

### Colonization by marine ichtyoplankton on mudflat in the Gironde estuary

V. Andreola, Mario Lepage

#### ▶ To cite this version:

V. Andreola, Mario Lepage. Colonization by marine ichtyoplankton on mudflat in the Gironde estuary. 36 th Annual Larval Fish Conference, Jul 2012, Bergen, Norway. pp.1, 2012. hal-02605479

#### HAL Id: hal-02605479 https://hal.inrae.fr/hal-02605479v1

Submitted on 16 May 2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Colonization by marine ichthyoplankton of mudflats in the Gironde estuary

V. Andreola and M. Lepage \*

The Verdon marina

Gironde estuary needs habitat restoration because of strong anthropogenic pressures

Harbour development of the Verdon

# Introduction

Restoring fish habitats in estuaries is at present a major concern for stakeholders. Estuaries wetlands such as intertidal mudflats and marshes provide numerous ecological services and act as essential habitats for many species and this, from the youngest stages of development. Actually, many larvae of marine species whose eggs hatch at sea colonize the estuary and especially the mudflats of the latter via the tides. There they settle for a short period, they feed and grow.



**\*** To acquire essential knowledge about the distribution of the fish larvae originating in the Atlantic Ocean in different mudflats

> How are structured the ichthyoplankton populations of intertidal mudflats? Which species? (Where and when?) Which stages?

\* To give information on where restoration action should be taken as to maximize the potentialities of new settler fish larvae.

> Are there differences in species diversity and abundances between the mudflats or between

the two shores of the estuary?

## Methods

## Fishing

Larvae were collected in Marsh and in May 2012, in different mudflats of the Gironde estuary (Figure 1). This survey will continue until end of 2012.

Sampling is done with a bongo-type net (Figure 2) and an epibenthic trawl (Figure 3). The mesh size is 500 µm for each nets. Each net is towed for 3 minutes and filtered volumes are calculated using flowmeters.

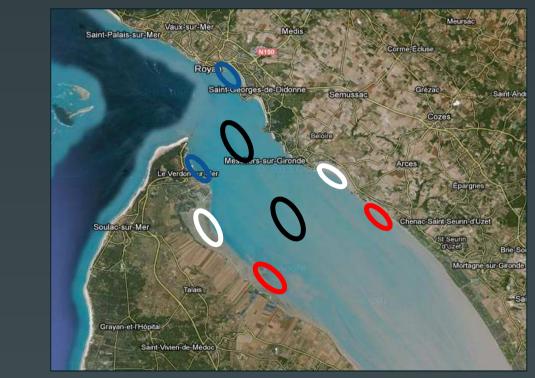



Fig. 1: Sampled mudflats



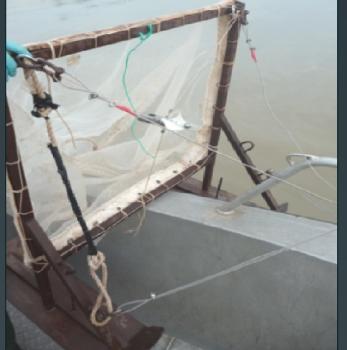
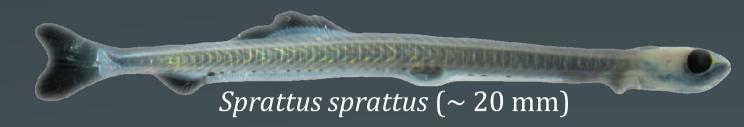




Fig. 3: Epibenthic trawl







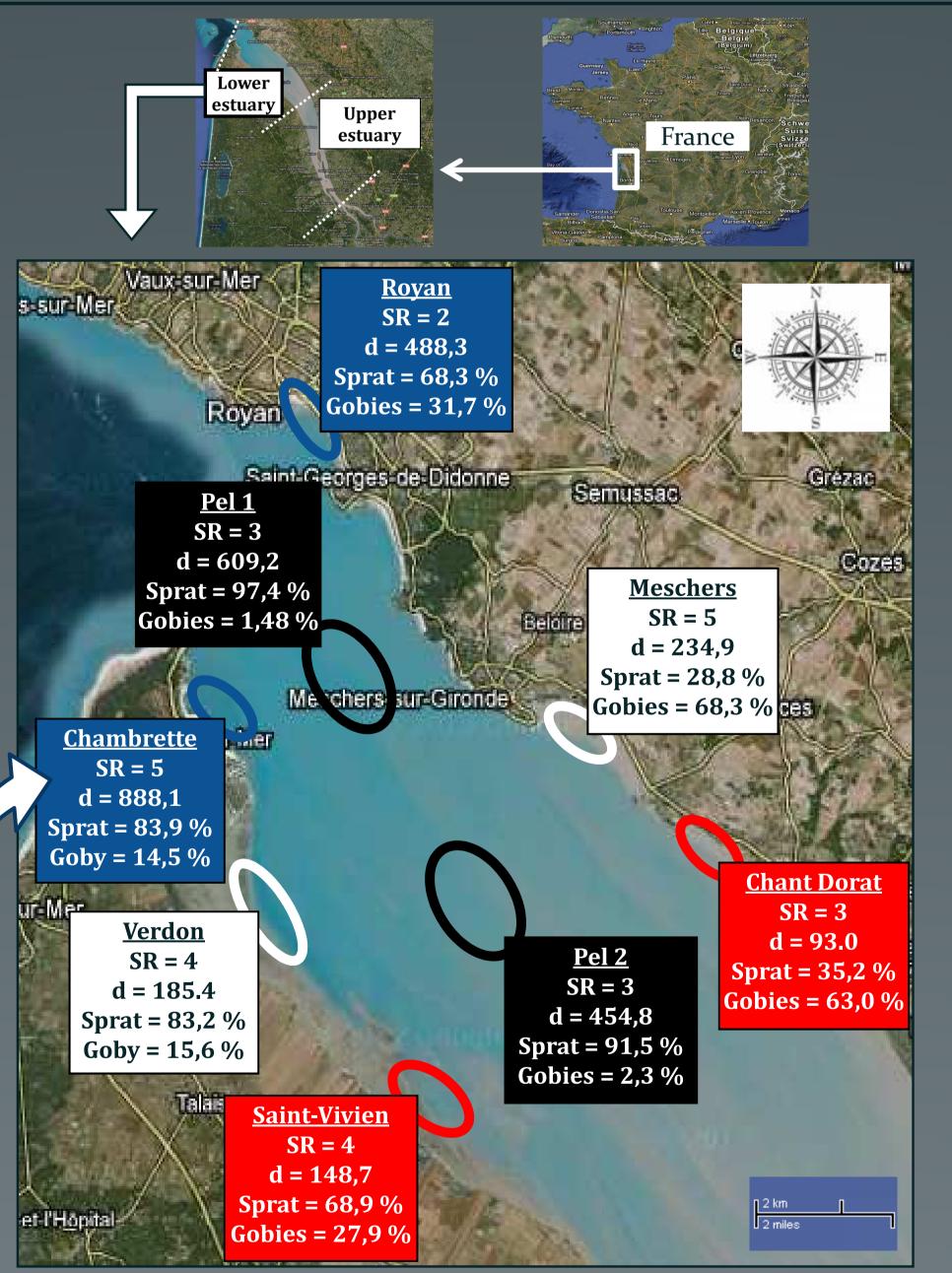
Morpho-anatomical approach: body shape, size, pigmentation, number of fin rays, gut style.



*Solea solea* (~ 9 mm)

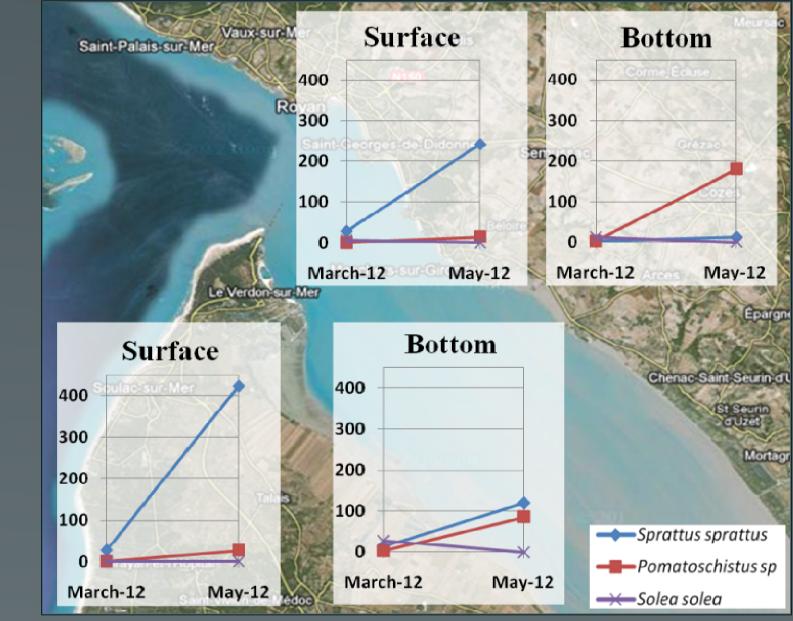


Dicentrarchus sp. (~15 mm)




Platichthys flesus (~ 8 mm)

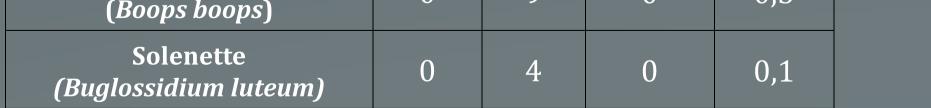



*Boops boops* (~ 9 mm)





| Species caught                                   | Abundances |      | Contributions (%) |      |
|--------------------------------------------------|------------|------|-------------------|------|
|                                                  | March      | May  | March             | May  |
| Sprat<br>( <i>Sprattus sprattus</i> )            | 137        | 1193 | 48,9              | 65,1 |
| Gobies<br>(Pomatoschistus sp.)                   | 9          | 317  | 4                 | 33,3 |
| Dover sole<br>( <i>Solea solea</i> )             | 81         | 0    | 35,5              | 0    |
| Flounder<br>( <i>Platichthys flesus</i> )        | 10         | 0    | 4,4               | 0    |
| Whiting<br>( <i>Merlangius merlangus</i> )       | 7          | 0    | 2,7               | 0    |
| Lesser sand-eel<br>( <i>Ammodytes tobianus</i> ) | 11         | 1    | 1,9               | 0,1  |
| Plaice<br>(Pleuronectes platessa)                | 3          | 0    | 1,3               | 0    |
| Sea bream<br>( <i>Sparus aurata</i> )            | 3          | 0    | 1,3               | 0    |
| European eel<br>( <i>Anguilla anguilla</i> )     | 2          | 1    | 0,7               | 0,1  |
| Bib<br>( <i>Trisopterus luscus</i> )             | 1          | 0    | 0,7               | 0    |
| Sea bass<br>(Dicentrarchus sp.)                  | 0          | 3    | 0                 | 0,4  |
| Garfish<br>( <i>Belone belone</i> )              | 0          | 3    | 0                 | 0,4  |
| Bogue<br>(Boons boons)                           | 0          | 9    | 0                 | 0,3  |






Evolution from March to May of larval densities (d = number of animals /  $1000 \text{ m}^3$ ) on each bank of the Gironde estuary at the surface and at the bottom of the water column

 $\succ$  On the left shore as on the right shore Sprats (Sprattus sprattus) are mainly captured at the surface of the water column whereas gobies (Pomatoschistus *sp.*) are mainly captured on the bottom.

> Larval densities significantly higher in May than in March.



> 14 species were identified. Sprats, Gobies and Dover soles mainly contribute to the total of individuals captured.

Species richness (SR) and mean densities  $(d = number of animals / 1000 m^3)$  observed in May

> In May as in March, greatest species richness and highest densities on the left shore, and especially for the sampling site called "La Chambrette".

> High densities observed in "Pel 1" and "Pel 2" off the mudflats.



Perspectives

> Lateral distribution: left shore shows higher larvae densities; > Vertical distribution: pelagic fish larvae dominated by sprat mainly found at the surface while benthic fish larvae mainly found on the bottom. > No significative differences were observed in the size spectrum of the fish larvae between upper and lower sampling sites.

> This study is ongoing. Surveys planned in summer will provide more information in particular regarding the mechanisms of colonization. > Possible future studies could focus on a behavioral approach and investigate the biological

mechanisms (swimming capacity, sensory mechanisms) influencing colonization of the estuary by marine fish larvae.

Unité de recherche EPBX IRSTEA - Centre de BORDEAUX 50 av. de Verdun 33612 CESTAS GAZINET, FRANCE www.irstea.fr

## **36th Annual Larval Fish Conference** - 2 – 6 July 2012 - Bergen – Norway

\* Corresponding author : Mario.Lepage@irstea.fr

