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ABSTRACT: Natural phenomena in mountains such as rockfalls cause severe damage to exposed population
and assets. Numerical modelling is widely used to assess the hazard level (combination of phenomenon’s intensity
and frequency). This paper describes how innovative methods and tools are used to assess both thematic (related
to the characteristics of the rockfalls) and spatial (related to the local topography) data uncertainties considering
rockfall propagation. Those uncertainties are propagated in rockfall simulation models using classical Monte
Carlo (probabilistic) and hybrid (possibilistic) approaches. Uncertainties related to the altimetric information,
through Digital Elevation Model (DEM), are modelled by random fields using the new ModTer software, that can
produce terrain simulations. This paper compares both uncertainty propagation approaches, taking into account
spatialized uncertain variables, and proposes a sensitivity analysis describing the contribution of DEM variability
on the global uncertainty.

1 INTRODUCTION

In mountains, natural phenomena such as rockfalls,
put people and assets such as buildings, transport
infrastructures) at risk . Rockfall can be defined as
small mass movement that consists in the removal of
a superficial boulder from a cliff face or a talus slope
(Figure 1).

Risk is classically defined as a combination of
hazard and vulnerability. Hazard relates to the inten-
sity and frequency of phenomena. Direct vulnerability
concerns physical damages and values assessment (of
elements at risk) as a combination of spatial exposure
and potential losses (Figure 2) (Tacnet 2009).

Risk reduction measures include mitigation actions
which are based either on structural measures, such
as civil engineering protection works (embankments,
restraining nets etc.), or on non-structural measures,
such as land-use control through risk zoning maps
(Tacnet et al. 2014). Local authorities and infrastruc-
ture managers have often to take difficult decisions to
choose between combinations of these structural and
non-structural strategies according to their structural,
functional and economic effectiveness (Carladous

Figure 1. Rockfalls put people and infrastructures at risk.

Figure 2. Risk assessment based on phenomenon thematic
and spatial information.
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Figure 3. Spatial information is used to assess rockfall
hazards and risks.

et al. 2015). However, risk mapping remains an essen-
tial objective for risk managers and numerical mod-
elling is used to asses phenomena’s extension and
intensity. For rockfalls, trajectography modelling is
used to represented the potential paths of blocks falling
down from cliffs to the valleys (Figure 3).

In this context, expertise remains essential to help
taking decisions. Each step of the expert assessment
and decision processes depends on quality, availability
and imperfection of information (such as imprecision,
incompleteness, conflict or variability). Evaluating,
propagating and tracing information quality according
to sources’ reliability is needed to take proper deci-
sions and give an objective and realistic feedback about
confidence level for expert assessments and resulting
decisions. The risk analysis process uses quantita-
tive and qualitative thematic information about natural
environment (rockfall volume, geology, geomorphol-
ogy, hydrology) but also spatial information related to
topography. All this information come from several,
more or less reliable, sources such as historical data,
numerical models or expert assessments.

Numerical simulation results depend on the avail-
ability and the quality (or imperfection) of input
data. Recent developments have introduced uncer-
tainty analysis of those numerical simulations but have
focused on thematic, scalar variables, such as block
volume (Dupouy et al. 2015). In trajectography anal-
ysis, terrain topography has also an essential role
and its uncertainty has to be considered in numer-
ical modelling. The ModTer project aims first to
assess spatial uncertainty related to available eleva-
tion data and, secondly, to analyse the influence of this
uncertainty on global simulation results. A ModTer
software has been developed (Crimier et al. 2016) to
build DEM uncertainty models. A specific framework
has been build to propagate both DEM uncertainty,
modelled by the software, and thematic uncertainty
(Figure 4).

This paper aims first to generalise the comparison
of Monte Carlo and Hybrid uncertainty propagation
results described in Dupouy et al. (2015), by includ-
ing DEM variability as modelled by ModTer, and

Figure 4. Spatial and thematic uncertainty propagation
framework.

by focusing on spatialized variables of interest. It
also provides a sensitivity analysis to evaluate the
influence of DEM variability over the output uncer-
tainty. The present first section introduces the context
and needs. The second part recalls the main tools
and method, and more specifically the possibilis-
tic, so-called Hybrid propagation method, and the
main outputs of the new ModTer software. It also
details the description of the analysis. The third sec-
tion presents the results of Monte Carlo and Hybrid
propagation works, and sensitivity analysis. Finally the
discussion analyses the results and concludes about
perspectives.

2 MATERIALS AND METHODS

2.1 Representations of imprecise information

Let be a probability space (R, A, P) and X a random
variable.

2.1.1 Possibility theory
The possibility theory (Zadeh 1978, Dubois et al.
2000) provides a tool to represent imprecise informa-
tion. It models both variability and imprecision of X ,
by associating a possibility distribution π .

A possibility distribution is a mapping π :
R → [0, 1] such that supx∈R

π (x) = 1. It describes the
potential likelihood of the values of X , and induces
two measures, namely possibility � and necessity N
such that, for any A ∈ A:

�(A) measures to which extent A is plausible, N (A)
to which extent A is impossible. In its probabilis-
tic interpretation, �(A) and N (A) can be considered
respectively as upper and lower bounds of the prob-
ability P(A), defining a set of probability measures
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(Dubois and Prade 1992, de Cooman and Aeyels
1999):

Given α ∈ [0, 1], the α-cut of π is the set
Eα = {x, π (x) ≥ α}, and P(Eα) ≥ 1 − α according to
(2) and (4).

Thus, such a distribution, formally equivalent
to fuzzy interval, reflects conveniently an expert
assessment, expressed in terms of nested inter-
vals E1 ⊃ · · · ⊃ En, with decreasing confidence lev-
els λ1 > · · · > λn (interpreted as P(Ei) ≥ λi), one can
deduce a possibility distribution π whose the (1 − λi)-
cut is Ei (1 ≤ i ≤ n).

Similarly to probability distributions, one can sim-
ulate a possibility distribution by sampling values αi

from an uniform law on [0, 1], getting the correspond-
ing αi-cuts.

2.1.2 Random sets
A random set is defined by a mass function m asso-
ciated to a finite set F of measurable subsets of R,
called focal elements, such that

∑
E∈F

m(E) = 1.
According to the theory of evidence introduced

by Shafer (1976) and Smets and Kennes (1994), m
induces two measures, namely plausibility Pl and
belief Bel such that, for any A ∈ A:

Pl(A) measures to which extent A is plausible, Bel(A)
to which extent A is impossible. In its probabilistic
interpretation, Pl(A) and Bel(A) can be considered
respectively as upper and lower bounds of the prob-
ability P(A), defining a set of probability measures:

If focal elements are singletons, random sets
encompass probability theory (in the discrete case).
The case where focal elements are nested intervals
corresponds to the possibility theory context.

2.1.3 Probability boxes
Considering a couple of cumulative distribution func-
tions (F , F) with F ≤ F , the related probability box
(P-box) is defined as the set of probability measures :

The gap between F and F reflects the imprecision
of the available information.

Thus, given a probability set deduced from a
mass function Pm, one can consider the P-box such
that F( · ) = Bel((−∞, ·]) and F( · ) = Pl((−∞, ·]).
Though this P-box is more intuitive to represent impre-
cise probability, it is obviously a looser approximation
of the initial probability family (we only consider very
specific events).Yet it remains adapted to bound quan-
tiles or failure probabilities, which are common criteria
of interest in risk analysis.

2.2 Hybrid uncertainty propagation

Given a mathematical model G : R
n → R

p and
Y = G(X1, . . . , Xn) the variable of interest. Let us sup-
pose that we want to evaluate a high-order quantile
(e.g. 0.975-quantile), from a perspective of structure
dimensioning.

The Hybrid uncertainty propagation method (Bau-
drit et al. 2006) mixes probabilistic convolution with
fuzzy calculus. It leans on probability, possibility
(Zadeh 1978, Dubois et al. 2000) and random sets
theories (Dempster 1967, Shafer 1976), used as prac-
tical tools for coding imprecise probabilities (Dubois
et al. 2000). It combines usual Monte-Carlo method
and interval analysis by α-cuts.

2.2.1 Sampling
Let us suppose that input variables X1, . . . , Xk (k ≤ n)
are precise enough to be reasonably modelled by an
unique joint probability distribution p1:k .

Xk+1, . . . , Xn are imprecisely known (few or impre-
cise measured data, expert assessments etc.), so that
associating them an unique probability distribution
implies to make strong assumptions. Thus, they are
respectively associated to possibility distributions
πk+1, . . . , πn.

A Hybrid realization is designed by the associa-
tion of:

• a random tuple x1:k , stemming from p1:k ;
• a (n − k)-hypercube Ek+1:n, stemming from the

α-cuts (α ∈ [0, 1] being a random degree of con-
fidence) of the possibilistic variables such that
Ek+1:n = Eα

k+1 × · · · × Eα
n .

Then, a Hybrid M -sample is designed by M such
random realizations.

2.2.2 Optimization and propagation
For each realization (xi

1:k , Ei
k+1:n), 1 ≤ i ≤ M , one opti-

mizes G on Ei
k+1:n to get an output interval [yi

inf , yi
sup].

A mass 1
M

is assigned to this interval, resulting a
random set on Y .

Due to the considerable computational cost of such
optimization works, an usual hypothesis is to assess
a monotone relationship between as much impre-
cise inputs as possible, and the variable of inter-
est. Hence, the dimension of optimization space is
reduced.
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2.2.3 Post-treatment
At this point, according to random sets theory, the ran-
dom set on Y can be interpreted in terms of imprecise
probability. The probability of any event A on Y can
be bound by the dual measures Bel(A) =

∑
E⊆A m(E)

and Pl(A) =
∑

E∩A
=∅ m(E).

One can consider for convenience the related P-
box, such that F = Bel((−∞, ·]) and F = Pl((−∞, ·]).

It is proved that F and F coincide with the empirical
cumulative distribution functions of (yi

sup)i and (yi
inf )i

respectively (ref).
More specifically, one can bound any γ -quantile by

the estimated γ -quantiles of (yi
inf )i and (yi

sup)i respec-

tively, as {y|F(y) ≥ γ } ⊆ {y|F(y) ≥ γ } ⊆ {y|F(y) ≥ γ }.

2.3 Rockfall simulation model: Rockyfor3D

The rock propagation simulations are conducted using
the code Rockyfor3D. This well-known and widely
used tool was developed in Irstea Grenoble conjointly
with the Ecorisq research fondation (Dorren et al.
2006, Bourrier et al. 2009, Dorren 2015). Rockyfor3D
allows simulating the 3D propagation of the rocks as a
succession of free flights through the air and rebounds
on the soil. The rock propagation is modelled through
a rasterized DigitalTerrain Model which can be seen as
a matrix in which each cell value represents the mean
terrain elevation of the square cell.

The set up of a rockfall simulation series requires
defining a set of parameters related with the slope
surface, the rocks and the release conditions (rock vol-
ume, departure location and initial falling height, in
particular).

The rebound calculation is the keypoint for the
assessment of rocks propagation. In the rockfall sim-
ulation code Rockyfor3D, it is conducted in two
independent phases. First, the deviation of the block
trajectory after the rebound is assessed and, second,
the block reflected velocity is calculated. This mod-
elling approach was shown to provide satisfying results
at the slope scale (Dorren et al. 2006, Bourrier et al.
2009). One can note that the parameters related with
the rebound calculation are modelled as independent
random distributions. The rebound of the rock is mod-
elled as a random process, i.e. for each rebound a set
of parameters is sampled.

Once the simulation scenario defined, a series of
rockfall simulations consists of releasing from each
user-defined departure cell a given number of rocks
one after the other. Output results from the simulations
are used to build the complete statistical distribution
of the rock trajectories (passing heights, kinetic ener-
gies . . .) when entering a user-defined set of cells,
corresponding to the fence location in this case.

2.4 Probabilistic modelling of DEM uncertainty:
ModTer

The ModTer software (Crimier et al. 2016) aims to
build a random field to model altimetric uncertainty,

Figure 5. Kinetic energy realization (single RockyFor3D
simulation).

from a given operational input Digital Elevation
Model.

The field’s parameters are set from statistical learn-
ing, using morphometric characteristics of the input
DEM, and the errors between the input DEM and
a set of available, reference altimetric data (Lidar,
photogrammetry . . .).

Once the model is build, the software is able to
export a sample of output DEM, stemming from the
random field.

2.5 Description of the analysis

Dupouy et al. (2015) aimed to apply and compare
both Monte-Carlo and Hybrid approaches to prop-
agate uncertainty and imprecision in the context of
rockfall protective structure design. Nevertheless, this
first study only focused on propagating uncertainty
from thematic, scalar variables.

The aim of this study is to complete this previous
work, by:

• modelling and propagating uncertainty on spatial-
ized, input variables, namely the elevation model
defining the local topography.

• dealing with a spatialized output variable of interest.
• evaluating the influence of elevation uncertainty

on the resulting variable of interest, by leading a
sensitivity analysis.

The study site corresponds to a full-scale rockfall
experimental site located in an avalanche track in the
forest owned by the local community Vaujany in Isère
department, France (North 45◦12’, East 6◦3’).

A single departure cell is set: boulders start falling
from this point.

The spatialized variable of interest is the kinetic
energy 0.95-quantile E0.95. An example of this out-
put raster, for a single RockyFor3D run on the study
site, is shown in Figure 5.

In a cautious approach for hazard evaluation, the
global uncertainty analysis’ criteria of interest c is the
0.975-quantile of E0.95.

Input uncertainties are set for both DEM, describing
the topography, and the parameters related to the rock
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Figure 6. Fall height truncated Normal probability distribu-
tion (Monte Carlo/Hybrid propagation)

Figure 7. Volume Triangular probability distribution
(Monte Carlo propagation).

release conditions, namely initial fall height and vol-
ume. The assumptions for these lasts thematic inputs
are concordant with Dupouy et al. (2015):

• DEM’s uncertainty is modelled using the ModTer
tool. The same resulting stochastic field is used for
both propagation method.

• H is modelled using a single probability distribution
for both cases. The values for H are sampled from a
truncated normal distribution with µ = 5 and σ = 1,
so that H ∈ [0, 10] (Figure 6).

• V being the most important thematic parameter
(Bourrier et al. 2009), the comparison between
probabilistic and possibilistic approaches focuses
on this parameter only. For the Hybrid case, the
assumption of monotone relationship between E0.95

and V is reasonable.

We assume that expert knowledge is the only
available source of information for quantifying V .
The expert provides a bounded support interval
V ∈ [0.5, 2], and a “central value”: V = 1 m3, inter-
preted as a mode. Let us suppose then that the
distribution of V is uni-modal.

In a probabilistic paradigm, this information is usu-
ally traduced by a triangular probability distribution
with support [0.5, 2] and mode 1 (Figure 7).

Figure 8. F:/Web/09-T-F-NL/Walls-ESREL-2450398/CH038/Volume
Trapezoidal possibility distribution (Hybrid propagation).

Figure 9. Comparison of Monte Carlo/Hybrid propagation
in a specific raster cell: empirical distribution functions and
0.975-quantiles of E0.95.

In a possibilistic paradigm, as no symmetry hypoth-
esis can be made here, according to Baudrit et al.
(2003), a trapezium possibility distribution with sup-
port [0.5, 2] and mode [0.75, 1.5] (Figure 8) is tested.

3 RESULTS

3.1 Uncertainty propagation

The variable of interest is a spatialized output (see Fig-
ure 5), and each realization of E0.95 is a raster file. The
criterion of interest is estimated from a sample of 1000
rock propagation realizations.

That is to say, in each cell of the raster, simulations
provide a scalar sample of local kinetic energy values.
The 0.975-quantile is estimated in each cell, defining
the global, rasterized estimator.The Figure 9 illustrates
such cell-wise, scalar estimation.

3.1.1 Monte Carlo propagation
The quantile of interest estimated from Monte Carlo
analysis is illustrated in Figure 10.

3.1.2 Hybrid propagation
The quantile of interest estimated from Hybrid analysis
is bounded between the values represented in Figure 11
and those shown in Figure 12.
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Figure 10. Monte Carlo propagation (stochastic DEM):
Kinetic energy 0.975-quantile estimator.

Figure 11. Hybrid propagation (stochastic DEM): Kinetic
energy 0.975-quantile estimator’s lower bound.

Figure 12. Hybrid propagation (stochastic DEM): Kinetic
energy 0.975-quantile estimator’s upper bound.

The (locally huge!) gap between lower and upper
bounds reflects the imprecision of available informa-
tion about input rock volume.

3.2 Sensitivity of kinetic energy to elevation
variability

A Monte Carlo propagation has been done with a
constant DEM. The quantification hypotheses for

Figure 13. Monte Carlo propagation (constant DEM):
Kinetic energy 0.975-quantile estimator.

Figure 14. Spearman rho: Kinetic energy vs Slope.

Figure 15. Spearman rho’s P-value: Kinetic energy vs
Slope.

thematic input variables (namely H and V ) are the
same than in 3.1.1.

Figure 13 shows few differences compared to Fig-
ure 10: values for the quantile of interest are slightly
lower, and the spread is less important.

The Spearman rho correlation indices between E0.95

output and slope input samples, and the corresponding
P-values, have been computed cell-wise. The Fig-
ure 14 (resp. Figure 15) illustrates the results of this
sensitivity analysis.
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4 DISCUSSION – CONCLUSION

4.1 Uncertainty propagation

Dupouy et al. (2015) provided a first comparison
between Monte Carlo and Hybrid propagation pro-
cesses, to estimate a design value of a localized
protective structure under deep uncertainty. It focused
on a scalar variable of interest (kinetic energy at a pro-
tective fence location), and didn’t take into account
any DEM variability. Though it showed the interest
of Hybrid methodology when dealing with imprecise
information.

The conclusions are similar in this work, which
calculates a spatialized estimation of the rockfall haz-
ard, potentially providing expert support for estimating
design values for a protective structure, whatever its
position on the exposed area:

• The Hybrid approach provides large intervals
bounding the high-level quantiles of interest of
E0.95. It is not mandatory to favour any value within
these ranges, for no assumption is made about the
true, unknown, probability distribution. The impre-
cision of these results reflects the quality of available
information.

• The classical Monte Carlo approach provides a more
convenient estimator, for it gives an single value as
a criterion of interest (the estimator itself, or the
upper bound of a confidence interval). Though, as
the input quantification hypotheses rely on strong
assumptions regarding the available information, its
results shall be carefully trusted.

• In a concrete risk management, or protective struc-
ture design situation, the lower bound of the cri-
terion provided by the Hybrid analysis defines a
minimum design.The upper value provides the safer
alternative, whatever the bet one may make on input
uncertainties. Though, if any constraint makes it
unaffordable, a Monte Carlo analysis with care-
ful input quantification bet can provide a relevant
design value. In such situation, both methods are
complementary.

4.2 Sensitivity of kinetic energy to elevation
variability

No global significant correlation can be assessed from
the Spearman rho indicators, between the variable of
interest E0.95 and the slope variable deduced from the
elevation raster sample.

A possible explanation is that boulders don’t inter-
act with local topography during free flight, but only
during rebounds. It confirms the input rock volume
to remain the main leading parameter (Bourrier et al.
2009) for rockfall kinetic energy.

Though, more relevant sensitivity indicators may be
of interest, as Spearman rank correlation is best fit for
evaluating monotone relationships.

4.3 Future works

This work has proposed an application of uncer-
tainty and sensitivity analysis using probabilistic and

possibilistic approaches to evaluate rockfall hazard
and to assess the influence of altimetric uncertainty.
Is it worth getting very precise spatial when uncer-
tainty about others parameters is very high? We can
imagine that the quality of spatial data will be of higher
importance in case of very flat areas exposed to floods.
Our approach and methodology will be extended to
other natural phenomena such as floods in plain and
mountains areas. This new framework and method-
ology will have to be improved to cope with heavy
calculation time requirements. Those approaches are
part of a global integrated framework dealing with
information imperfection assessment and propagation
in the decision process (Tacnet et al. 2014).
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