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Abstract 

In the past, hydrologic modeling of surface water resources has mainly focused on 

simulating the hydrologic cycle at local to regional catchment modeling domains. There 

now exists a level of maturity amongst the catchment, global water security, and land 

surface modeling communities such that these communities are converging towards 

continental domain hydrologic models. This commentary, written from a catchment 

hydrology community perspective, provides a review of progress in each community 

towards this achievement, identifies common challenges the communities face, and 

details immediate and specific areas in which these communities can mutually benefit 

one another from the convergence of their research perspectives. Those include: (1) 

creating new incentives and infrastructure to report and share model inputs, outputs, and 

parameters in data services and open access, machine-independent formats for model 

replication or re-analysis; (2) ensuring that hydrologic models have: sufficient complexity 

to represent the dominant physical processes and adequate representation of 

anthropogenic impacts on the terrestrial water cycle, a process-based approach to model 

parameter estimation, and appropriate parameterizations to represent large-scale fluxes 

and scaling behavior; (3) maintaining a balance between model complexity and data 

availability as well as uncertainties and (4) quantifying and communicating significant 

advancements towards these modeling goals.  
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1. Introduction 

Hydrologic models have long been essential tools to help manage finite water 

supplies. The purposes of hydrologic models today remain much the same as nearly fifty 

years ago, when Freeze and Harlan [1969] enumerated their uses: “1) to synthesize past 

hydrologic events, 2) to predict future hydrologic events, 3) to evaluate the effects of 

artificial changes imposed by man (sic) on the hydrologic regime, and 4) to provide a 

means of research for improving our understanding of hydrology in general.” For more 

than four decades, catchment domain hydrologic models have provided the hydrologic 

foundation upon which these purposes were realized.  

Emerging water management challenges are now pushing the desired modeling 

domain from catchment to continental and global domains. To this end, hydrologic 

information at the continental and global scale is critically needed to inform water 

allocation in international, national and large river basins (e.g. United Nations Economic 

Comission for Europe [2014]), to achieve global water security [Griffiths et al., 2013], 

for national water assessments [Alley et al., 2013], to provide a consistent approach to 

evaluating water resources [Hering et al., 2010; Laniak et al., 2013], to provide a 

foundation for international flood policy [European Union, 2007] and operational flood 

forecasting services [Mcenery et al., 2005; Todini, 2006; Cloke and Pappenberger, 2009; 

Demeritt et al., 2013], to advise water quality and ecological directives [Kallis and 

Butler, 2001], and to plan for the effects of climate extremes on water resources [Collins 

et al., 2009].  

With this myriad of complex science questions and pressing societal issues, the 

hydrology community has evolved into several modeling communities that emphasize 

different aspects of the hydrologic cycle and, therefore, provide focused modeling efforts 

to address a subset of these questions. There is now a level of maturity amongst the 

respective communities such that convergence towards a collective, transformational 

achievement is at hand: the realization of continental domain hydrologic models capable 

of addressing problems of practical importance. With this same advancement in reach, 

each community is faced with a similar set of challenges in the representation of water 

management actions and infrastructure, the estimation of model parameters, the skill with 
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which components of the water balance can be simulated, the spatial domain of the 

model, and the transferability to ungauged areas [Wood et al., 2011; Wada et al., 2014; 

Bierkens et al., 2015]. Hydrologists, and especially modelers, tend to become entrenched 

in the traditions and commonly made assumptions of their respective communities; yet, 

by placing the advancements of each community in the context of a common goal – the 

achievement of continental domain hydrologic modeling capable of addressing problems 

of practical importance – a unifying theme around which the various communities could 

rally emerges.  

This paper focuses on three modeling communities (presented alphabetically) – all of 

which are directly pursuing continental domain hydrologic modeling and have developed 

important capabilities useful for surface water resources planning across large spatial 

domains: the catchment modeling (CM) community, the global water security modeling 

(GWSM) community, and the land-surface modeling (LSM) community. The 

communities are briefly introduced here and further described in later sections. It should 

be noted that the emphasis of this paper is on the explicit modeling of surface water 

resources at the continental domain and, therefore, this paper does not address the 

specificities of large groundwater models [de Graaf et al., 2015] or coupled groundwater-

surface water modeling for large domains [e.g. Maxwell et al., 2015].  However, we 

acknowledge the importance of groundwater both for its interaction with surface water 

and as a key water resource – indeed, in one or both of these roles, it is either implicitly 

or explicitly dealt with by the three above communities.  

The CM community (in which most of these authors reside) is predominantly focused 

on model simulations of streamflow for unimpaired headwater catchments [Gupta et al., 

2014] and has devoted considerable effort to developing datasets and methods for 

parameter estimation and transferability [Duan et al., 2006; Newman et al., 2015].  The 

GWSM community focuses on streamflow simulation at the global scale [Arnell, 1999; 

Vörösmarty et al., 2000; Döll et al., 2003], and has devoted considerable effort to 

modeling the impacts of large-scale water management [Pokhrel et al., 2011] with recent 

water security models increasing their spatial and process complexity [Müller Schmied et 

al., 2014; Sutanudjaja et al., 2014; Wada et al., 2014]. The LSM community focuses on 

simulating land-atmosphere interactions to provide a lower boundary condition to climate 
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models [Pitman, 2003; Lawrence et al., 2011]. Recent developments in land-surface 

modeling seek to improve simulations of the terrestrial hydrologic cycle and land-

atmosphere interactions by representing hydrologic processes more accurately [Clark et 

al., 2015c] and an effort is now underway to provide predictions at the “hyper-

resolution,” such that the spatial scale of the predictions are relevant to water resource 

planning [Wood et al., 2011; Bierkens et al., 2015].  

It comes as no surprise that differences in the emphases of modeling communities 

have also affected their respective hydrologic process foci.  As no model is a perfect 

representation of hydrologic catchment processes, modeling communities have 

prioritized which water balance terms should be most accurately reproduced by their 

respective models. For example, the CM community has long emphasized skill in 

streamflow simulation because the roots of this community are in providing reliable 

estimates of streamflow and related processes (the “horizontal” fluxes of the hydrologic 

cycle) to support water resources planning and allocation. By contrast, the LSM 

community focuses much more on atmospheric and evapotranspiration processes (the 

“vertical” fluxes of the hydrologic cycle) because the roots of the community are in 

providing a lower boundary condition to climate models (i.e., to simulate land-

atmosphere interactions). When models inevitably face difficulties in closing the water 

balance, the CM community usually adjusts the atmospheric fluxes (either the incoming 

precipitation flux or the outgoing evaporation flux) or the outgoing regional groundwater 

flux, whereas the LSM community adjusts runoff to close the water balance. Therefore, 

the water balance term that the CM community emphasizes most in its modeling efforts 

(streamflow) is used as an adjustment factor to close the water balance in the LSM 

community, while the water balance term that the LSM community emphasizes most in 

its modeling efforts (evapotranspiration) is used to close the water balance in the CM 

community. This example illustrates that – despite convergence of the communities 

towards the same achievement – substantial disconnects between the communities exist.  

This commentary is from the perspective of members of the CM community. From 

this perspective, the CM community has long been tasked with the development of 

hydrologic models that can be used for surface water resources planning.  For this reason, 

the CM community has been primarily motivated to develop models that focus on this 
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need.  Therefore, catchment models have historically been developed at the local to 

regional scale and the CM community is only recently considering how to apply 

catchment models to continental and global domains. Conversely, the LSM and GWSM 

communities have historically led the development of hydrologic models at the global 

scale to quantify the effects of climate and human alteration to the hydrologic cycle; 

however, the estimates of such effects have remained at coarse temporal and spatial 

scales and the skill in prediction of surface water resources does not lend these models to 

use in water resource planning.  

Each modeling community has and will continue to play a unique and important role 

in developing continental domain hydrologic models and it is unreasonable to suggest 

that communities would abandon long-standing modeling efforts with substantial 

stakeholder investment to rally behind a singular hydrologic model or community. Yet, 

the questions that hydrologic models are asked to address are becoming increasingly 

interdisciplinary and multi-objective, creating the need to combine expertise and 

modeling tools from the different communities. Examples of such interdisciplinary 

challenges include representing the biophysical controls on transpiration, understanding 

the effect of climate change projections on irrigation water availability and crop water 

requirements, and setting operational water use limits across surface and groundwater 

resources to maintain economic, cultural, recreational, and ecosystem values of water. 

There have been a number of commentaries advocating for and discussing efforts 

underway to bring modeling communities together [Wood et al., 2011; Montanari et al., 

2013; Bierkens et al., 2015]; yet, there has not been a review of progress in each of the 

communities through the common lens of continental domain hydrologic modeling. 

Through such a review, we identify progress in each community and common challenges 

the communities face in this pursuit. Lastly, we detail research activities that can 

accelerate advances across all communities towards continental-domain hydrologic 

modeling. 

2. Community modeling efforts at continental domains 

This commentary focuses on models that simulate the surface-water component of the 

terrestrial hydrologic cycle over continental domains. Hydrologic models utilized for 
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these purposes have distinct differences from modeling efforts for purely scientific 

pursuits [Wagener and McIntyre, 2005; Farmer, 2015] and typically have specific needs 

related to the spatial and temporal resolution of the model output, the model structure and 

parameterization, the execution time, the robustness of results, and the model 

performance. Models of the terrestrial hydrologic cycle need to be capable of answering 

questions such as those outlined by the National Research Council [2012]. Such 

questions include: (1) How do anthropogenic modifications of water resources affect 

water availability? (2) What is the environmental impact of shifts and regime changes in 

streamflow? (3) How do water resources respond to changes in climate and land cover? 

(4) How does the movement of contaminants through large domains change? and (5) 

How is water quality impacted by changes to the climate and landscape? Answers to 

these questions must be provided with information on both reliability and uncertainty of 

the model and its outputs to inform decision-making and evaluate management tradeoffs. 

Additional constraints arise when these questions are asked over a continental domain, 

where dominant hydrologic and climate processes can vary and consistency in data, 

models, and approaches are essential.  

The distinction between modeling communities is defined by their modeling 

objectives and, in turn, has resulted in differences across communities in their approaches 

to parameterizations of hydrologic, atmospheric, and human-engineered processes, and 

the emphasis placed on the evaluation of model performance. In Table 1 we present, from 

our own perspective, the extent to which these communities meet the modeling 

conditions for continental domain hydrologic models and highlight the contributions and 

weaknesses of each community in this context.  

Table 1. Historical emphasis on various aspects of hydrologic modeling in different 

communities. 

Modeling 
Community 

Representation of 
water management 

Parameter 
estimation 

Skill in streamflow 
simulations 

Transferability and 
spatial coverage 

Catchment 
 

Medium High High Low 

Global water 
security 

Medium Medium Low Medium 

Land surface Low Low Low High 
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2.1 Catchment modeling community 

Models developed and utilized by the CM community have historically been applied 

to individual catchments [Reed et al. 2004; Smith et al. 2013], though recent applications 

extend catchment hydrologic models to large river basins [Arheimer et al., 2012; Weiskel 

et al., 2014] and even continental domains [Donnelly et al., 2015; Pechlivanidis and 

Arheimer, 2015] through the leveraging of continental and global domain forcings and 

geophysical datasets [Colombo et al., 2007; Atkinson et al., 2008; Viger, 2014; Viger and 

Bock, 2014; Newman et al., 2015] and providing a consistent approach to estimate 

spatially variable model parameter values [Kumar et al., 2013b; Samaniego et al., 2010]. 

These large-domain applications allow consistent spatial comparisons while still 

providing model results at the spatial scale needed for water management decisions.  

Models developed and utilized by the CM community vary in complexity, ranging 

from lumped bucket-style rainfall-runoff models with a coarse representation of 

hydrologic processes [Bergström, 1995; Donigian et al., 1995; Leavesley and Stannard, 

1995; Perrin et al., 2003] to distributed hydrologic models that attempt to explicitly 

represent a myriad of hydrologic and biophysical processes [Wigmosta et al., 1994; Rigon 

et al., 2006]. When used for continental-domain studies, the type of model tends to fall 

toward the simpler end of the spectrum, and does not provide a detailed representation of 

the controls of energy on snow melt and evapotranspiration, the role of spatial variability 

in meteorology or vegetation topography or soils on spatial variability in hydrologic 

fluxes, and the lateral fluxes of water across the landscape [Gupta et al., 2014]. 

Moreover, many of the catchment models applied for continental-domain studies do not 

use process-based approaches to parameter estimation (i.e., the “mapping” between 

meteorological inputs and streamflow for individual basins) but, rather, calibration-based 

approaches that do not evaluate the internal hydrologic processes [Merz and Blöschl, 

2004; Oudin et al., 2008; Andréassian et al., 2009]. Application of such curve-fitting 

methods to individual basins can sometimes lead to an inconsistent spatial representation 

of model parameters and hydrologic processes and greatly complicate parameter 

transferability efforts [Samaniego et al., 2010]. A blind use of the curve-fitting 

approaches to parameter estimation can also lead to “getting the right answers for the 
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wrong reasons” [Kirchner, 2006] and will hence greatly constrain the capability to use 

such models to extrapolate in space and time. 

Two developments are necessary for the CM community to produce meaningful 

contributions for continental-domain applications: (1) Models should have more physical 

realism and explicit representation of spatial variability; and (2) Parameter estimation 

should be more constrained by physical considerations, to ensure the robustness of model 

simulations. The CM community is indeed moving in this direction [Gupta et al., 2008; 

Samaniego et al., 2010].  

2.2 Global water security modeling community 

The GWSM community is broadly defined here as the community of academics and 

policy makers who focus on quantifying global water availability and water use to 

describe threats to regional and global water security [Cook and Bakker, 2012]. As 

Bierkens et al. [2015] provide a detailed review of progress in the GWSM community, 

only summary comments are provided here. Whereas these models typically use a rather 

rudimentary representation of hydrologic processes [Arnell, 1999; Döll et al., 2003; 

Vörösmarty et al. 2000] – though some models used for global water security 

assessments come from the LSM community with more detailed process representation 

[Nijssen et al., 2001] – the GWSM community is now developing models with greater 

space-time resolution and process complexity that include water management impacts on 

the terrestrial water cycle [Pokhrel et al. 2012; Sutanudjaja et al., 2014]. Recent efforts 

such as those by Wada et al. [2014] and Müller Schmied et al. [2014] run global water 

security models at 10 km resolution globally with sub-grid parameterization of surface 

runoff, interflow and groundwater discharge; yet, fully realistic representations of water 

allocation and water demands are not accounted for in these models [Wada et al., 2014]. 

2.3 Land surface modeling community 

The efforts of the LSM community largely focus on the complex interactions and 

feedbacks at the boundary between the land and atmosphere through the modeling of a 

broad range of biophysical and hydrologic processes [Pitman, 2003; Clark et al., 2015c; 

Sato et al., 2015]. Land surface models are not explicitly hydrologic models, yet they still 

aim at simulating the dominant hydrologic processes in order to provide reasonable 
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simulations of the terrestrial water cycle and land-atmosphere interactions. These models 

are just now beginning to account for anthropogenic effects on water availability, 

including water withdrawals and irrigation. 

The difference between the models developed by the LSM community and other 

modeling communities is exemplified by their modeling objectives: the motivation of the 

LSM community is to simulate land-atmosphere fluxes, historically focusing on 

biophysical processes; whereas the motivation of other hydrologic models is to simulate 

streamflow, historically focusing on hydrologic processes. While this distinction has 

become less clear-cut over time, land-surface models still have more emphasis on 

biophysical processes, such as representing controls on stomatal conductance, whereas 

other hydrologic models have more emphasis on hydrologic processes, such as 

representing lateral flow. The value of land surface models for continental domain 

hydrologic modeling has been long been recognized (and utilized) – for example, the 

Variable Infiltration Capacity (VIC) model has been widely used for continental and even 

global scale water resource assessments [Maurer et al., 2001; Nijssen et al., 2001].  

An interesting distinction between the LSM and CM communities is that the LSM 

community typically focuses on differences in process parameterizations (assuming the 

model parameters as given and certain) [Henderson-Sellers et al. 1995], while the CM 

community focuses on parameter estimation [Duan et al., 2006].   There are many 

parameters in land surface models that represent the spatial variability in biophysical and 

hydrologic processes but these parameters are typically set to default values [Overgaard 

et al., 2006]. Land-surface models do a credible job of relating geophysical attributes 

(e.g., topography, vegetation and soils) to model parameters (e.g., storage and 

transmission of water in soils), providing a good initial representation of spatial 

variability in the landscape on large-scale hydrologic simulations [Sellers et al., 1996; 

Chen and Dudhia, 2001]. The LSM community however places limited effort on 

adjusting the default model parameter fields (e.g., through model calibration), meaning 

that land-surface models typically yield poor performance in simulations of streamflow at 

the spatial scales of interest to water managers [Wood et al., 1998]. 
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The development trajectory of the LSM community is one toward greater model 

complexity [Wood et al., 2011; Bierkens et al., 2015; Clark et al., 2015c]. This is 

manifest in both an increase in process complexity – as evident in the number of 

biophysical and hydrologic processes explicitly included in these models [Sellers et al., 

1997; Pitman, 2003; Clark et al., 2015c] – and an increase in spatial complexity [Wood et 

al., 2012]. It is reasonable to hypothesize that increases in model complexity should 

increase the realism of process representation; yet more complex models are often 

criticized for their reliance on point-scale equations, which may not apply to spatially 

heterogeneous supports. Further, the computational expense of complex models restricts 

the ability to extensively experiment with different parameters and structures in order to 

improve model simulations. Moving towards finer resolutions has been shown to result in 

more realistic models in atmospheric sciences (e.g. Ban et al. [2014]; Rasmussen et al.  

[2014]), and, based on this precedent, the LSM community has great expectations on 

moving towards hyperresolution models [Wood et al., 2011]. However, modeling of 

subsurface processes is fundamentally different; opposite to atmospheric processes, the 

parameterization of subsurface processes remains challenging regardless of scale [Beven 

et al., 2014]. 

3. Overcoming gaps across modeling communities: Integrating diverse research 
perspectives 

Process-based hydrologic modeling has recently been described as a complex 

interdisciplinary pursuit [Clark et al., 2015b]. As such, the diversity in the approaches 

and scientific traditions of the different hydrologic communities gives us the opportunity 

to learn from each other and accelerate modeling advances. We believe this collaborative 

perspective is indicative of a larger shift towards integrated and interdisciplinary efforts 

to create Earth System Models that seek to provide a good representation of all elements 

of the water cycle [Wood et al., 2011; Bierkens et al., 2015; Clark et al., 2015c]. In our 

opinion the development and performance of continental-domain hydrologic models is 

considerably constrained by the following factors and these constraints are irrespective of 

the current progress made by each modeling community: 
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1) Lack of consistency and quality assurance evaluation in large domain datasets 

of meteorology, geophysical attributes (topography, vegetation, soils, geology), 

water management data, and hydrologic states and fluxes; 

2) Inadequate model representation of dominant hydrologic processes and limited 

attention to physical constraints in model parameter estimation; and 

3) Lack of consistent evaluation of model performance (for example, 

benchmarking of models), quantification of uncertainty, and communication of 

modeling tools and results to the water resources planning community.  

Given that data quality is paramount to hydrologic modeling efforts, a substantial 

portion of this section is focused on that topic. We also believe that this is an area where 

collaboration could begin immediately and outcomes would be highly impactful to the 

communities. Common challenges also exist in how physical processes can be 

represented, such as: (1) how to explicitly resolve land, subsurface, and atmosphere 

interactions, (2) how to discretize the spatial and temporal domains, and (3) how to 

parameterize connectivity and feedback between processes. Lastly, upon model 

evaluation, quantification of uncertainty and communication of modeling tools and 

results is discussed. These sections capture the major modeling challenges that are shared 

across communities and how the different communities can mutually benefit from 

synergistic advancements. 

3.1 Data consistency, exchange, evaluation, and quality assurance  

Advancing hydrologic modeling for water resources planning at continental domains 

requires high resolution input data that are quality assured and consistent across the 

domain. Many new global datasets are provided through open access portals (Table 2), 

which have created enormous potential to this end. These datasets mainly originate from 

the LSM and GWSM communities, but also from the earth observation community and 

public portals of governmental agencies, including those doing operational hydrologic 

modeling, such as flood forecasting. Although the datasets often claim to have high 

resolution they may not be ready for immediate use, particularly in catchment modeling 

and for water resources planning. For instance, the global datasets may be difficult to use 

for some or all of the following reasons: insufficient metadata, incompatible formats, lack 
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of information on accuracy of the data at the resolution needed for local catchments, or 

lack of coverage across a large domain. To fully utilize these datasets, it is essential for 

the communities to collaborate through the exchange, and quality assurance evaluation of 

such datasets. Therefore, new incentives and infrastructure to report and share corrected 

versions of these and future databases is required through data services and open access, 

machine-independent formats for model replication, re-analysis, and use by researchers in 

other scientific communities.  

 

Table 2. Some examples of open data from global or continental databases that enable 

catchment modeling at the continental scale. 

Type of Variables Dataset Data source

Meteorological forcing: ERA-40, ERA-INTERIM http://apps.ecmwf.int/datasets/ 

 GPCC www.dwd.de

 CRU  http://www.cru.uea.ac.uk/data 

 WATCH, WFDEI http://www.eu-watch.org/ 

 E-OBS http://eca.knmi.nl/dailydata/ 

 CORDEX http://wcrp-cordex.ipsl.jussieu.fr/ 

 DayMET http://daymet.ornl.gov/

 PRISM http://www.prism.oregonstate.edu/ 

 1/8
o
 CONUS http://cida.usgs.gov/thredds/catalog.html?data

set=cida.usgs.gov/thredds/dcp/conus_pr 
 NEXRAD MPE http://amazon.nws.noaa.gov/hdsb/data/nexra

d/nexrad.html 
Geophysical data:   

    Topography and Routing Hydrosheds and 

Hydro1K  

http://eros.usgs.gov/

    Land-use ESA CCI http://www.esa-landcover-cci.org/ 
 Globcover http://due.esrin.esa.int/page_globcover.php 

 Corine http://www.eea.europa.eu/publications/COR0-

landcover

 GLC2000 http://www.eea.europa.eu/data-and-

maps/data/global-land-cover-2000-europe 

 Lake and Wetlands GLWD http://www.worldwildlife.org/pages/global-

lakes-and-wetlands-database  

 FLAKE-Global http://www.flake.igb-berlin.de/ 

 ILEC World Lake 

database 

http://www.ilec.or.jp/en/ 

    Soil types ESD, DSMW, HWSD http://www.fao.org/soils-portal 

 

       Permeability and porosity 

 

 

GLHYMPS http://crustalpermeability.weebly.com/glhymps

.html 

Water management:   
    Reservoirs GRAND http://www.gwsp.org/products/ 
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    Agriculture CAPRI 

MIRCA2000 

http://www.capri-model.org 

https://www.uni-

frankfurt.de/45218031/data_download 

    Irrigation GMIA 

GIAM 

http://www.fao.org/nr/water/aquastat/irrigatio

nmap/index10.stm http://waterdata.iwmi.org/global_irr.php 
Hydrologic data:   

   River discharge 

 

GRDC http://www.bafg.de/GRDC/EN/Home/homepage_node.html 
 FRIEND http://ne-friend.bafg.de

 USGS http://water.usgs.gov/nwis 

 MOPEX http://www.nws.noaa.gov/ohd/mopex/ 

 WHYCOS http://www.whycos.org/whycos/ 

     Evapotranspiration Fluxnet http://fluxnet.ornl.gov

 MODIS http://modis.gsfc.nasa.gov/data/ 

     Snow GlobeSnow http://www.globsnow.info/ 

 NSIDC www.nsidc.org

     Glaciers WGMS www.wgms.ch

 

3.1.1 Meteorological forcing data 

Open-access meteorological datasets have recently been developed by the climate 

research community, either based on interpolation of observations (e.g. CRU, E-OBS, 

GPCC), derived from climate models (e.g., CORDEX), or from re-analysis of forecast-

model results (e.g. ERA40, ERA-interim) (Table 2). The latter have also been corrected 

with observations to be especially suitable for hydrological modeling, such as the 

WATCH data [Weedon et al., 2011]. Models for operational hydrology, such as flood 

forecasting models, have a particular need for real-time forcing data and therefore could 

and do, to an extent, contribute important data of this type.   

Although the global meteorological and climate model results show promise for 

incorporation into modeling efforts, they may show an inconsistent water balance 

because these models are tuned to close the energy balance. This means that modeled 

water variables, such as soil moisture, may include large uncertainties and require bias 

correction [Yang et al., 2010]. In future collaboration, the CM community could evaluate 

and give feedback to the LSM community on uncertainty and inconsistencies by applying 

inverse modeling approaches to judge precipitation patterns and magnitudes over 

catchments. This was an expertise introduced by CM pioneers (e.g. Wallén [1924]) but 

that has now lost attention.      
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3.1.2 Geophysical data 

Innovative hydrological assessments are emerging based on the new global digital 

elevation models with river routing, such as HYDRO1K and HYDROSHEDS [e.g. 

Lehner et al., 2008]. These datasets facilitate application of catchment models on the 

continental scale world-wide (e.g. Arheimer et al. [2012]; Donnelly et al. [2015]; 

Pechlivanidis and Arheimer [2015]). Recent studies from the CM community, however, 

also show that this routing can be misleading and inconsistent with global databases on 

river gauging stations, especially for catchments smaller than 5,000 km2 [e.g. Donnelly et 

al., 2013; Kauffeldt et al., 2013].  

Global databases hosting information on geology and soils often require substantial 

modification to be used in hydrologic models.  For example, soil types and geologic 

classes often need to be merged into hydrologically relevant groups. In addition to using 

topographic data to guide the scale of spatial discretization and routing within catchment 

models, it is important to account for the level of detail that may be desirable to other 

modeling communities and organizations, such as the GWSM community. Closer 

cooperation and increased communication between hydrologists, geographers, and the 

earth observation communities would help to advance and improve the geophysical 

databases. As an example, the US Geological Survey has produced a national geospatial 

fabric for hydrologic modeling in the continental United States [Viger, 2014; Viger and 

Bock, 2014], which includes a river routing network, land surfaces that contribute to the 

network, preliminary spatial catchment model parameters, and points located along the 

network for model calibration and evaluation.  

3.1.3 Water management data 

Dynesius and Nilsson [1994] found that 77 percent of the river discharge from the 

northern hemisphere was affected by the fragmentation of river channels by dams and 

water regulation. In general, the LSM and the CM communities mainly model pristine 

conditions to understand natural process interactions. The GWSM community has made 

major efforts during the last decades to construct and use global databases on water 

management, both on reservoirs for various purposes (e.g.[Lehner and Döll, 2004]) and 

of agricultural interactions with the water balance (e.g.[Allen et al., 1998; Wriedt et al., 

This article is protected by copyright. All rights reserved.



 

COMMENTARY: ACCELERATING ADVANCES IN CONTINENTAL DOMAIN HYDROLOGIC MODELING  

16  

2009; Portmann et al., 2010; Siebert et al., 2010; Britz et al., 2011]). Recently, the CM 

community has started to use these data in more detailed catchment models for 

continental domains (e.g.[Donnelly et al., 2015]). These applications have identified 

limitations to these databases and highlight the need for regular updates of this 

information; for instance, Donnelly et al. [2015] analyzed the water balance and river 

dynamics and identified trends in model bias that match societal changes affecting crop 

production and irrigation patterns. This is one example of potential mutual benefits from 

sharing data and results in a closer cooperation between the CM and GWSM modeling 

communities.  

Water management data remains one of the most challenging limitations to data needs 

in large-domain modeling. Global or continental datasets of water management data are 

often not available at the resolution of the water management practices. While a national 

effort is underway to provide water use information at catchment units derived at this 

level of detail [Alley et al., 2013], this goal will not be realized for some time. In other 

countries and continents, water management data is collated from many regulatory 

agencies and supplied in different formats, which complicates their application in 

hydrologic models. Further issues arise due to non-public water management practices 

such as small abstractions or reservoir operations, which are often not required to be 

reported but still result in changes to the hydrologic system at the catchment scale.  

Global databases of lakes and reservoirs do not match river networks and databases 

on land use may show large discrepancies between the datasets. For example, Globcover 

and ESA CC1 (Table 2) show large differences in land cover because they reflect 

different time-periods and different monitoring techniques. Lastly, time varying data sets 

of land-cover change are needed to accurately handle the anthropogenic changes to the 

landscape and effects on streamflow. 

3.1.4 Hydrologic data 

Model evaluation and improvement requires data on model states, fluxes and output. 

Such data originate from in-situ measurement and earth observations, including remotely 

sensed information; in other cases, outputs from other models with associated uncertainty 

are used. In the CM community, empirical methods and uncertainty analysis are 
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fundamental to the modeling process and, therefore, measured hydrological data is of 

critical importance. Several large-sample databases on river flow currently exist; for 

example, the Global Runoff Data Center (GRDC; 

http://www.bafg.de/GRDC/EN/Home/homepage_node.html) is hosting such data to 

stimulate data sharing between scientists and hydrological institutes. Yet, problems with 

using the data are often related to insufficient or incorrect metadata, lack of knowledge of 

catchment characteristics or anthropogenic impact (e.g. see method section in Donnelly et 

al. [2015]) and inconsistency in scale between the model output and the observed 

hydrologic data. Uncertainties in both time and space for these existing datasets must be 

provided so modelers can fully evaluate their utility and use them appropriately. For 

example, the data may be provided on a daily time step but, due to large uncertainties at 

this time step, the datasets may only be useful for model evaluation at mean monthly, 

seasonal, or annual resolutions.  

Using hydrological variables derived from earth observation products to validate 

hydrological models poses additional problems as the signal from the satellite is often 

mixed with other datasets and hydrologic algorithms. For instance, a meteorological grid 

and the Penman–Monteith equation are included in the MODIS product on 

evapotranspiration [Mu et al., 2007, 2011] resulting in a bias when comparing this dataset 

to hydrologic models using other equations and meteorological grids. These problems 

could be overcome in a more close cooperation between the hydrologic modeling 

communities and the earth observation community, where the actual signal from the 

satellites could be directly assimilated in the hydrologic models to make most out of the 

competence from both research communities for modeling of historical or near real-time 

conditions.    

3.2 Model development and refinement 

From a hydrologic modeling perspective, the performance of continental-domain 

hydrologic models is considerably constrained by both inadequate model representation 

of dominant hydrologic processes and limited attention given to introducing physical 

constraints in model parameter estimation. These issues are related because studies that 

implement parsimonious models typically place more effort on parameter estimation. The 
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research needs – discussed in the following sections – consider issues of model 

complexity and parameter estimation and transferability. 

3.2.1 Define appropriate model structure and parameterizations 

Different approaches to hydrologic modeling span the continuum of complexity from 

“physically explicit” models which provide a detailed representation of the dominant 

physical processes, to “conceptual” models which take an aggregated approach [Singh 

and Frevert, 2005; Clark et al., 2015a]. Model complexity can be defined in terms of (1) 

process complexity, i.e., the granularity of process representation, from explicit 

representation to “lumping” of physical processes; and (2) spatial complexity, i.e., the 

granularity of spatial variability and spatial connectivity, the “lumping” and connectivity 

of the physical landscape. 

The most appropriate model structure for water management applications is likely 

some mix of the lumped and physically explicit modeling paradigms. There is a need to 

ensure that models have both sufficient complexity to represent the dominant physical 

processes and appropriate parameterizations to represent large-scale fluxes and scaling 

behavior. The key is to find the right level of generalization while avoiding over-

simplification [Savenije, 2010]. For future conditions, models need to be able to 

accurately represent these processes without data assimilation. Such model identification 

requires exploring tradeoffs across the continuum of model complexity, based on 

extensive multivariate and multi-scale model evaluation [Göhler et al., 2013; Clark et al., 

2015a, 2015b; Cuntz et al., 2015; Razavi and Gupta, 2015]. 

Increasingly complex models come with some disadvantages. The greater 

computational needs of complex models can constrain the capability to extensively 

experiment with different model structures and parameter values – experimentation 

necessary to improve model fidelity, that is, the extent to which model simulations 

faithfully represent observed processes. The greater computational needs of complex 

models can also constrain capabilities to characterize uncertainty, for example, through 

model simulations with multiple equally plausible ensemble members. These 

computational constraints underscore the need for models of intermediate complexity – 

physically realistic, yet sufficiently computationally agile to enable model 

experimentation and uncertainty characterization. 
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3.2.2 Define appropriate model parameter values 

Defining appropriate parameter values is critical to providing credible hydrologic 

model simulations at scales relevant to water managers. Yet, the definition of appropriate 

parameter values is difficult for two reasons: (1) it is necessary to define suitable a priori 

distributions of model parameters, such as default model parameters with an uncertainty 

range; and (2) it is necessary to refine a priori parameter distributions by evaluating 

model simulations with different parameter values. 

The a priori distributions of model parameters are typically obtained using transfer 

functions that relate geophysical attributes including climate, topography, vegetation, 

soils to model parameters. Examples of transfer functions include pedotransfer functions, 

that relate the sand, silt and clay content to the storage and transmission properties of 

soils [Clapp and Hornberger, 1978], empirical functions to relate topographic 

characteristics to parameters that control runoff generation [Balsamo et al., 2009], or 

defining different model parameters for different vegetation classes [Bonan et al., 2002] 

or different hydroclimate regimes [Liston, 2004]. The challenges in a priori parameter 

estimation are (1) the large uncertainty in geophysical attributes (e.g., soil maps) 

translates to large uncertainty in a priori parameter estimates; (2) the often weak relation 

between geophysical attributes and model parameters, with, in some cases, the 

“conceptual” model parameters having no direct geophysical interpretation; and (3) the 

complex spatial scaling of model parameters, which can make it difficult to identify 

appropriate methods to aggregate (or disaggregate) the model parameters across the space 

(for example, effective parameter values are often applied at a scale larger than the 

parameter values can be observed).  A priori parameter distributions may also be derived 

using a hydrological signature approach to parameter estimation in gauged catchments 

(e.g. using recession analysis to set storage-discharge relationships or drought analysis to 

set ecologically-required soil water storage [Gao et al., 2014]), and then transferring this 

information to surrounding ungauged locations. 

Refining the a priori parameter distributions is very difficult for continental-domain 

applications. The approach of basin-by-basin model calibration can lead to very different 

parameter sets throughout the model domain resulting in a “patchwork quilt” of model 
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parameter values; this provides inconsistencies in spatial comparisons and challenges to 

transfer model parameters to ungauged basins [Blöschl et al., 2013]. Some approaches 

have been developed to address these issues. One approach calibrates model parameters 

based on regionalized flow statistics [Yadav et al., 2007], which provides hydrologic 

calibration information in ungauged basins, hence avoiding the need to transfer 

parameters across space. Another approach calibrates the coefficients in the transfer 

functions [Kumar et al., 2013a; Samaniego et al., 2010], providing spatial consistency 

across the model domain. Other approaches include the transfer of calibrated parameters 

that are satisfactory for multiple nearby basins [Lindström et al., 2010] or by taking the 

median of parameter estimates resulting from several different regionalization schemes 

[Viviroli et al., 2009]. The effectiveness of both of these approaches is constrained by the 

compensatory effects among different model parameters, and there is still considerable 

opportunity for advancement by defining orthogonal multivariate hydrologic signatures 

to provide information on parameters in different parts of the model. 

An additional issue of parameter regionalization is identifying the appropriate 

information to transfer to ungauged areas. Two important components are the 

identification of influential (and non-influential) parameters, and the geographic and 

temporal scales at which parameters exert control on model function. Parameters that 

have little or no variability in model response should not be included in model calibration 

[Bock et al., 2015].  The reduction of number of parameters for model calibration is 

important for the efficiency of calibration, and reducing uncertainty in model output [van 

Griensven et al., 2006].  Poorly constrained calibration greatly increases the potential for 

equifinality of optimization, and thus getting the right answer for the wrong reason 

[Troch et al., 2003; Kirchner, 2006].  

Lastly, calibration and parameter regionalization for ungauged basins is still not well 

understood, despite a large amount of research and attention in this area[Blöschl et al., 

2013]. Approaches such as the transfer of model parameters from gauged to ungauged 

locations [see Blöschl et al. [2013] for a review] or calibration to estimates of hydrologic 

signatures [Yadav et al., 2007] have seen limited testing at continental and global scales 

(for an exception see Troy et al. [2008]).  
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3.3 Model performance, uncertainty and communication of results 

The evaluation and communication of model results, performance and uncertainty 

across large domains remains challenging. Different management priorities require 

adequate model performance for different properties of a hydrograph (for example, 

adequate prediction of high flows, low flows or flow variability). It is critical to 

systematically assess model performance across spatial and temporal scales to understand 

how model structure, parameterization and hydroclimatic setting affect model 

performance. Furthermore, evaluation of model performance points out the need to 

understand the uncertainty of the observations used for model evaluation [Hamilton and 

Moore, 2012; McMillan et al., 2012; Westerberg and McMillan, 2015] as well as 

uncertainties in other water balance terms.  

Benchmarking of hydrological models is one way to accomplish these goals. In 

discussing models from the LSM community, van den Hurk et al. [2011] point out that 

benchmarking of model performance “urgently needs attention in the wider scientific 

community.” Benchmarking of a national domain flood-forecasting operational 

hydrology model identified key processes to be improvement and these improvements 

were then shown to reduce the overall error in flood forecasting [Arheimer et al., 2011]. 

The CM community has much to offer on this topic and has produced a number of 

continental domain models and datasets for this purpose (for example, Duan et al. 

[2006]; Newman et al. [2015]). By examining incremental improvements to model 

performance in a systematic way, the relative effects of the factors that influence model 

performance and provide a common path forward to improve hydrologic modeling efforts 

can be better understood. Yet, benchmarking will take progress only so far and efforts 

must also be directed toward a better understanding, quantification and communication of 

uncertainty in addition to communication of models and results to the water resources 

planning community. The CM community has made inroads in involving end-users in 

model development and structure to ensure that results are communicated in a manner 

that is most meaningful to those who need to use them [Henriksen et al., 2003] but all 

hydrologic modeling communities need to consider how to effectively immerse the water 

resources planning community into modeling process and results.  
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 4. Concluding remarks 

In the past, hydrologic modeling of surface water resources has mainly focused on 

simulating the hydrologic cycle at local to regional modeling domains. Emerging water 

management challenges, including changes to global climate and transboundary water 

issues, are now pushing the desired modeling domain from catchment to continental and 

global domains. With this myriad of complex science questions and pressing societal 

issues, the hydrology community has, over time, evolved into several modeling 

communities that emphasize different aspects of the hydrologic cycle and, therefore, 

provide focused modeling efforts to address a subset of these questions. 

There now exists a level of maturity amongst the catchment, global water security, 

and land surface modeling communities such that these communities are converging 

towards continental-domain hydrologic models. With this similar advancement in reach, 

each community is faced with a similar set of challenges in the representation of water 

management actions and infrastructure, the estimation of model parameters, the skill with 

which components of the water balance can be simulated, the spatial domain of the 

model, and the transferability to ungauged areas. This commentary, written from the 

perspective of the catchment hydrology community, underscores the positive aspects of 

the diversity of scientific approaches in the hydrologic community while arguing that a 

focused research effort between hydrologic modeling communities would achieve 

advances in continental-domain modeling more rapidly than the efforts of any one 

community forging ahead on their own. Specific collaborative research efforts include:  

(1) Creating new incentives and infrastructure to report and share model inputs, 

outputs, and parameters in data services and open access, machine-independent 

formats for model replication or re-analysis. 

(2) Ensuring that hydrologic models have sufficient complexity to represent the 

dominant physical processes and adequate representation of anthropogenic 

impacts on the terrestrial water cycle, a process-based approach to model 

parameter estimation, and appropriate parameterizations to represent large-scale 

fluxes and scaling behavior. 

(3) Quantifying and communicating significant advancements towards these 

modeling goals.   
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(4) Ensuring a balance between model complexity and data availability as well as 

uncertainties.  

In our world, where ever greater proportions of rivers and land area are modified by 

humans, collaboration is essential to understand terrestrial water availability; a review of 

community efforts towards continental domain hydrologic modeling illuminates 

pathways for collaboration that benefit not only each respective community but also 

accelerates progress towards a common goal that can address questions of pressing 

societal relevance.  
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