
HAL Id: hal-02604719
https://hal.inrae.fr/hal-02604719

Submitted on 16 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework to use crop models for multi-objective
constrained optimization of irrigation strategies

Bruno Cheviron, R.W. Vervoort, Rami Albasha, Romain Dairon, Camille Le
Priol, J.C. Mailhol

To cite this version:
Bruno Cheviron, R.W. Vervoort, Rami Albasha, Romain Dairon, Camille Le Priol, et al.. A framework
to use crop models for multi-objective constrained optimization of irrigation strategies. Environmental
Modelling and Software, 2016, 86, pp.145-157. �10.1016/j.envsoft.2016.09.001�. �hal-02604719�

https://hal.inrae.fr/hal-02604719
https://hal.archives-ouvertes.fr


 1 

A framework to use crop models for multi-objective constrained optimization of 

irrigation strategies  

Bruno Cheviron 
a,†

, R. Willem Vervoort 
b
, Rami Albasha 

a, c, d
, Romain Dairon 

e, f
, Camille Le Priol 

g
, 

Jean-Claude Mailhol 
a 

 

a
 IRSTEA, UMR G-EAU, 361 rue Jean-François Breton, BP 5095, 34196 Montpellier Cedex 5, 

France. 

b
 Centre for Carbon, Water and Food, The University of Sydney, Australia. 

c 
INRA, UMR LEPSE, 2 Place Viala, 34060 Montpellier, France.

 

d
 Department of Water Sciences, faculty of Civil Engineering, University of Aleppo, Ibn-Albitar 

Street, Aleppo, Syria. 

e
 IRSTEA, UR MALY, Centre de Lyon, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex 5, 

France. 

f
  INRA, UMR Agroecologie, 17 rue Sully, BP86510, 21065 Dijon Cedex, France. 

g
  SupAgro Montpellier, 2 Place Viala, 34060 Montpellier, France. 

 

 

†
 Corresponding author. 

e-mail: bruno.cheviron@irstea.fr 

phone number: +33 (0)4 67 04 63 64 

fax number: +33 (0)4 67 16 64 40

Author-produced version of the article published in Environmental Modelling & Software, 2016, N°86, p. 145–157.
The original publication is available at http://www.sciencedirect.com/science/article/pii/S1364815216305916
Doi: 10.1016/j.envsoft.2016.09.001



 2 

Abstract 

This paper discusses an innovative framework to use crop models which combines sensitivity analysis, 

uncertainty analysis and constrained optimisation runs for irrigation optimisation purposes, facing 

competing constraints on several agricultural variables (e.g. crop yield, total irrigation amount, 

financial expectations). For simplicity, this ex-post optimisation relies on direct calculations only, 

exploiting the dispersions on the target variables. The screening of the parameter space for sensitivity 

analysis yields a reference dispersion which is expectedly reduced by reducing the uncertainties in the 

sensitive parameters and/or climatic forcings. Additional dispersions are calculated to evaluate if the 

management controls on irrigation strategies (amounts, triggers, periods) are more influential on 

model predictions than the remaining uncertainties on the soil, plant, irrigation and climatic inputs, 

eventually allowing optimisation. As a case study, the Optirrig model is used. A discussion proposes 

future ways to convert diagnostics into real-time near-optimal decision rules, for example through 

learning algorithms.      

 

Highlights 

- This ex-post optimization of irrigation strategies involves direct calculations only 

- The Optirrig model (Irstea Montpellier, France) is chosen for application 

- Both the feasibility and the achievement of irrigation optimization are handled 

- Dispersion is reduced through sensitivity, uncertainty then optimization runs 

- Perspectives are discussed to convert diagnostics into real-time decision rules  

 

Keywords 

Crop model, optimisation, modelling, scenarios, framework, uncertainty analysis. 

 

Software availability 

Neither the Optirrig model nor the presented irrigation optimization code are downloadable as open-

source material, due to the licensing strategy of Irstea (the French National Research Institute of 

Science and Technology for Environment and Agriculture). Both have been developed in FORTRAN 

but will be recoded in Python: a new Graphical User Interface is planed and the software will be 

distributed at this time. Contact: bruno.cheviron@irstea.fr       
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1 Introduction  

 

Crop models aim to predict agricultural yields from selected soil properties, plant characteristics and 

climatic forcings, and possibly dependent on irrigation strategies. Even if they are of limited extent, 

the random uncertainties in source data (Nonhebel 1994, Aggarwal 1995, Heinemann et al. 2002, 

Rivington et al. 2006, Spank et al. 2013) can combine and propagate through the models, whose 

predictions should therefore include statistical confidence intervals or at least relevant, dedicated 

estimates of the error terms or trends affecting model outputs (Monteith 1996, Challinor et al. 2009, 

2010, Wallach et al. 2012, Asseng et al. 2013). Noticeable differences exist between model structures, 

purposes and responses, especially for climate change scenarios, hence the difficulty to decipher 

absolute, normative evaluations. This, in turn, outlines the interest in model intercomparison 

methodologies (Rötter et al. 2011, White et al. 2011, Asseng et al. 2013) that help positioning any 

tested model among possible alternatives or help choosing between several candidate models.  

 

Whatever the selected model, model exploration, sensitivity analysis and uncertainty assessment 

always need intensive calculations which typically fall within the scope of model automation 

procedures: these can then provide both the agricultural scenarios and their associated dispersion 

envelopes. As a result the optimisation of irrigation strategies consists of comparing what may be 

gained from appropriate resources management, taking into acount the dispersion in model predictions 

that arises from intrinsic uncertainties in source data, or from hypotheses of climate change and 

increased variability (Rosenzweig & Parry 1994, Rosenzweig et al. 2014) with the associated deficit 

irrigation issues (English 1990, Reca et al. 2001, Pereira et al. 2002, Geerts & Raes 2009).  Several 

simulation platforms have been developed in the recent years, based on some of the most popular crop 

models. However, agronomical modelling still seems to miss a framework that relies on model 

automation to propose successive steps towards the identification of the context-dependent best 

irrigation strategies. Moreover, these "multi-variable constrained optimisation" strategies can be 

inferred from objective functions that not only rely on crop yield levels (Sun et al. 2006, Cetin & 

Uygan 2008).  

  

Advances in computer science have facilitated the automation of crop models. For example, the 

connection to environmental and socio-economic issues, with a clear trend to use biophysical models 

within integrated system and economic viability assessment (Vatn et al. 1999, Berntsen et al. 2003, 

Belcher et al. 2004, Janssen & van Ittersum 2007). In addition, the inclusion of crop models in 

simulation platforms related to communication between models based on common databases or 

input/output formats. For example, AqYield (Nolot & Debaeke 2003, Murgue et al. 2014, Constantin 

et al. 2015) may now be run on the MAELIA platform (Gaudou et al. 2013) to handle low-water 
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management issues and multi-agent spatial planning, STICS (Brisson et al. 2003, 2009) runs on the 

RECORD platform (Bergez et al. 2013) that integrates farming practices into agro-ecosystems and 

APSIM (McCown et al. 1995, Keating et al. 2003) now embeds the PMF - Plant Modeling Framework 

(Brown et al. 2014) as a sub-model. Not long ago, the Harvestchoice (2010) platform already allowed 

scenarios and regional-scale decision-making on the basis of data issued from APSIM or DSSAT 

(Jones et al. 2003). Other composite (SAFYE, Duchemin et al. 2006, 2008) or generic crop models 

(RZWQM, Hanson et al. 1998, Ma et al. 2006) offer many of the above possibilities, while Aquacrop 

(Steduto et al. 2009, Raes et al. 2009) was used in combination with an economic model to optimise 

irrigation management (García-Vila & Fereres 2012). Irrigation management, as a part of ecosystem 

responses to climate changes, has been addressed by APSIM (Ludwig & Asseng 2006), WOFOS 

(Wolf & van Diepen 1995, Reidsma et al. 2009, Supit et al. 2012), RZWQM (Ko et al. 2011, Islam et 

al. 2012) and STICS (Singh et al. 2014), among others.  

 

Finally, a typical evolution through the last decades is that of the Wageningen crop models (e.g. 

WOFOS, van Diepen et al. 1989, Boogaard et al. 1998, van Ittersum et al. 2003) from their original 

formulations in the 1980's (often in FORTRAN 77) to  object-oriented and modular programming 

structures (e.g. PCSE - Python Crop Simulation Development, de Wit 2015) at the assumed risk of 

slower model execution. In summary, what is sought in general is (i) simulation engines running 

multi-agent scenarios, (ii) the flexibility of modular designs that use crop models as plug-ins and (iii) 

interfaces between models based on common exchange file formats. The framework presented here is 

compatible with such approaches as (i) it offers the possibility to perform multi-objective constrained 

optimisation from the analysis of a wide variety of user-defined irrigation scenarios, (ii) most of the 

automated crop models fit in this framework, provided (iii) they communicate through input/output 

text files. The newly-automated version of the Optirrig model (formerly the PILOTE model, Mailhol 

et al. 1997; Khaledian et al. 2009; Mailhol et al. 2011, Feng et al. 2014) has been chosen here for 

application of the proposed framework, providing guidelines for the identification of optimal irrigation 

parameters from successive direct calculations (sensitivity analysis, uncertainty analysis then 

constrained optimisation runs) associated with decreasing dispersion on the target variables (i.e. 

convergence towards one or several equifinal parameter sets).   

     

Section 2 of this paper highlights the successive stages of the framework that leads to the multi-

objective constrained optimisation of irrigation strategies, across preliminary sensitivity and 

uncertainty analyses, also indicating ways to evaluate the effect of management decisions versus 

parameter and forcing uncertainties (Section 2.1). For simplicity, the Optirrig model developed at 

Irstea is chosen for these applications (Section 2.2) but the framework was designed to be as generic as 

possible. Section 3 presents the results of the sensitivity analysis (Section 3.1), uncertainty analysis 
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(Section 3.2) and constrained optimisation runs (Section 3.3). The discussion (Section 3.4) highlights 

the specificities, strengths and limitations of this framework (Section 3.4.1) as well as possible 

adaptations for the search of real-time near-optimal decision rules (Section 3.4.2). Section 4 is the 

conclusion.  

 

2 Material and methods 

2.1  Framework for multi-objective constrained optimisation  

2.1.1 Scope and overview 

This framework indicates how to perform scenarios of agricultural yield from irrigation strategies (e.g. 

dates, doses, trigger criteria), acknowledging uncertainties on both the model parameters (e.g. soil and 

plant parameters) and its climatic forcings (e.g. rain, potential evapotranspiration, radiation and 

temperature), possibly handling hypotheses of climate change and variability. However, irrigation 

optimisation is defined here as extracting the user-defined best cases from a series of scenarios, which 

typically requires the definition of one or several objective functions, in addition to the agricultural 

yield (Y). Other candidates are the total irrigation amount (I), the irrigation water use efficiency 

(IWUE) and an economic cost function related to financial expectations (F) that combines the selling 

price of the harvested crop and the cost of the irrigation water. In the following, a multi-objective 

constrained optimisation framework targets these variables, calculated by most crop models. Figure 1 

shows an overview of this framework, that involves three successive run series (A. Sensitivity 

analysis: Subsection 2.1.2, B. Uncertainty analysis: Subsection 2.1.3 and C. Constrained optimisation: 

Subsection 2.1.4) with five stages in each series (Stage 1- Conceptual case preparation, Stage 2- 

Technical case preparation, Stage 3- Controls and settings, Stage 4- Calculation loop and Stage 5- 

Post-treatments). The description of the stages is the same whatever the run series.  

 

Stage 1 is where the modeller builds a mental model of the problem and selects a strategy to address it. 

The subsequent stages are all automated, provided (i) an automated version of the crop model is 

available, (ii) it uses a single parameter file (where parameter sets to process appear on successive 

lines in this file) and (iii) it uses a climate file in which the values of forcings in time appear in 

columns. Although not shared by all crop models, these requirements were found sufficiently easy to 

meet to justify the automation of the other stages.    
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Stage 2 is where the selected scenarios are encoded in source files. 

-  If the scenarios decided in Stage 1 do not involve random perturbations (neither of the parameters 

nor of the forcings) then the automated model will run (in Stage 4) on the parametric scenarios 

previously placed in its parameter file, using the current climate file.  

- If random perturbations are intended, then the user indicates whether they should apply to model 

parameters or to climatic forcings. In the latter case, this is stored in an auxiliary file together with the 

relative or absolute magnitudes allowed for the uncertainties, supposed to affect each of the climatic 

data (e.g. rain, potential evapotranspiration, radiation and temperature for the Optirrig model). The 

procedure does not generate a series of perturbed climate files from the existing climate file. It 

generates and applies random perturbations (and stores them elsewhere) for the selected forcings, in 

the predefined ranges, each time the climate file is read, that is, each time the model is called in the 

calculation loop (Stage 4). This avoids memory issues. The process is different when the user asks for 

random perturbations of model parameters. In this case, the selected parameters are randomly 

perturbed, in predefined ranges, from the values appearing in the reference parameter set. This causes 

the generation of a new parameter file, whose parameter lines will be read, one after the other, during 

the calculation loop (Stage 4).  

 

Stage 3 is where the working directory is cleaned up to avoid name confusions and files overwriting. 

The counters are reset (these counters are used for automated naming of the output files) and the 

communication files are prepared. Stage 4 is where the command-line version of the model is run 

repeatedly until the n intended runs have been processed (either the model has already been automated 

or is available in its command-line version to fit in this framework). Most models provide time-

variable as well as seasonal results, often within dedicated output files. This framework requires the 

existence (or assembly) of two output files, in text format. Although not very flexible, this option was 

found general enough to deal with the outputs of most models, sometimes with the help of an auxiliary 

program to rewrite model outputs in the required program. The "seasonal file" should display all 

model outputs, for each simulation, on a single line, so that n scenarios will result in as many result 

lines in the seasonal file. By contrast, the "time-variable file" should be organized in columns, each 

column containing the evolution of a selected model output with time. Stage 5 is where post-

treatments (decided in Stage 1) are applied to model outputs. These default to basic statistics 

(including dispersion and confidence intervals) on the outputs unless otherwise specified by the user.  
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 Conceptual case preparation: deciding scenarios  

IN END

BASE-CASE PARAMETERS and CLIMATIC FORCINGS
TESTED PARAMETERS and/or CLIMATIC FORCINGS 
RANGES OF VARIATION
NUMBER OF SCENARIOS TO RUN

CLIMATIC SCENARIOS (RAIN, PET, R, T)
and/or PARAMETRIC SCENARIOS (SOIL, PLANT)
and/or IRRIGATION SCENARIOS (DATES, DOSES, CRITERIA)
SELECTION OF POST-TREATMENTS

 Controls and settings: preparing model runs

DIRECTORY CLEAN-UP and COUNTERS RESET
MANAGEMENT OF COMMUNICATION FILES

Model tested here

 Technical case preparation: encoding scenarios in source files 

 Default and user-defined post-treatments

STATISTICS ON SELECTED MODEL OUTPUTS
KEEPING, RENAMING and/or ERASING FILES

 Calculation loop: n model runs

Automated crop model

DATA PRODUCTION
OUTPUT FILES WITH TIME-VARIABLE PREDICTIONS
OUTPUT FILES WITH SEASONAL PREDICTIONS 

C. Constrained optimisation runs

B. Uncertainty analysis runs

A. Sensitivity analysis runs

 

 

Figure 1 – Conceptual five-stage view of the framework  that relies on three distinct, successive series of sensitivity 

analysis (A), uncertainty analysis (B) and constrained optimisation (C) runs . The model tested here is Optirrig, 

developed and automated at IRSTEA, the French National Research Institute of Science and Technology for 

Environment and Agriculture. Each run series comprises Stage 1- Conceptual case preparation, Stage 2- Technical 

case preparation, Stage 3- Controls and settings, Stage 4- Calculation loop and Stage 5- Post-treatments. 
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2.1.2 Sensitivity analysis runs 

This preliminary sensitivity analysis is suggested to discard the parameters that show no significant 

effect on the results. In the large set of local (near a reference point in parameter space), multilocal 

(near a few selected points) and global (screening of the whole parameter space) sensitivity analysis 

methods, possibly applied for model verification and sensitivity assessment, the Morris (1991) method 

belongs to the category of multilocal methods. It allows more local and deterministic results than the 

extensive but "blind" Monte-Carlo methods (e.g. Sieber & Uhlenbrook 2005) or global variance-based 

methods as for example the Sobol (1993) or FAST (Fourier Amplitude Sensitivity Test, Helton 1993) 

methods. As elsewhere in the literature of environmental modelling (e.g van Griensven et al. 2006, 

Mulungu & Munishi 2007) this method is suitable to explore selected parameter ranges near selected 

model configurations (i.e. not aiming at thorough model verifications thus hypothesizing the tested 

model has already been proven robust, at least for the tested intervals of parameter values). The choice 

of the Morris method is therefore convenient (though non-unique, as other user-defined alternatives 

may exist) to perform the intended preliminary sensitivity analysis and also to yield the associated (d0) 

reference dispersion of model results, which is the starting point of the optimisation framework in this 

paper.  

 

The Morris method was designed to save calculation time by performing a limited though relevant 

exploration of the parameter space, as described by Campolongo & Saltelli (1997). Improvements by 

Campolongo et al. (2007) included a slightly different generation of the trajectories  in the parameter 

space to derive the sensitivity measures and a slightly different definition of the sensitivity measures 

themselves. The objective of the modified Morris method is to identify which parameters have (i) a 

negligible influence on model results and may thus be fixed, (ii) a linear influence (when there is a 

clear correlation between model results and the value of the tested parameter, whatever the values of 

the other parameters) or (iii) a non-linear influence (when a parameter is more influential through 

interactions with other parameters and/or when the model has a non-linear response to variations of 

the tested parameter). However, both sensitivity measures and the calculated reference dispersion (d0) 

likely depend on the climatic forcings and assumed uncertainties. For example the parameters 

associated with soil water content or uptake (e.g. rooting depth, field capacity, wilting point) will 

certainly become more sensitive when less water is present, for example for abnormally dry years. On 

the one hand this framework cannot provide information on how to classify the climatic forcings (e.g. 

into dry, reference and wet years, with all possible variations). On the other hand the framework is 

only valid if its successive run series ("A: Sensitivity, B: Uncertainty, C: Constrained optimisation" in 

Figure 1) are undertaken for the same climatic forcings. This leaves the possibility of seeking climate-

dependent optimisation from different recorded or generated climatic forcings.     
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2.1.3  Uncertainty analysis runs 

The uncertainty analysis complements the previous sensitivity analysis. It focuses on the sensitive 

model parameters and on the climatic forcings. The first aim is to roughly quantify the link between 

the uncertainties of the inputs (model parameters and/or forcings) and the dispersion of the outputs 

(daily state variables and seasonal predictions). The second aim, and practical objective, is to identify 

which uncertainties should be reduced to make model predictions "accurate enough", for example 

standard deviation less than 0.1 t ha
-1

 on the predicted crop yield or 90%-confidence interval less than 

10% of the predicted yield. The sensitivity analysis indicates which parameters have the strongest 

linear or non-linear influences and may be useful for "individual" or "collective" gains in precision, 

but it does not indicate which of these calibration, field or literature parameters are easily accessible 

(and improvable) and which are not. Similar questions appear regarding the need  (and feasibility) of 

improving the precision of the climatic records. Whatever the decisions made, the associated costs 

may become part of the modelling strategy and be propagated through the rest of the framework. The 

third aim is to prepare a reliable multi-objective constrained optimisation. Narrower dispersion 

envelopes on model predictions tend to ensure that management options (i.e. irrigation strategies 

simulated through multiple combinations of dedicated parameters) are more influential on the results 

than the remaining uncertainties. To check this the dispersion caused by the uncertainties (d1), the 

dispersion caused by the uncertainties and the management strategies (d2) and the dispersion caused by 

the uncertainties, the management strategies and the uncertainties affecting them (d3) have to be 

compared. A favourable situation for the optimisation is d3d2>d1. In accordance, one also would 

expect d0>d1, where d0 is the original dispersion associated with the parameter ranges tested in the 

preliminary sensitivity analysis. These filters (or criteria) are deliberately loose in their definition, so 

that the modeller has to adjust each of them depending on the context of the study (for example by 

deciding if d2>>d1 is required instead of d2>d1 or conversely if d2d1 is enough). However, in the 

proposed framework, it is the succession of criteria that is thought to be generic enough to provide the 

modeller with enough degrees of freedom to correctly design the optimisation problem.  

 

This section therefore involves multiple series of "Uncertainty analysis runs" (Figure 1). Each run 

series involves generating a "large enough" (for statistical reliability) parameter file in which the 

values of the sensitive parameters have been randomly perturbed, within user-defined ranges around 

their reference, base-case values. For this test case, the sampling strategy consisted of dividing 

parameter ranges into q=8 quantiles and started from r=100 randomly drawn parameter combinations 

resulting in m=2900 model runs to test n=28 parameters, from the known relation m=r*(n+1). For 

comparison purposes, the classical choice (Campolongo et al. 2007) is q=4 and r=10 but the larger 
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values of q and r tested here allow more reliable ranking of the sensitivity measures, provided the 

calculation time is not a limiting factor. More technical details and comparisons between the "Monte-

Carlo type" families of sensitivity analysis methods can be found in Yang et al. (2011) or Gan et al. 

(2014) for environmental applications. These studies suggest other stratified random sampling 

strategies as Latin Hypercube (McKay 1988, modified by van Griensven et al. 2006), Orthogonal 

Array (Owen 1992) or Orthogonal Array-based Latin Hypercube (Tang 1993) are valuable 

"multilocal" alternatives to the Morris (1991) method. The parameter ranges should be chosen in 

accordance with the three above aims, which also holds for the uncertainties on the climatic forcings.  

  

2.1.4 Constrained optimisation runs 

Multi-objective constrained optimisation is based on identifying the management options (i.e. 

irrigation strategies) that best meet predefined contradictory constraints on selected model outputs 

(e.g. a minimal yield level Y>YC, a maximal irrigation quota I<IC and a profitable-enough site 

management F>FC). In contrast with the other parameter categories ("Plant", "Soil", "Temperature", 

later described) or climatic forcings, parameters associated with irrigation strategies are not random. 

Their values correspond to deliberate strategies (e.g. applying small amounts but frequently or large 

amounts about weekly) provided these strategies are not blurred by the uncertainties of the associated 

parameters (e.g. measuring the irrigation amounts ). As the optimisation includes handling the 

irrigation strategies and their uncertainties, both have been included in the "management controls" 

category of parameters: optimisation is eventually achieved by controlling the amount of uncertainty 

that affects the optimal parameter sets.  

 

Most crop models offer several possible management controls on the irrigation strategy, through a 

series of dedicated parameters. These are, for example, the choice of a fixed or adaptive irrigation 

calendar, the choice of a threshold soil water reserve that triggers irrigation, that of the irrigation 

amount (i.e. the water amount to apply at each irrigation) or that of an irrigation window (i.e. a time 

period within which irrigation is allowed, which eventually simulates legal issues in water allocation 

or availability). The question raised with the multi-objective constrained optimisation of irrigation 

strategies is deliberately wider than a maximum possible increase in agricultural yield. It introduces 

the interplay between the total irrigation amount (I), the agricultural yield (Y) and the irrigation water 

use efficiency (IWUE) in the variations of a more global variable such as the financial expectations 

(F). These (simplistic) expectations subtract the cost of irrigation water from the selling price of 

maize. Although very naive in its formulation, it was found to open ways for numerous possible uses 

of this framework and was thus kept throughout the next sections, constituting a set of four (I, Y, 

IWUE, F) targets, as seasonal variables to be used in the definition of appropriate objective functions. 
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Table 1 summarizes the framework from the preliminary sensitivity analysis to the constrained 

optimisation, highlighting the successive measures of dispersion to provide guidance on how to use at 

best the various run series of the framework (Figure 2).  

 

Run series Dispersion Description Criteria Favourable case 

A. Sensitivity 

analysis 
d0 

Arises from the method used to screen the 

parameter space, for assumed parameter ranges 
and uncertainties on the climatic forcings. 

None. 

Large d0 and 

non linear 
sensitivities 

B. Uncertainty 

analysis 
d1 

Obtained from reduced uncertainties on the 

sensitive parameters and/or climatic forcings. 

Semi-quantitative : d1<d0 and/or weak 

dispersion on the predictions of daily or 

seasonal model variables (e.g. 95% 
confidence interval < 25% of the predicted 

yield).   

d1<<d0 

 d2 
Corresponds to d1 + the dispersion associated 

with possible, deliberate irrigation strategies.  

Semi-quantitative : d2>d1 suggests that the 
effects of irrigation strategies can prevail 

over these of parameter uncertainties 
d2d0 

 d3 
Corresponds to d2 + the dispersion associated 

with uncertainties on the irrigation parameters.  

Semi-quantitative : d3d2 suggests negligible 
effects of the uncertainties on irrigation 

parameters.  

d3d2d0 

C. Constrained 
optimisation  

d4 

Dispersion that affects the optimal solutions and 

possibly makes them suboptimal. Back-
calculated as the effects of uncertainties on the 

irrigation parameters and climatic forcings 

Quantitative : user-defined contradictory 

constraints on several seasonal output 
variables (e.g Irrigation I<IC, Yield Y<YC, 

Financial expectations F<FC) 

d40 

 

Table 1 – Guidelines and good practices for the present framework, across successive run series 

(sensitivity analysis, uncertainty analysis, constrained optimisation runs) and the associated measures of 

dispersion in model predictions, relying on user-defined semi-quantitative or quantitative criteria. The 

"Favourable case" columns indicates the situations in which the advocated optimisation procedure is 

needed and expected to perform well.    

  

2.2 The Optirrig model 

 

This section presents an overview of model rationale and structure, described in details by Mailhol et 

al. (1997, 2011). Optirrig (formerly PILOTE) is a simplified three-reservoir hydrological model 

coupled to a crop model. Its principle, original, feature is to use the leaf area index as a proxy for crop 

yield (or strictly speaking as the quantity from which the total dry matter and agricultural yield are 

derived). Figure 2 shows the organisation of the climatic forcings, parameters, intermediate variables 

and key state variables (Leaf Area Index: LAI, Total Dry Matter: TDM, crop Yield: Y) in Optirrig's 

main calculation loop. To avoid redundancy, the meaning of the model parameters is only given in 

Section 3 (Table 2) prior to the sensitivity and uncertainty analyses.   
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Figure 2 – The structure and principle of the Optirrig model, showing the organisation of climatic 

forcings (squares with thick contour lines), parameters (boxes with rounded contour lines), intermediate 

variables (pale grey sketches) and key state variables (grey sketches with thick contours: LAI, TDM and 

Y). Irrigation is noted I+ to indicate that this model forcing depends on multiple management options and 

associated parameters.        

 

The case study is for maize, at Lavalette experimental station (Montpellier, South of France), in 2011, 

under sprinkler irrigation (unpublished data, available from the IRSTEA database) in a "nearly full 

ETM treatment" (ETM for maximal evapotranspiration), that is applying enough irrigation for the crop 

to approach the best possible yield values, without going through a real optimisation procedure. The 

soil is predominantly loamy on the study site, ranging from loamy sand in the first horizon to silt-loam 

in the third. Table 2 gives the full set of base-case (reference) parameter values as a starting point for 

the various scenarios and tests. Table 2 also lists the perturbations applied, indicating the assumed 

range of values for each of the tested parameters. For simplicity, no uncertainty was supposed to affect 

the climatic forcings in the present application: previous analyses have shown that hypothesized non-

negligible uncertainties of +/-7.5% on each of the climatic forcings (climatic demand, incoming 

radiation, rain and temperature) did not result in significant effects when compared to (or tested in 

combination with) the variation ranges and uncertainties of model parameters. However, all run series 

can easily be carried out with uncertainties on both the climatic forcings and model parameters.  
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† The RATIO variable denotes the filling percentage of the root zone reserve, plotted in Fig.5.  

 

Table 2 – List of main source data required to run the model, with their associated category, code, name, 

description, reference value, range tested in sensitivity analysis and units. Data have been sorted into the 

P: Plant, S: Soil, T: Temperature and M: Management controls categories. The * symbol indicates  

parameters kept for scenarios generation after the preliminary sensitivity analysis. The listed reference 

values pertain to maize, under sprinkler irrigation, on the IRSTEA experimental site of Lavalette 

(Montpellier, France). 

 

 

 

 

 

 

 

Category Code Name Description Reference Range Units 

Plant (P) P1 aw Controls the decrease of HI for low LAI values 0.12 +/- 10% - 

 P2* HI pot Potential HI (Harvest Index) 0.52 +/- 7.5% - 

 P3* Kc max Maximum value of Kc (crop coefficient) 1.20 +/- 10% - 

 P4 LAImax Maximum LAI value 5.00 +/- 7.5% - 

 P5 LAIopt Supposed HI-optimal LAI value 2.50 +/- 10% - 

 P6 Ghu Percentage of grain humidity 15 +/- 33%  

 P7 RUE Radiation Use Efficiency 1.35 +/- 7.5% - 

 P8* 1 First shape parameter for LAI curves 2.50 +/- 15% - 

 P9 2 Second shape parameter for LAI curves 1.00 +/- 15% - 

 P10*  Third shape parameter for LAI curves 2.50 +/- 15% - 

 P11*  Harmfulness of the water stress 1.25 +/- 10% - 

Soil (S) S1 Kru Easily usable reserve / field capacity 0.66 +/- 7.5% - 

 S2 Pmax Maximum profile and rooting depth 1.20 +/- 7.5% m 

 S3* Vr Root growth rate 1.50 +/- 10% cm d-1 

 S4* fc Field capacity 0.29 +/- 7.5% - 

 S5* wp Wilting point 0.12 +/- 7.5% - 

Temperature (T) T1 Ti Temperature sum for root installation 150 +/- 7.5% °C 

 T2* Tm Temperature sum to reach the maximum LAI 1300 +/- 5% °C 

 T3 Tmat Temperature sum for crop maturity 2050 +/- 5% °C 

 T4* Ts Temperature sum for crop emergence 100 +/- 10% °C 

 T5 Ts1 Temperature sum for the 1st critical stage 900 +/- 10% °C 

 T6 Ts2 Temperature sum for the 2nd critical stage 1700 +/- 10% °C 

Management (M) M1* - Irrigation dose (applied at each irrigation) 30 20 - 40 mm 

 M2 - Dose applied at sowing 30 25 - 35 mm 

 M3 - Soil reserve when starting the simulation 300 Fixed mm 

 M4* - Period allowed for irrigation (in days after sowing) 140 120 - 160 - 

 M5 - "Mulch effect": Evaporation Es -> Es/(1+M5)  0 0 - 1 - 

 M6* - Sowing day 114 104-124 - 

 M7* - Water reserve RATIO† that triggers irrigation 62.5 53 - 72 % 
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3 Results and discussion 

3.1 Sensitivity analysis runs 

Figure 3 shows the preliminary sensitivity results. Figure 3a displays the starting (or original) d0 

dispersion associated with the 2900 model runs (along the x-axis) undertaken for model exploration, 

combining variations in parameters for the P, S, T and M categories in Table 2, sorting results by 

increasing crop yield values (along the y-axis). Besides crop yield (Y), the chosen target variables for 

analysis were the total irrigation amount (I) and the associated Irrigation Water Use Efficiency 

(IWUE). This was defined as IWUE=(Y-YRF)/I where YRF is the yield obtained in rainfed conditions 

(not to be confused with YREF where the subscript designates a result obtained from the reference 

model parameterisation). The reference scenario with values indicated in Table 2 resulted in 

YREF=15.1 ton ha
-1

 with I=510 mm (apart from the 30 mm irrigation at sowing time) while the rainfed 

hypothesis yielded YRF=5.4 ton ha
-1

, a typical value for local conditions. The IWUEREF value 

calculated from YREF is thus 19  kg ha
-1

 mm
-1

. Financial expectations (F) have been added to the target 

variables. A cost of 0.7 € m
-3

 cost for water delivery and use was applied together with a 210 € ton
-1

 

selling price for maize, based on local data, to provide an estimate of F for each tested case. This made 

F a function of I, Y and IWUE, hypothesizing that Y considered alone may provide a trend but is 

probably not the key indicator for F values, which is confirmed by Figure 3a. These estimated values 

of F (F>0 accounting for net benefits and F<0 for net losses) were placed along the secondary (right) 

vertical axis of Figure 3a, while the estimated I, Y and IWUE/IWUEREF values must be read on the 

principal (left) vertical axis The financial expectations seem correlated with IWUE values and quite 

independent of the I values, this point being further investigated. Figure 3a provides a first indication 

of the dispersion of model results in response to the evolution ranges listed in Table 2. The mean 

values for the tests were I=366 mm, Y=15.4 ton ha
-1

 and IWUE=28.1 kg ha
-1

 mm
-1

, i.e. a comparable 

yield with far less irrigation, thus a better irrigation water use efficiency. This is a first indication that 

optimisation can be useful for the selected model and context.  

 

Figure 3b, c, d and e focuses on the I, Y, IWUE and F variables, respectively. The strong correlation 

between IWUE and F will be discussed several times in the manuscript. All tested parameters (of the 

P, S or T categories) and management controls (of the M category) are represented by the codes 

indicated in Table 2. On the X-axis, the µ* sensitivity measure gives the mean sensitivity: (M/p) 

obtained when comparing the increment () in model result (M) with that in a given parameter value 

(p), screening the parameter space as suggested by Campolongo et al. (2007). This µ* value may thus 

be associated with the global individual effect of the parameter on the selected model output. On the 

Y-axis, the  sensitivity measure states the non-linear (or interactive) effects of a given parameter on 
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the selected model result, i.e. the effects obtained when variations of this parameter are tested in 

combination with variations of at least one other parameter. Parameters with negligible effects on I, Y, 

IWUE or F are very near the (0, 0) position in the lower left of Figure 3b, c, d or e, respectively, thus 

hidden in the shaded areas. Parameters associated with dominant linear effects are below the 1:1 line 

while parameters mostly characterized by non-linear effects are above this line. The sensitivities are 

normalized by the maximum sensitivity measure for all tested parameters or controls (P, S, T or A 

categories) in the [0, 1] interval. Although not directly intended, Figure 3 displays sensitivity 

indications that hold for full irrigation but also for deficit irrigation, as I values ranged between 156 

and 546 mm, covering a wide variety of cases. 

 

The sensitivity maximum for I, Y, IWUE and F respectively is the  value for the M7 management 

control, the threshold value of the predicted root zone reserve under which irrigation is triggered. This 

is an expected result for biophysical as well as for logical reasons, as this parameter indicates what is 

understood as the lower limit of the acceptable soil water reserve which directly dictates the decision 

to irrigate or not (thus with an impact on all variables more or less directly related to irrigation). For 

the F variable this parameter has equally high linear (µ*) and non-linear () sensitivity scores, whereas 

the non-linear score prevails for the other target variables, and sensitive parameters. Together with 

M7, the S4 (field capacity), S5 (wilting point), M6 (sowing day) and P10 (shape parameter that 

describes the rise of the LAI index with accumulated temperature) combined parameters are the most 

sensitive for each of the I, Y, IWUE and F variables. This acknowledges the existence of strong 

interactions between the most sensitive model parameters, which is often a clue of oversimplified 

descriptions with too few parameters but here the interacting parameters belong to several categories 

(soil S4, soil-plant S5, plant P10 and management controls M6 and M7) with known combined effects 

on the target agricultural variables. It constitutes an indication that optimisation is needed and will 

involve adjustments in several key parameters, resulting in significant effects on model predictions.  

 

On the one hand strong interactions between parameters means there is a risk of equifinal 

combinations of sensitive model parameters, for non-optimal and maybe for nearly optimal parameter 

sets. On the other hand, there are two parameters (M6, M7) associated with management controls 

(irrigation strategies) in the list of sensitive parameters, which suggests that the optimisation of 

irrigation strategies will greatly influence the management variables I, Y, IWUE and F. This is clearly 

a good point as it suggests powerful management controls (and these can hopefully be optimized). In 

particular, Fig. 3a indicates several interesting correlations between moderate to low I values, high 

IWUE values and high F expectations, for medium Y values (i.e. a zoom on the highest F values in 

Fig.3a would reveal they are most often associated with the highest IWUE values and not with high I 

and Y values - sorting the results by increasing F values would outline this point). Accordingly, the 
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next uncertainty analysis section examines the relative magnitude of this poor correlation between 

IWUE and F on one side and I and Y on the other side. The purpose of uncertainty analysis is to 

provide guidance on how to sufficiently reduce the parameter uncertainties to guarantee a reliable 

optimisation process. Besides the sensitive parameters already mentioneda few others were found 

influential on I, IWUE and/or F only. These were kept for the next stages and marked with the * 

symbol in Table 2.    
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Figure 3 – Results of the sensitivity analysis runs of the framework, applied here to the Optirrig model. The sub-plot 

(a) shows the d0 dispersion of the seasonal model predictions (total irrigation amount I, crop yield Y, irrigation water 

use efficiency and financial expectations F) obtained from the screening of the parameter space (Morris 1991, 

Campolongo et al. 2007), plotting all 2900 runs and organizing results by increasing values of Y. The other sub-plots 

show the sensitivity charts for the total irrigation amount I (b), the crop yield Y (c), the irrigation water use efficiency 

IWUE (d) and the financial expectations F (e), where the µ* and  sensitivity measures indicate whether a given 

parameter has a dominant linear (µ*) or non-linear effect () on the target variables. The (user-defined) low 
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sensitivity regions have been shaded in grey. The codes used for the parameters and their variation ranges are 

indicated in Table 2. 

 

3.2 Uncertainty analysis runs 

The uncertainty analysis allows the original d0 dispersion of model results to be reduced to d1<d0 by 

reducing the uncertainties in the sensitive model parameters of the P (P2, P3, P8, P10 and P11), S (S3, 

S4, S5) and T (T2, T4) categories. For simplicity and to illustrate the present framework, all sensitive 

parameters (either from literature, calibration or field measurement type) were assumed accessible and 

their uncertainties could be reduced, at a certain fixed cost (termed F1 as it is associated with the d1 

dispersion) that directly affects the F value of the target financial expectations thus the overall 

optimisation process. This F1 cost depends on the gain in precision needed on parameter values, which 

in turn depends on the precision deemed acceptable on one or several of the model predictions. It is 

crucial to understand that failure cases may exist, meaning that optimisation becomes impossible or 

doubtful, either when F1 becomes non-negligible before F (e.g. costly measurements) or when the 

uncertainty on one or several of the sensitive parameters cannot be reduced (e.g. non-observable 

parameters). Consequently, the proposed framework can also be used as a warning that optimisation 

might fail or be "weak", i.e. only possible with less numerous or less severe constraints.     

 

For the present case, the requirements were a standard deviation of less than 1 ton ha
-1

 on the predicted 

yield values, together with a 95% confidence interval of less than 25% of the mean predicted yield 

values. In the textbook case tackled here, reducing the original uncertainties by half on the most 

sensitive parameters was enough to meet these criteria (and also realistic because the ranges indicated 

in Table 2 were rather wide). For example, a better determination of P3 (maximal value of the crop 

coefficient) and S4 (field capacity) was especially influential on the dispersion of the predicted F 

values (financial expectations). In the general case, the combination of sensitivity and uncertainty 

analysis runs helps deciding where to put the (financial) measurement efforts and if it is "worth the 

try", that is, if the additional F1 measurement costs are balanced by significant increases in F.     

 

Figure 4a and c shows the associated dispersion for three daily model predictions (RATIO, LAI and 

TDM) and four seasonal model predictions (I, Y, IWUE, F). The latter show dispersions significantly 

lower in Fig.4c than in Fig.3a, which satisfies the recommendations (d1<d0) from Table 1. Indications 

on the transmission of uncertainties through the model can be found in the comparison between the 

average relative dispersions (standard deviation/mean, in %) on RATIO (7%), LAI (24%) and TDM 

(17%, all calculated for LAI>0.5) and on I (10%), Y (7%), IWUE (7%) and F (17%). For simplicity 
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the F values shown in Fig.4c do not take into account the additional F1 costs, but these should certainly 

be kept throughout the remaining stages of the optimisation procedure.    

 

Fig.4b and d show the dispersion associated with both the reduced uncertainties and the effects of 

deliberate irrigation strategies, simulated through multiple combinations of the irrigation parameters, 

within the ranges indicated in Table 2. The relative dispersions on RATIO (14%), LAI (40%) and 

TDM (25%) in Fig.4b largely exceed these of Fig.4a, which in turn causes higher relative dispersions 

on I (23%), Y (9%), IWUE (16%) and F (61%) in Fig.4d than in Fig.4c. Again, the recommendations 

(d2>d1) of Table 1 are met. Moreover, the fact that d2d0 for most variables (with the exception of Y) 

suggests a favourable case where the optimisation process is needed and expected to perform well. 

These statistical indications are confirmed by the elements present in Fig.4d: even if there seems to be 

a weak correlation between the I and Y signals, there is obviously none between Y and F, preventing 

any straightforward optimisation. In contrast, the peaks in F and IWUE seem to occur for the same 

parameter sets, which suggests IWUE can be a good indicator for financial expectations in this model 

(and this is a trend known from literature, that becomes even more crucial in water scarcity contexts). 

 

 

 

Figure 4 – Dispersion plots obtained from the uncertainty analysis runs of the framework, applied to the Optirrig 

model. Sketch (a) shows the d1 dispersion on daily model predictions, testing reduced uncertainties on the sensitive 

model parameters. Sketch (b) shows the "obtainable" d2 dispersion on daily model predictions, testing reduced 
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uncertainties on the sensitive model parameters combined with multiple possible irrigation strategies. Sketch (b) also 

shows the d3 dispersion that identifies additional effects of uncertainties on the irrigation strategies. The dispersion 

envelopes have been calculated as the daily mean  one standard deviation of the predicted LAI (Leaf Area Index), 

RATIO (percentage of filling of the root zone reserve) and TDM (total dry matter) values (105 model runs). Sketches 

(c) and (d) show the d1 and d2 dispersions, respectively, on seasonal model predictions I (total irrigation amount), Y 

(crop yield), IWUE (irrigation water use efficiency, compared to the reference value) and F (financial expectations).      

 

3.3 Constrained optimisation runs 

This last part of the framework consists in identifying the optimal irrigation strategies, i.e. the 

combinations of values of the sensitive irrigation parameters, for which the optimisation constraints 

are met, here I<IC=200 mm, Y>YC=14 ton ha
-1

 and F>FC=1 k€ ha
-1

. More than 10
5
 model runs were 

used to test random combinations of the four sensitive irrigation parameters (M1, M4, M6 and M7) 

and extract the optimal ones, which was followed by a back calculation for verification. The values of 

the irrigation parameters M4 (days after sowing used for irrigation), M6 (sowing day) and M7 

(threshold value of RATIO that triggers irrigation, where RATIO is the filling percentage of the root 

zone reserve) are assumed to be free from uncertainty. By contrast, a 25% uncertainty affects M1 

(irrigation amount), responsible for the d4 dispersion in model predictions (I, Y, IWUE and F), the 

latter calculated from 1000 random draws of M1 in the indicated range. This dispersion indicator 

allows examining the robustness of the optimal solutions. Figure 5a shows the 11 irrigation parameters 

sets associated with optimal irrigation strategies (including uncertainty in the irrigation amount). 

Figure 5b shows the values of the predicted variables (with their d4 dispersion).  

 

The results have been sorted by increasing sowing days, as this model parameter accounts for the 

initial decision in the category of management controls, possibly conditioning  the remaining site 

management options. It is striking in Fig.5a that different irrigation strategies can still be used even for 

delayed sowing dates (at least in the tested range of sowing days and for the optimisation constraints 

specified). Another point is the existence of different optimal strategies for the same sowing day (e.g. 

M6=107), with equifinality between parameter sets [2] (M1=40 mm, M4=135 days and M7=65%) and 

[3] (M1=28 mm, M4=158 days and M7=70%). This is a plausible result as it is known from 

practitioners that several different irrigation strategies may provide similar results, especially for 

drought tolerant varieties, which leaves the possibility to decide irrigation strategies in function of 

external constraints (not mentioned here).  

 

In Fig.5b, the back-calculated d4 dispersion is weak for all variables and all [1-11] solutions, as the 

standard deviation stays between 0.5 and 5% of the mean predicted values, even when considering a 
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non-negligible 25% uncertainty on the irrigation amount, which is here the only irrigation 

management parameter subject to uncertainties. Figure 5b therefore shows first that the most sensitive 

irrigation parameter (M7, Fig.3) has a narrower range of "admissible", optimal values and second that 

the irrigation amount (and associated uncertainties) only plays a secondary role in deciding when it is 

the next time to irrigate. It is likely that this would become questionable when less water is available, 

for example for deficit irrigation purposes. Finally, the low d4 values in Fig.5b tend to confirm the 

robustness of the optimisation process. However, most of the upper limits of the predicted I values are 

above IC=200 mm, certainly because IC was the most severe of the three constraints: either this 

constraint can be relaxed or the uncertainty on irrigation amounts should be further reduced.         
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Figure 5– Results of the multi-objective constrained optimisation, showing the [1] to [11] optimal sets of irrigation 

parameters (M1: irrigation dose in mm with a 25% uncertainty, M4: period allowed for irrigation, in days after 

sowing, M6: sowing day and M7: water reserve RATIO that triggers irrigation, in %) (a) and the associated values of 

the predicted total irrigation amount I, crop yield Y, irrigation water use efficiency IWUE (in comparison with the 

reference case) and financial expectations F (b). The dispersion on I, Y, IWUE/IWUEREF and F is the mean value of 

the prediction  one standard deviation, calculated from 1000 random draws of M1 within the indicated range of 

uncertainty. The optimisation constraints were I<IC=200 mm, Y>YC=14 t ha-1 and F>FC=1 k€ ha-1. Results [1] to [11] 

were sorted by increasing sowing days (M6 values). The allowed ranges and reference parameter values appear in 

Table 2. The values of model predictions can be compared with their theoretical limits in Fig.4d.  

 

  

3.4 Discussion 

3.4.1 Specifics, strengths and limitations of this framework 

In comparison with the cited literature, the two main characteristics of this framework are to rely on 

causal series of direct calculations to identify optimal irrigation strategies (usually evaluated from 

inverse calculations) and to take advantage of the associated dispersion scores to do so (instead of 

minimizing an objective function). 

- In the organized succession of sensitivity, uncertainty and constrained optimisation run series, the 

three stages are structurally independent but closely related from a conceptual point of view, as they 

form a whole: the originality of the framework lies thus both in the presence of all three stages and in 

their user-defined articulation. The latter point allows multiple degrees of freedom to address the 

optimization problem but it should be kept in mind that the present procedure is suitable for already-

validated models only (though possibly adaptable for model verification purposes). So each stage is 

freely designed to exploit at best the existing knowledge (e.g. admissible parameter ranges and 

combinations in sensitivity analysis), information drawn from the previous stages (e.g. the sensitive 

parameters or climatic forcings on which uncertainty can and should be reduced to ensure profitable 

irrigation strategies) or for self-evaluation of the final results (e.g. the expected effects of the 

irreducible uncertainties on irrigation management controls: do they endanger the otherwise optimal 

solutions?).     

- None of these stages currently occurs in parameter estimation tools or toolboxes, which arises from 

the choice of dispersion values as the quantities of interest. However, this choice neither excludes the 

use of softwares intended for inverse procedures (e.g. the popular PEST software, Doherty 2004) nor 

that of the many sophisticated inverse methods suitable for ill-posed problems in environmental 

sciences (e.g Tarantola 2005, Aster et al. 2012) but their implementation and inclusion in the present 
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framework would have made it much more complex. By contrast, the objective here is to propose one 

of the simplest possible frameworks able to assess the feasibility of optimization and to provide 

guidance.. 

 

3.4.2 Using this framework for decision support 

Whatever the tested crop model and its specifics, the presented framework aims at identifying which 

would have been the best irrigation strategies, in retrospect, for given climatic conditions, uncertainties 

and constraints. However, switching from a backward analysis of irrigation management to real-time 

recommendations is not straightforward, due to the unpredictability of the climate. From the sowing 

day on, the successive errors in climatic forecasts likely lead to sub-optimal strategies. The loss in 

optimality depends on the succession and magnitude of forecasting errors, which, in turn, depend on 

the horizon of the predictions (typically, from a few days to a week) to decide whether to irrigate or 

not. This dictates the temporal structure of the problem, suggesting a discretization step t of a few 

days, which de facto becomes the time step of the proposed analysis, that only involves values of the 

state variables calculated at times that are multiples of t. The daily variables (LAI, TDM in Optirrig) 

may then be used instead of the uncalculated yet seasonal variables (I, Y, IWUE, F in Optirrig), for 

example by (i) assuming the objective is to minimize the difference between the best possible (e.g. 

LAI*) and the actual (e.g. LAI) values and (ii) re-examining this difference at time intervals equal to 

the horizon of climate forecast. Then the existence of strong discrepancies between LAI and LAI* 

suggests changing the rules, i.e. either the values of the sensitive parameters in the M category, or the 

confidence placed in the climate forecast, or both.     

 

For most crop models, the seasonal variables IWUE and F may write IWUE (Y, I) and F(Y, I), while 

Y is Y(p, LAI, TDM). Any LAI change in LAI values results in a Y change in Y, so that Y=Y(p, 

LAI, TDM). Whatever the structure of the crop model, taking LAI=LAI*-LAI allows anticipating 

Y=Y*-Y, IWUE=IWUE*-IWUE and F=F*-F provided this anticipation relies on a sufficient, 

statistically significant number of cases (or, equivalently, on a well-known model behaviour). This 

condition is met by constituting a large library of cases assembled from past real and synthetic 

situations, crossing multiple climate types (especially rain amounts, still within the proposed temporal 

discretization) with plausible values of the management controls, to simulate decision rules and their 

expected effects. The added value of this procedure is that decision rules may be changed not only as a 

function of the current daily values of LAI or TDM, but also based on the anticipated values of the 

seasonal variables, plausibly with more precision as the season advances but with larger sensitivity in 

the early crop growth periods. 
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The ability of any automated model to produce or reproduce scenarios for diagnostic purposes makes 

it compatible with machine learning techniques, especially those of artificial intelligence (neuronal 

networks, evolutionary algorithms). After the diagnostic work (the ex-post optimisation described 

here) the next step could be the re-examination of the database to directly address and improve the 

decision rules, with the objective to provide better real-time recommendations in the future.   

                

4 Conclusion 

 

The existence of uncertainties in model parameters and climatic forcings should not be ignored, 

neither should model predictions be unqualified by the associated error terms, confidence intervals or 

statistical dispersion envelopes. The latter prove relevant when dealing with random uncertainties, 

which in turn requires numerous model runs to gain meaningful insights on the propagation of 

uncertainties through the model. In most crop models, the uncertainties on source data propagate to the 

daily (water reserve, leaf area index LAI, total biomass) then to the seasonal model variables, 

eventually resulting in dispersion on the key model predictions (here, the total irrigation amount I, 

crop yield Y, the irrigation water use efficiency IWUE and financial expectations F). Large 

dispersions question the feasibility and relevance of optimisation processes as they mean too little is 

known about the variables to optimise. The purpose of the present framework is to guide the modeller 

through successive run series (sensitivity analysis, uncertainty analysis, optimisation runs) to gather 

the conditions of a reliable constrained optimisation of irrigation strategies. In its present form, this 

framework is relevant for constrained optimisation but should not be used for model verification 

purposes, at least when relying on a single test case: this framework therefore applies to models 

already validated, as the Optirrig model here (the former PILOTE model expanded with automation 

procedures and additional output variables). 

 

    

 

The framework calculates four levels of dispersion to assess the impacts of uncertainties in 

parameters, irrigation strategies and irrigation parameters as well as the remaining uncertainty after 

optimisation relative to the base case. This allows identifying several optimal though very different 

combinations of irrigation parameters (sowing day, duration of the period used for irrigation, irrigation 

dose and trigger) which illustrates its possibilities in cases where the result is not straightforward. This 

also leaves the possibility to decide relevant, near-optimal irrigation strategies in function of additional 

constraints either known (e.g. water turns) or anticipated (e.g. irrigation restrictions by prefectural 

decree), or even external to this framework (e.g. availability of the workforce). The identification of 
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equifinal parameter sets in association with the user-defined system of inequalities on the target 

variables is an outcome of the present study.      
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