Evaluation of a semi-distributed model through an assessment of the spatial coherence of Intercatchment Groundwater Flows

Alban de Lavenne, Guillaume Thirel, Vazken Andréassian, Charles Perrin, M.H. Ramos

To cite this version:

HAL Id: hal-02603536
https://hal.inrae.fr/hal-02603536
Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
We propose to evaluate two structures of a semi-distributed model using spatial consistency of simulated intercatchment groundwater flows (IGF). The idea is that the water that is lost in one place should be recovered somewhere else within the catchment to guarantee a spatially consistent water balance in time.

The semi-distributed model GRSD is based on an implementation of a lumped daily GR5J model (5 parameters) on each subcatchment. GR5J is composed of two stores: a production store (capacity $X1$) and a routing store (capacity $X3$), which is filled by the output of a unit hydrograph (of time base $X4$). Two other parameters, $X2$ and $X5$, are used to quantify the IGF. Outflow simulations of upstream catchments are routed downstream using a streamflow celerity (parameter C).

We propose to evaluate two structures of a semi-distributed model using spatial consistency of simulated intercatchment groundwater flows (IGF). Outflow simulations of upstream catchments are routed downstream using a streamflow celerity (parameter C).

IGF spatial consistency
- The two model structures give totally different maps of intercatchment groundwater flows.
- Structure 1: most of the catchments are leaking.
- Structure 2: leakage concerns mostly upstream catchments whereas downstream catchments are gaining water (spatial consistency).

Water balance analysis
- Structure 1: most of the water that is released to the groundwater is never recovered somewhere else.
- Structure 2: enables to nearly close the water balance for one of the two calibration periods.
- New constraints have to be found on the model structure and calibration in order to reinforce this spatial consistency.