Transplantation experiment of an endangered pioneer species: the dwarf bulrush (Typha minima Hoppe)
Renaud Jaunatre, A. Evette, Marie-Françoise Buisson

To cite this version:

HAL Id: hal-02604525
https://hal.inrae.fr/hal-02604525
Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Transplantation experiment of an endangered pioneer species: the dwarf bulrush (Typha minima Hoppe)

Renaud JAUNATREa, André EVETTEa, Morgane BUISSONb

Introduction
The dwarf bulrush (Typha minima Hoppe) is a pioneer, light demanding species colonizing riparian flood plains of temperate mountain streams. Its number declined by more 80% over the Alps and its larger remaining populations are located in French alpine rivers: Arve River, Durance River and Isère River. Due to rising river anthropisation, T. minima population are regularly impacted and may need restoration.

Our objective is to determine the best method to restore viable populations in the context of the Isère river development work (mainly embankment).

Methods
- \(T. \) minima clones collected in wild populations.
- \(T. \) minima clones grew in nursery.
- Clones transplanted either bare roots, small containers or large containers.
- \(T. \) minima and other plants shoot frequency (+1 & +10 months) and \(T. \) minima rhizome growth (+10 months) monitored (pinpoint lines).

Results
- Large containers, have the highest frequency, bare roots the smallest after 1 mth (\(F_{2.13} = 130.4 ; p<0.001 \)) and 10 mth (\(F_{2.26} = 46.38 ; p<0.001 \)).
- Large and small containers have the highest root growth (\(F_{2.81} = 13.29 ; p<0.001 \)).
- \(T. \) minima and other species frequencies are positively correlated (\(p<0.001, R^2=0.49 \)).

Conclusion
- The 3 methods allow transplantation of viable \(T. \) minima clones.
- The more initial biomass is transplanted, the better are frequency and growth.
- Competition does not seem to be a limiting factor of \(T. \) minima growth.
- Attention should be paid to transplantation location, substantial loss are due to river bank erosion.