Study of the effects of a distanced retention basin combined with open check dam
S. Schwindt, Guillaume Piton, G. de Cesare, A. Recking, A. Schleiss

To cite this version:
S. Schwindt, Guillaume Piton, G. de Cesare, A. Recking, A. Schleiss. Study of the effects of a distanced retention basin combined with open check dam. 13th Congress INTERPRAEVENT 2016, May 2016, Lucerne, Switzerland. pp.3, 2016. hal-02603607

HAL Id: hal-02603607
https://hal.inrae.fr/hal-02603607
Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Study of the effects of a distanced retention basin combined with an open check dam on a physical model

Sebastian Schwindt, MSc; Guillaume Piton, Ing.; Giovanni De Cesare, Dr.; Alain Recking, Dr.; Anton J. Schleiss, Prof. Dr.

INTRODUCTION

Sediment traps are thus classically used in flood hazard mitigation (Zollinger, 1983; Ghilardi et al., 2012). Typical sediment traps consist of an upstream basin combined with an open check dam at the outlet (Fig. 1 a). However, in some cases spatial or geotechnical constrictions do not allow for the construction of one of the two elements. It is possible to limit the structure to a simple basin without open check dam when the space is sufficient, as the longitudinal bed slope can be reduced by levelling the river, thus enhancing the process of sediment deposition (e.g. Kaitna et al., 2011).

In steep narrow valleys or due to anthropogenic infrastructures, there is sometimes not enough space available for a basin. An open check dam without widened basin has to be considered in this case. Sediments are then stored directly in the river bed upstream of the structure. In some particularly critical cases, i.e. when it is neither possible to implement a sufficiently large retention basin, nor a big enough open check dam, a combination of an open check dam with a retention basin built at a given distance is conceivable (Fig. 1 b). This kind of situation has been analyzed with the physical model of the Drance river, upstream of Martigny in the upper Rhone valley (Switzerland). The paper presents in which extend it had been possible to achieve the mitigation objective using this specific configuration.

CONTEXT

The Drance river has several debris flow prone tributaries before it passes the town of Martigny. During severe floods, as occurred in 2000, the tributaries supply significant sediment amounts to the main-stem. The Drance then transports the sediments downstream which aggravate the flood hazard in the city of Martigny. The creation of a sediment trap downstream of the tributary confluences and upstream of the area to protect has been studied using small scale experiments. As the tributaries are situated close to the city, few sites exist for the implementation of the sediment trap where not enough space is available to create a classical structure (Fig. 1 a). The installation of an open check dam, with an upstream distanced basin creates a storage volume by means of a trap basin and a 100 m long channel section between the check dam and the basin.

OBJECTIVES

Four different effects lead to sediment deposition in sediment trap basins (Zollinger, 1983; Piton and Recking, 2015). Two of them are related to the basin feature:

1. decrease in sediment transport capacity due to milder slopes in the basin;
2. decrease in sediment transport efficiency due to flow spreading in the basin which is wider than the upstream channel.

And the two other effects are induced by the open check dam:

3. open check dam backwater effect inducing a drop in shear stresses in the tranquil water area and;
4. mechanical blockage of coarse elements against the open check dam. In this case the distance of 100 m between the sediment trap outlet and the basin could disconnect the system. Therefore, a small scale model is used to analyze this system.

Figure 1. Concept of sediment traps. a) the classical scheme, i.e. the check dam is directly connected with the basin and b) the herein studied scheme, i.e. the retention basin is situated at some distance upstream of the open check dam. The different processes that control deposition are illustrated by ① ② ③ ④ and commented in the text.
METHODOLOGY
The physical model has already been tested for the hydraulic functioning of an open check dam only. The reproduced river section is about 800 m long, where the average bed slope is about 2.4 % and the width of the main channel varies between 10 m and 15 m in prototype dimensions. The height of the check dam is limited due to railway line on the right river bank. The expected amounts of sediments to be retained as well as the grain size distribution are subjected to some uncertainty. About 100 m upstream of the check dam, it is possible to implement a retention basin of the shape of a deposition area. The effects of this retention basin on sediment transport in the Drance were analyzed by experiments with discharges of the order of an annual flood, a 100 - years flood and the average river discharge. Sediments were added continuously at the model inlet and in shape of a debris flow deposition from another lateral torrent which is situated about 700 m upstream of the check dam.

RESULTS
The retention reservoir enhanced the sediment deposition upstream of the open check dam and reduced the sediment transported towards the open check dam at the beginning of a flood event. Once the bed slope in the deposition area reached an equilibrium state, the natural bed load transport continuity reestablished and entered the channel between the open check dam and the basin. In this reach, closer to the open check dam, the backwater effects enhanced the deposition of sediments which were then trapped during the backfilling process in front of the check dam. This backfilling was sufficient enough to reach the retention basin, thus increasing the deposition in this area.

CONCLUSIONS
A deposition area in some distance upstream, but still in the influence region, of an open check dam has been proven to increase the sediment storage capacity compared with the construction of an open check dam only. The combination of the two measures, i.e. a bed load trap in two separated structures therefore represents a remedy in case of spatial constrictions.

LITERATURE

KEYWORDS
Retention reservoir; Open check dam; Sediment deposition; Bed load
In alpine environments, open check dams are constructed for retaining sediments which cannot be transported in critical downstream river sections in cases of floods. Critical sections are settlement areas where the river has undergone torrential corrections works. For maximizing the sediment storage volume of open check dams, upstream retention basins are essential elements. Based on a case study on a physical model, it turns out that the retention basins which are not directly connected with the check dam do not only still fulfill their basic purpose, but also optimize the clogging process of the open check dam.

I. SEDIMENT RETENTION MECHANISMS

Four different effects lead to sediment deposition in sediment traps. Two of them are related to the basin:

- decrease of the sediment transport capacity due to a milder slope
- decrease of the sediment transport efficiency due to flow spreading in the basin which is wider than the upstream channel.

While the two other effects are induced by the open check dam:

- Backwater effects of open check dam induce a drop in shear stresses in the tranquil water area (typical delta formation)
- Direct mechanical blockage of coarse elements against the open check dam.

II. EXPERIMENTAL SETUP

- 100-yr return flood: peak discharge = 230 m³/s cumulated sediment supply = 64,000 m³ (prototype scale)
- Preliminary tests evaluating the sediment handling and the hydraulic behavior of the open check dam
- Reproduced river section is about 800 m long
- Average bed slope is about 2.4 %
- Main channel width varies between 10 and 15 m, the check dam height is limited due to railway line on the right river bank
- Increasing the volume is possible about 100 m upstream of the check dam by a river widening on the left bank
- Study of the solution by simulating a 100-yr flood with continuous sediment injection
- Model uncertainties due to the expected grain size distribution and sediment amounts

After optimization, the best adjusted configuration is a filter check dam equipped with a combination of three orifices (Fig. 3):

- The main dam culvert imposes the development of backwater. The orifice is 4 m wide and 2.5 m high.
- An inclined screen (12 m wide, 2.6 m high) with vertical-oriented bars acting at mechanical blockage of the deposition front (bar spacing of 0.3 m according to the Dmax of the transported grains) protect the culvert from woody debris clogging.
- The base opening (12 m wide, 0.9-1.2 m high) which is clogged by the coarsest grains transported during a 100-yr flood event.

The culvert maximizes the backwater effect, increasing the sediment trapping during the rising limb of the hydrograph. The screen and base opening are obstructed with the arrival of the sediment front. Thus, self cleaning during the hydrograph recession is hindered.

III. OBSERVATIONS & RESULTS

Rising limb of the hydrograph

- Sediment trap basin volume is significantly lower than the bulk sediment supply for the 100-yr flood scenario.
- River widening increases the trapping capacity and slows down the sediment deposition front velocity (the deposit must fill the whole section to evolve downstream).
- The sediment transfer downstream of the dam (sediment transport net connectivity) occurs later than without widening. Thus, the phase of clear-water flow downstream is increased and the remaining sediment stocks in the downstream bed are flushed with a risk of bed incision and armorning.

The dam culvert never clogs in the configuration without upstream screen.

- The optimized configuration with screen (Fig. 3) to be clogs with the arrival of the sediment front. Once clogged, the dam is rapidly backfilled up to the spillway crest (with and without widening).

Controlled self cleaning

- The partial self cleaning has been studied to optimize the maintenance costs by limiting mechanical dredging operations.
- After the flood event, the base opening is activated mechanically to initiate self cleaning. However, it may be necessary to re-activate the opening due to anew clogging.
- First, the self cleaning is dominated by incision processes in the sediment deposition. A channel pointing at the base orifice develops and the backward migration of the knickpoint in the channel Dinas rapidly.
- Once the channel has developed a stable armor, channel width increase begins. But, the sediment release is limited as the lateral erosion is weak.

- Terrace-like patterns form in the deposits which are progressively eroded by the flow.

http://lch.epfl.ch

http://www.irstea.fr