Мо	Ma	Мо	Мо
GER88	2011	RM	Me	В	Мо	Me	Мо	В	Мо	В	Мо	Мо
LON88	2010	RM	Mo	Мо	Мо	Мо	Мо	TB	Мо	ТВ	Mo	Мо
LET57	2012	RM	NA	NA	NA	NA	ТВ	TB	TB	Me	Mo	NA
VVE70	2011	RMC	Mo	Ma	В	Мо	В	Ma	Мо	Ma	Mo	Мо
VIL52	2011	RMC	Me	Ma	В	Me	Мо	Me	Мо	Me	Mo	Мо
LDC21	2011	RMC	Me	Ma	Ma	Me	Me	Ma	Me	Ma	Me	Me
PAN21	2011	RMC	Mo	Ma	В	Мо	В	Mo	Мо	Mo	Мо	Мо
RCS70	2011	RMC	В	Мо	Ma	Мо	В	В	Мо	В	Mo	Мо
REM25	2009	RMC	В	Мо	В	Мо	Me	TB	Me	В	Me	Me
SPO25	2009	RMC	В	Мо	В	Мо	Ma	Mo	Ma	Мо	Ma	Ma
FRA25	2011	RMC	TB	В	В	В	ТВ	TB	ТВ	TB	ТВ	В
ENT25	2008 - 2011	RMC	Mo	Мо	В	Мо	Ma	TB	Ma	ТВ	Ma	Ma
LDC25	2007 - 2010	RMC	Me	Me	В	Me	Me	Mo	Me	Мо	Me	Me
CHA25	2010	RMC	Me	Мо	В	Me	В	Me	Mo	Me	Мо	Мо
MAL90	2011	RMC	ТВ	Me	Ma	Мо	В	Mo	Мо	Мо	Мо	Мо
MON71	2007	RMC	Me	Ma	В	Me	Мо	Ma	Мо	Ma	Мо	Мо

MEB01	2011	RMC	ТВ	Мо	В	Мо	В	Ma	Мо	Ma	Мо	Мо
SDB01	2011	RMC	В	Ma	В	Мо	ТВ	Me	Мо	Me	Мо	Мо
ANS69	2008	RMC	ТВ	В	В	В	В	ТВ	В	ТВ	В	В
MON74	2005 - 2007	RMC	В	В	IND	В	Мо	В	Мо	В	Мо	Мо
LEM74	2010	RMC	Мо	Мо	В	Мо	Мо	Mo	Мо	Мо	Мо	Мо
SYL01	2008 - 2011	RMC	В	В	В	В	Мо	ТВ	Мо	ТВ	Мо	Мо
ANN74	2010	RMC	ТВ	В	В	В	ТВ	Mo	Мо	Мо	Мо	В
BOU73	2010	RMC	Мо	Мо	В	Мо	Me	Mo	Me	Мо	Me	Me
AIG73	2009	RMC	В	В	В	В	Мо	В	Мо	В	Мо	Мо
ILA39	2009	RMC	Мо	В	В	Мо	Мо	ТВ	Мо	ТВ	Мо	Мо
LGM39	2005 - 2007	RMC	В	В	В	В	В	В	В	В	В	В
CHA39	2007 - 2010	RMC	Мо	Мо	В	Мо	Me	В	Me	В	Me	Me
VAL39	2010	RMC	В	В	В	В	В	Mo	Мо	Мо	Мо	В
COI39	2010	RMC	ТВ	Мо	В	Мо	ТВ	В	В	В	В	Мо
RCB01	2010	RMC	ТВ	Me	В	Мо	ТВ	В	В	В	В	Мо
GLC39	2009	RMC	В	В	В	В	В	ТВ	В	ТВ	В	В
ETI39	2005 - 2007	RMC	В	В	В	В	В	ТВ	В	Мо	Мо	В
VOU39	2008	RMC	В	В	В	В	В	Mo	Мо	Мо	Мо	В
LRO39	2008 - 2011	RMC	В	В	В	В	Мо	Me	Мо	Me	Мо	Мо
ABB39	2010	RMC	В	В	В	В	Ma	ТВ	Ma	ТВ	Ma	Ma
NAN01	2007 - 2010	RMC	Мо	Мо	В	Мо	В	В	В	В	В	Мо
RCM01	2010	RMC	Me	Ma	В	Me	Мо	Me	Мо	Me	Мо	Мо
ALL01	2010	RMC	В	В	В	В	ТВ	В	В	В	В	В
RGL69	2009	RMC	ТВ	Мо	В	Мо	Me	В	Me	В	Me	Me
GEB69	2010	RMC	ТВ	Мо	В	Мо	ТВ	В	В	В	В	Мо
DRA69	2011	RMC	ТВ	Ma	В	Мо	ТВ	Me	Мо	Me	Мо	Мо
DEV07	2011	RMC	Ma	Me	В	Ma	В	Mo	Мо	Мо	Мо	Мо
VIL48	2011	RMC	В	В	В	В	В	В	В	В	В	В
PUY48	2011	RMC	TB	В	В	В	В	Mo	Мо	Мо	Мо	В
CHE73	2009	RMC	TB	В	В	В	ТВ	В	В	В	В	В
BIS73	2009	RMC	ТВ	В	В	В	ТВ	ТВ	ТВ	В	В	В
SPC38	2012	RMC	TB	В	В	В	ТВ	В	В	В	В	В
SAU38	2009	RMC	В	В	В	В	В	Mo	Мо	Мо	Мо	В
MON38	2009	RMC	В	В	В	В	В	В	В	В	В	В
VAL38	2007	RMC	TB	В	В	В	ТВ	ТВ	ТВ	ТВ	TB	В
LPC38	2007 - 2010	RMC	В	В	В	В	Ma	Mo	Ma	Мо	Ma	Ma
NDC38	2009	RMC	ТВ	В	В	В	ТВ	Mo	Мо	Мо	Мо	В
CHA38	2010	RMC	ТВ	Me	В	Мо	ТВ	Mo	Мо	Мо	Мо	Мо
LAU38	2007	RMC	ТВ	В	В	В	ТВ	ТВ	ТВ	В	В	В
RGM38	2008	RMC	ТВ	В	В	В	ТВ	В	В	В	В	В
VER38	2012	RMC	ТВ	В	В	В	ТВ	В	В	В	В	В
LAF38	2009	RMC	ТВ	В	В	В	Мо	В	Мо	В	Мо	Мо
PET38	2009	RMC	ТВ	В	В	В	ТВ	В	В	В	В	В

PAL38	2008 - 2011	RMC	Мо	Me	В	Мо	Ma	Mo	Ma	Мо	Ma	Ma
SPO04	2007	RMC	В	В	В	В	ТВ	Mo	Мо	Мо	Мо	В
LNC04	2007	RMC	ТВ	В	В	В	ТВ	ТВ	ТВ	Ma	Мо	В
ALL04	2005 - 2007	RMC	ТВ	В	В	В	ТВ	TB	ТВ	В	В	В
CAS04	2008	RMC	ТВ	В	В	В	ТВ	В	В	В	В	В
CHO04	2009	RMC	ТВ	В	В	В	ТВ	ТВ	ТВ	В	В	В
QUI04	2011	RMC	ТВ	В	В	В	ТВ	ТВ	ТВ	ТВ	TB	В
ESP04	2007	RMC	TB	В	В	В	TB	Mo	Мо	Мо	Мо	В
LLI66	2006	RMC	Mo	Мо	В	Мо	ТВ	ТВ	ТВ	TB	TB	Мо
LAN66	2007	RMC	TB	В	В	В	ТВ	В	В	В	В	В
VIL66	2012	RMC	ТВ	В	Ma	Мо	В	Me	Мо	Me	Мо	Мо
BOU66	2005 - 2007	RMC	ТВ	В	В	В	ТВ	TB	ТВ	TB	TB	В
PRA66	2006	RMC	Mo	В	В	Мо	ТВ	ТВ	ТВ	TB	TB	В
VIN66	2009	RMC	Ma	Me	В	Ma	Me	Mo	Me	Мо	Me	Me
CAR66	2009	RMC	В	В	В	В	В	В	В	В	В	В
MAT66	2009	RMC	ТВ	Мо	В	Мо	ТВ	ТВ	ТВ	ТВ	ТВ	Мо
PUY66	2010	RMC	Мо	Мо	В	Мо	В	В	В	В	В	Мо
RLB11	2009	RMC	Мо	Мо	В	Мо	В	В	В	В	В	Мо
JOU11	2008 - 2011	RMC	ТВ	Me	В	Мо	ТВ	ТВ	ТВ	ТВ	ТВ	Мо
SAL34	2010	RMC	ТВ	В	В	В	В	В	В	В	В	В
AVE34	2009	RMC	ТВ	В	В	В	В	Mo	Мо	Мо	Мо	В
RSV34	2007	RMC	ТВ	Мо	В	Мо	В	ТВ	В	ТВ	В	Мо
BIM13	2012	RMC	ТВ	В	В	В	ТВ	ТВ	ТВ	ТВ	ТВ	В
REA13	2009	RMC	ТВ	В	В	В	ТВ	В	В	В	В	В
AUL13	2008	RMC	Мо	Me	В	Мо	Мо	Me	Мо	Me	Мо	Мо
ENT13	2007 - 2010	RMC	Ma	Ma	В	Ma	Ma	Ma	Ма	Ma	Ma	Ma
CAR83	2011	RMC	Мо	Ma	В	Мо	ТВ	Mo	Мо	Мо	Мо	Мо
VER83	2011	RMC	В	Мо	В	Мо	В	В	В	В	В	Мо
SCA83	2007	RMC	ТВ	В	В	В	ТВ	В	В	В	В	В
VEN06	2007	RMC	В	В	В	В	ТВ	ТВ	ТВ	В	В	В
NEG06	2007	RMC	Me	Me	В	Me	В	В	В	Me	Мо	Мо
CAL2B	2008	RMC	В	В	В	В	ТВ	В	В	В	В	В
COD2B	2009	RMC	Me	Me	В	Me	В	Mo	Мо	Мо	Мо	Мо
TOL2A	2007 - 2010	RMC	В	В	В	В	В	В	В	В	В	В
ALE2B	2007 - 2010	RMC	В	В	В	В	ТВ	Mo	Мо	Мо	Мо	В
FIG2B	2009	RMC	В	Мо	В	Мо	В	ТВ	В	ТВ	В	Мо
LGM27	2009	SN	В	Ma	В	Мо	В	Ma	Мо	Ma	Мо	Мо
SEI10	2009	SN	ТВ	Ma	В	Мо	В	Me	Мо	Me	Мо	Мо
AMA10	2008 - 2011	SN	В	Ma	В	Мо	Me	Me	Me	Me	Me	Me
LDC51	2008 - 2011	SN	Мо	Ma	В	Мо	Me	Me	Me	Me	Me	Me
LAT10	2010	SN	ТВ	Ma	В	Мо	NA	Me	NA	Me	NA	NA
mars-21	2010	SN	ТВ	Me	В	Мо	NA	В	NA	В	NA	NA
HER51a	2010	SN	ТВ	Ma	В	Мо	NA	NA	NA	NA	NA	NA

HOR52	2009	SN	ТВ	Me	В	Мо	В	В	В	В	В	Мо
HOL11a	2010	SN	В	Ma	В	Мо	NA	NA	NA	NA	NA	NA
EGM55	2010	SN	Me	Me	В	Me	NA	Ma	NA	Ma	NA	NA
BEL51	2008	SN	NA									
EGR51	2010	SN	В	Me	В	Мо	NA	Mo	NA	Мо	NA	NA
ARM77	2009	SN	В	Me	В	Мо	В	Ma	Мо	Ma	Мо	Мо
ESQ78	2009	SN	В	Ma	В	Мо	Me	Ma	Me	Ma	Me	Me
BOU27	2010	SN	Me	Ma	В	Me	NA	Ma	NA	Ma	NA	NA
VEN27	2010	SN	Ma	Ma	В	Ma	NA	Ma	NA	Ma	NA	NA
LER27a	2008 - 2011	SN	В	Me	В	Мо	NA	Mo	NA	Мо	NA	NA
TOU27	2010	SN	Мо	Me	В	Мо	NA	Me	NA	Me	NA	NA
PPE14	2008 - 2011	SN	Ma	Me	В	Ma	Мо	Mo	Мо	Мо	Мо	Мо
CAN77a	2008 - 2011	SN	В	Ma	В	Мо	NA	NA	NA	NA	NA	NA
BGP77	2010	SN	Me	Ma	В	Me	NA	Ma	NA	Ma	NA	NA
TRA02	2009	SN	В	Ma	В	Мо	Мо	Ma	Мо	Ma	Мо	Мо
ECL28	2009	SN	В	Ma	В	Мо	Мо	Ma	Мо	Ma	Мо	Мо
JAB77	2010	SN	ТВ	ТВ	В	ТВ	NA	NA	NA	NA	NA	NA
VSM77	2010	SN	ТВ	В	В	В	NA	Me	NA	Ma	NA	NA
CER95	2010	SN	ТВ	В	В	В	NA	ТВ	NA	ТВ	NA	NA
VDS78a	2010	SN	ТВ	Мо	В	Мо	NA	NA	NA	NA	NA	NA
BMM78	2010	SN	Mo	Me	В	Мо	NA	Me	NA	Me	NA	NA
VEZ50	2010	SN	Me	Ma	В	Me	NA	Ma	NA	Ma	NA	NA
CHA52	2008 - 2011	SN	Mo	Me	В	Мо	В	Me	Мо	Me	Mo	Мо
LIE52	2008 - 2011	SN	В	Ma	В	Мо	Me	В	Me	В	Me	Me
MOU52	2010	SN	Mo	Ma	В	Мо	NA	Me	NA	Me	NA	NA
BOU89	2008 - 2011	SN	Mo	Me	В	Мо	В	В	В	В	В	Мо
PON21	2009	SN	ТВ	Me	В	Мо	Мо	Mo	Мо	Мо	Мо	Мо
CRE89	2009	SN	В	Me	В	Мо	В	Mo	Mo	Мо	Мо	Мо
BSA58	2008 - 2011	SN	Me	Me	В	Me	Мо	Mo	Mo	Мо	Мо	Мо
GRO21a	2010	SN	В	Ma	В	Мо	NA	NA	NA	NA	NA	NA
CHA58	2010	SN	Mo	Me	В	Мо	NA	Mo	NA	Мо	NA	NA
CER21	2010	SN	ТВ	Ma	В	Мо	NA	Ma	NA	Ma	NA	NA
SET58	2009	SN	ТВ	Me	В	Мо	ТВ	В	В	В	В	Мо
BCP58	2008 - 2011	SN	В	Me	В	Мо	NA	NA	NA	NA	NA	NA
AIL02	2008 - 2011	SN	В	Me	Ma	Мо	Mo	В	Мо	В	Mo	Мо
GAS14	2010	SN	Me	Me	В	Me	NA	NA	NA	NA	NA	NA
RAB61	2008 - 2011	SN	Me	Ma	В	Me	Мо	Me	Mo	Me	Мо	Мо
GAL89	2008	SN	NA									

Onema
Hall C – Le Nadar
5 square Félix Nadar
94300 Vincennes
01 45 14 36 00
www.onema.fr

Irstea
Parc de Tourvoie
BP 44,
92163 Antony cedex
01 40 96 61 21