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Abstract Whereas changes in magnitude of geophysical extremes under climate change have received
significant attention, potential concomitant changes in spatial dependence structures have remained
unexplored so far. Here we provide first evidence of such an effect, highlighting a significant trend in the
spatial dependence structure of snowfall extremes in the French Alps at decadal time scale. Specifically,
we process a comprehensive data set of winter maximum snowfall from all over the French Alps collected
in 90 stations from 1958 to 2012. We estimate extremal dependence over 20 year moving estimation
windows taking into account possible anisotropy potentially related to orographic effects and/or patterns
in atmospheric flows. For each window, we derive a range representing the distance above which extremes
are almost independent. We show that snowfall extremes tended to become less spatially dependent over
time, with the dependence range reduced roughly by half during the study period. We demonstrate the
connection between this trend and local and synoptic climatic variables associated with the current
climate change context. In details, the decreasing pattern in extremal dependence is concomitant with
a trend toward less harsh winter conditions. It is attributable at first to the increase in temperature and
its major control on the snow/rain partitioning. Yet a magnitude effect, with less dependent extremes
due to a decrease in intensity of precipitation, also exists. Finally, we show that our results are largely
insensitive to the minimal modeling assumptions necessary to our data-based approach. This robustness
makes it potentially suitable for various other studies in the field of geophysical extremes.

1. Introduction

Extreme snow events are among the most important hazards in mountainous regions. Snowstorms can stop
road, railway, and air traffic. Extreme snowfalls can cause overloading and collapse of buildings and flood-
ing because of snowmelt. As for other geophysical variables such as rainfall or river discharge for which high
percentiles of the distribution are key quantities, extreme value theory (EVT) [Coles, 2001] is a suitable frame-
work to work with. Specifically, it is now well known that block maxima (e.g., annual) should be modeled by
the so-called generalized extreme value (GEV) distribution [Blanchet and Lehning, 2010; Sadovsky et al., 2012],
allowing sound extrapolation beyond the highest observed value.

However, for better mitigating risk and/or improving scientific knowledge about the processes at play, one
may be interested not only in pointwise estimates but also in assessing and using dependence between
extremes (extremal dependence) of different measurement stations. For instance, a proper inference of
extremal dependence may help in understanding the spatial variation of extremes. This also permits to eval-
uate joint exceedance probabilities at different positions in space. More recent and refined statistics from
the field of multivariate EVT such as extremal dependence measures are useful to this end [Coles et al.,
1999; Schlather and Tawn, 2003; Naveau et al., 2009], and some of them have already been used to evaluate
dependence in extreme snowfall in Switzerland [Blanchet et al., 2009].

Yet to fully cope with extremes in space, max-stable processes [de Haan, 1984] (which are the formal exten-
sion of multivariate EVT to infinite dimension) are even more suitable. After initial developments [Smith,
1990; Schlather, 2002], Padoan et al. [2010] showed how different max-stable processes could be fitted to
extreme rainfall in the U.S. using composite likelihood maximization techniques. This framework was applied
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by Blanchet and Davison [2011] to extreme snow depths in Switzerland and by Gaume et al. [2012, 2013] to
extreme snowfall and subsequently to avalanche slab depths in the French Alps. Furthermore, it was used for
extreme temperature in Korea [Lee et al., 2013], for extreme wind gusts in the Netherlands [Ribatet, 2013], for
extreme wave heights in the North Atlantic Ocean [Raillard et al., 2014] and in the Gulf of Lions [Chailan et al.,
2014], and for extreme river discharges in the upper Danube Basin [Asadi et al., 2015].

However, all the previous studies assume more or less explicitly temporal stationarity, both in the GEV distri-
butions fitted at any location of observations and, when it is modeled, in the spatial dependence structure of
extremes. This is clearly questionable in the current climate change context [Stocker et al., 2013]. For instance,
due to the influence of temperature on the rain/snow partitioning of precipitation, snow-related variables
are particularly sensitive to the recent warming [Falarz, 2004; Durand et al., 2009a; Valt and Cianfarra, 2010].
It is therefore not surprising that potential trends in extreme precipitation assessed within a proper extreme
value framework [van den Besselaar et al., 2013; Westra et al., 2013] become all the more clear when one
focuses on the sole snow phase. Significant decreasing trends were highlighted in extreme snowfall and snow
depths in Switzerland by Marty and Blanchet [2012]. In a similar spirit, using time-dependent covariates in
marginal GEV distributions and a stationary spatial dependence structure within a max-stable process model,
Shang et al. [2011] showed a relation between extreme precipitation in California and El Niño–Southern
Oscillation, whereas Westra and Sisson [2011] highlighted the influence of global sea surface temperature and
South Oscillation Index on extreme precipitations in Australia.

To the best of our knowledge, only Huser and Davison [2014] tried to cope for possible temporal changes in
the spatial dependence structure between extreme precipitation with a time-dependent max-stable process.
To this end, they developed, in a “model-based” approach, a statistical model which explicitly represents the
movement of a heavy rainfall event through time, fed by observations acquired at short time steps. The scope
of the current paper is to highlight potential temporal changes at longer time scales (decades) in the spatial
dependence structure of snowfall extremes using a “data-based” approach, which means that we try to make
as few modeling assumptions as possible in order to give more weight to the data. In addition, we carefully
test sensitivity of the few hypotheses we make. By this, we aim at making sure that the revealed change in
the extremal spatial dependence structure is with no doubt of geophysical origin rather than a more or less
direct consequence of modeling choices.

Specifically, we process a 56 year long data set of winter maximum snowfall from all over the French Alps
focusing on the spatial dependence structure only. We estimate extremal dependence over 20 year moving
estimation windows and, for each window, we derive a range representing the distance above which extremes
are almost independent. We highlight a strong decrease in this range over the study period, and we investi-
gate the connection between this trend and local and synoptic climatic variables associated with the current
climate change context. Finally, we demonstrate that this decrease does not depend on the choice of the para-
metric model nor the way the marginal distributions (i.e., the GEV distributions computed for each station)
and/or the distance between stations are evaluated.

2. Data
2.1. Winter Maximum Snowfall in the French Alps
Our data set is composed of winter maxima of 3 days cumulated snowfalls with a winter period defined from
15 November to 15 May. We choose a period of 3 days because this is the most usual time scale of winter
storms in the studied region and hence is often considered in avalanche forecasting [Bocchiola et al., 2006;
Eckert et al., 2010, 2011; Gaume et al., 2012]. Daily data are available from 15 November 1958 to 15 May 2013
in the French Alps (Figure 1) through observations of precipitation done mostly manually (climatological and
dedicated snow observing networks). We use all the observations whose type of precipitation (rain or snow)
was registered as snow. If the indication about the phase of precipitation is missing, we retain precipitations
measured when minimal daily temperature is lower than 2∘. Since several locations of measurement were
slightly modified during the study period, we pooled together the stations with less than 100 m difference in
elevation and less than 2 km in distance in the 2-D plane. Finally, we retain the 90 stations which have at least
40 winter maximum values (computed from a moving window of 3 days) during the study period (Figure 2a).
Their elevation ranges from 291 m to 2012 m (Figure 2b). Hence, the station set is a good compromise between
spatial and altitudinal coverage and length of records.
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Figure 1. Study area in the southeast of France, where the 23 massifs of
the French Alps are located. Lines denote massif limits, and dots denote
the positions of the stations. The color code represents elevation.

2.2. Local and Synoptic Variables
In order to better understand the poten-
tial changes in extremal dependence
in winter maximum snowfall, we intro-
duce several variables that summarize
the winter climate of the French Alps
over the study period.

The French Alps are divided into 23 mas-
sifs (see Figure 1), which are generally
assumed to be homogeneous in terms
of meteorological conditions for a given
elevation. In each massif, the daily snow
amount and the meteorological condi-
tions are available all over the study
period as a function of elevation through
reanalyses [Durand et al., 2009a, 2009b].
From these reanalyses, the cumulated
snowfall, mean snow water equivalent
(total mass of snow per unit horizontal
surface area), snow precipitation ratio

(cumulated snow precipitation divided by total—snow and rain—precipitation), and mean temperature are
calculated for two elevation levels (1800 m and 2400 m) for each winter and for each massif. Then, the mean
of all the massif values (23 massifs for 1800 m and 21 massifs for 2400 m because the highest peaks of two
massifs are below this elevation) is computed for each winter in order to have, for each variable and each
winter, a single value for the entire French Alps notwithstanding the large variability of mean annual condi-
tions [Durand et al., 2009a, 2009b].

The main drivers of winter climate in the French Alps are mostly westerly fluxes coming from the North
Atlantic. Thus, we also consider NAO (North Atlantic Oscillation) [Jones et al., 1997; Osborn, 2006] and AMO
(Atlantic Multidecadal Oscillation) [Kaplan et al., 1998; Enfield et al., 2001] indices through winter anomalies
evaluated from November to April over the study period. NAO and AMO variables summarize the predom-
inant oscillating patterns in the winter climate of the French Alps, in terms of pressure/precipitation and
temperature, respectively. Rather than the commonly used detrended version of AMO [Enfield et al., 2001],

Figure 2. (a) Data availability for each station. Each line represents one station, and each point means that the winter
maximum is available for that station. (b) Histogram of station elevation.
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we use here the nondetrended version which includes the recent climate warming signal in addition to
oscillating patterns [Kaplan et al., 1998].

For consistency with the moving time windows approach of section 3.5, for each of these variables, 20 year
moving averages are derived all over the study period, starting with the 1958–1977 time window and ending
with the 1993–2012 time window.

3. Methods
3.1. Extreme Value Statistics in the Univariate Case and Standardization of Snowfall Maxima
Following EVT, we assume that winter maximum snowfall at a given station is GEV distributed. The cumulative
distribution function F(y;𝜇(x), 𝜎(x), 𝜉(x)) of the GEV distribution is of the form

F(y;𝜇(x), 𝜎(x), 𝜉(x)) = exp

{
−
[

1 + 𝜉(x)
(

y − 𝜇(x)
𝜎(x)

)]−1∕𝜉(x)
}

(1)

with 𝜇(x), 𝜎(x), and 𝜉(x) denoting, respectively, the location, scale, and shape parameters at position x, and y
is such that 1 + 𝜉(x)

(
y−𝜇(x)
𝜎(x)

)
>0. The function F is equal to 0 in the case of 𝜉(x)>0 and y≤𝜇(x), and equal to 1

if 𝜉(x)<0 and y≥𝜇(x).

A GEV distribution is estimated for each station by likelihood maximization, giving estimates of the GEV
parameters (𝜇(x), 𝜎(x), 𝜉(x)) at each station location x. Finally, the pointwise estimates (�̂�(x), �̂�(x), 𝜉(x)) are
used to transform at each position x the GEV distributed snowfall maxima SF(x) into a unit Fréchet distributed
(i.e., GEV distributed with 𝜇(x)=1, 𝜎(x)=1 and 𝜉(x)=1) variable Z(x) using the transformation

SF(x) → Z(x) = −1

log
[

F
{

SF(x); �̂�(x), �̂�(x), 𝜉(x)
}] , (2)

where SF(x) is the snowfall maxima at location x and F{.; �̂�(x), �̂�(x), 𝜉(x)} is the GEV distribution defined in (1).
By doing this, we obtain a new data set of standardized winter maximum snowfall, Z(x). The extremal depen-
dence in this new data set is addressed in the current study, which is equivalent to but computationally easier
than studying the extremal dependence in the original data set SF(x). Indeed, with the standardized data set
we focus on the spatial dependence structure only and remove the effects of having different distributions
for the marginal distributions, for example, due to different elevations.

In order to use the same transformation (2) for all the 20 year moving windows (see section 2.2), we first
assume that the marginal distributions do not change with time. This may lead to an artificial temporal trend
in the spatial dependence structure since a temporal trend in the marginal distributions may be transferred
in the dependence structure. To exclude this possibility, we also assess the temporal evolution of the spatial
dependence using a specific transformation (2) for each estimation window. To this end, the GEV parameters
�̂�(x), �̂�(x), and 𝜉(x) are reevaluated for each window.

3.2. Extreme Value Statistics in the Spatial Case
Let S be a space, e.g., the French Alps. Let Z(x), x ∈ S be the spatial field of standardized winter maximum
snowfall in the French Alps, i.e., with every margin Z(x) unit Fréchet distributed. According to spatial extreme
value theory, it is appropriate to model Z(x) as a max-stable process [de Haan, 1984; Davison et al., 2012]. Every
max-stable process with unit Fréchet margins holds the de Haan’s spectral representation [de Haan, 1984]:

Z(x) = sup
i≥1

𝜂iWi(x). (3)

with {𝜂i}i≥1 the points of a Poisson process on + with intensity 𝜂−2d𝜂 and {Wi}i≥1 independent copies of a
nonnegative process W with mean 1. Different choices for W lead to different models of max-stable processes
[Davison et al., 2012; Cooley et al., 2012]. Every multivariate margin is given for any positions {x1,… , xk} by the
formula


(

Z(x1) < z1,… , Z(xk) < zk

)
= exp

[
−E
{

max
j=1,…,k

W(xj)
zj

}]
zj > 0 ∀j. (4)
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3.3. Extremal Coefficient and Extremal Function
To assess the extremal dependence between two unit Fréchet random variables Z1 and Z2, one can use the
extremal coefficient 𝜃 [Schlather and Tawn, 2003; Naveau et al., 2009] defined by

P
(

Z1 < z, Z2 < z
)
= exp

{−𝜃
z

}
= P
{

Z1 < z
}𝜃

, z > 0. (5)

The extremal coefficient ranges between 1 (complete dependence) and 2 (independence). The property

lim
z→∞

P
(

Z2 > z|Z1 > z
)
= 2 − 𝜃 (6)

holds and means that the probability of observing extreme values of Z2 when Z1 takes extreme values is close
to 0 when 𝜃 is near 2 and close to 1 when 𝜃 is near 1.

If Z1 = Z(x1) and Z2 = Z(x2) with Z a max-stable process defined by (3) and x1 and x2 two positions, we have
from equations (4) and (5):

𝜃(x1, x2) = E
[
max

{
W(x1),W(x2)

}]
. (7)

Theorical expressions for 𝜃 in (7) are available for all classical max-stable processes [Ribatet, 2013], as functions
𝜃(h) of the distance h = |x2 − x1| between two positions. 𝜃(h) represents the strength of the dependence as
a function of distance and is therefore termed the extremal function.

We tried most of the currently available extremal functions. Among these, the popular Smith [Smith, 1990]
and Schlather [Schlather, 2002] extremal functions are by far not flexible enough to be suitable for our case
study and were discarded. In this work we consider the main other possible choice, namely, the theoretical
extremal functions of the Brown-Resnick max-stable process [Kabluchko et al., 2009] with a power semivari-
ogram along with Extremal-t [Opitz, 2013] and Geometric Gaussian [Davison et al., 2012] max-stable processes
with powered exponential correlation function.

Corresponding Brown-Resnick, geometric Gaussian, and extremal-t extremal functions are respectively
given by

𝜃(h) = 2Φ

(√
2(h∕𝜆)𝜅

2

)
, (8)

𝜃(h) = 2Φ

(√
2𝜎2[1 − exp{−(h∕𝜆)𝜅}]

2

)
(9)

and

𝜃(h) = 2T𝜈+1

(√
𝜈 + 1

1 − (exp{−(h∕𝜆)𝜅})2
(1 − exp{−(h∕𝜆)𝜅})

)
(10)

with Φ and T𝜈+1, respectively, the cumulative distribution functions of the standard normal distribution and
Student distribution with 𝜈 + 1 degrees of freedom, 𝜆> 0 the scale parameter, and 𝜅 > 0 the smoothness
parameter. In order to keep the same degree of freedom for the three models, we fix the sill parameters
𝜎2 =7.7 and 𝜈=5 of geometric Gaussian and extremal-t extremal functions. These values impose a limit close
to 1.95 to 𝜃(h) when h tends to infinity. By doing this, we assume that extremes are still weakly dependent
at two very distant locations which is a realistic hypothesis for snowfall. Therefore, each model of extremal
function has two parameters: a range parameter 𝜆 and a smoothness parameter 𝜅 to be fitted on the data.

3.4. Anisotropy and Distances
In order to take into account spatial anisotropy in (8)–(10), we use three appropriate distances.
3.4.1. Modified 2-D Distance
First, we consider a modified distance in dimension 2 by using a geometric transformation of space; instead
of (x1, x2), we compute distances using the transformed coordinates (x′1, x′2) with[

x′1
x′2

]
=
[

cos(𝛼) − sin(𝛼)
r−1 sin(𝛼) r−1 cos(𝛼)

] [
x1

x2

]
r > 1 and 𝛼 ∈ [0, 𝜋) (11)
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Figure 3. Example of the calculation of the crossing distance between
the blue (A) pixel and the green (B) pixel. The pixels crossed by the
red line linking the centers of the blue and green pixels are in grey.
The crossing distance between the blue pixel and the green pixel is
defined by the sum of the lengths of the black segments showed in
the cross section.

where r and 𝛼 denote the anisotropy
ratio and angle, respectively. The angle
𝛼 can be interpreted as the direction
of strongest extremal dependence for
pairs of stations. The parameter r con-
trols the ratio between the direction of
strongest dependence and the orthogo-
nal direction. The 2-D Euclidean distance
computed after this transformation is
referred as the modified 2-D distance.
3.4.2. Modified 3-D Distance
In (11), the elevation of the standard-
ized snowfall maxima is not taken into
account. This may lead to some loss of

information. Thus, we also considered the 3-D euclidean distance with the three-dimensional transformed
space defined as

⎡⎢⎢⎣
x′1
x′2
x′3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

cos(𝛼) − sin(𝛼) 0
r−1 sin(𝛼) r−1 cos(𝛼) 0

0 0 w

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎦ r > 1,w > 0 and 𝛼 ∈ [0, 𝜋). (12)

This modified 3-D distance is analogous to the modified 2-D distance but weighting elevation through the
parameter w. This additional parameter is estimated together with r and 𝛼.
3.4.3. Crossing Distance
There exist alternatives to the space transformations (11) and (12) to take into account spatial anisotropy.
Instead of considering closer the pairs of stations located along the direction of strongest extremal depen-
dence 𝛼 as done in (11) and in (12), it is also possible to compute the distances by taking into account the
geographical aspects of the study area. For instance the “hydrological distance,” used for river discharges,
associates for each pair of locations the shortest distance in a river network [Asadi et al., 2015]. Another
distance, referred as the “crossing distance” in Gottardi et al. [2012] and more appropriate in our context, is
based on the relief variations between each pair of stations. In addition to the modified 2-D distance and to
the modified 3-D distance, we also consider this crossing distance. To compute it, the French Alps are divided
into pixels of dimension 1 × 1 km, and the elevation of each pixel is given by a 1 km digital elevation model.
Figure 3 shows an example of the calculation of the crossing distance between two pixels. A line linking the
centers of these two pixels is drawn (red line in Figure 3), and all the pixels crossing this line are considered
(in grey in Figure 3). The crossing distance is then the sum of the 3-D Euclidean distances between the pixels
along this red line (represented by the black segments in the cross section of Figure 3). The Euclidean distance

is applied using a weight Ω for elevation:
√∑

Δx2
1 + Δx2

2 + (Ω.Δx3)2. For instance, a weight Ω =20 is used
for precipitation in Gottardi et al. [2008, 2012].

3.5. Estimation of the Extremal Dependence Over Moving Time Windows
First, we estimate the parameters (e.g., r, 𝛼 ,𝜆 and𝜅 for the modified 2-D distance) by least squares, making use
of all the data together over the whole temporal period (1958–2013). Then, we hold fixed the estimations of
the anisotropy parameters (e.g., r and 𝛼 in the 2-D case), while the parameters𝜆 and 𝜅 of the extremal function
are reestimated on 20 year moving time windows under this anisotropic transformation.

For each estimation window (from 1958–1977 to 1993–2012) and each pair of stations, the extremal coeffi-
cient 𝜃 is estimated as follows:

𝜃 =
1 + 2𝜈F

1 − 2𝜈F
(13)

where 𝜈F is the F-madogram [Cooley et al., 2006; Naveau et al., 2009] defined by

𝜈F = 1
2

E
[|F(Z1) − F(Z2) ∣

]
(14)
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Figure 4. Extremal coefficient function for the first (1958–1977) and the last (1993–2012) estimation windows using
the modified 2-D distance: madogram-based pairwise estimations of the extremal coefficient for every pairs of stations
(grey dots), by distance class means (black dots), and Brown-Resnick extremal function fitted to all pairwise estimations
by least squares (red curve). The range h0 of extremal dependence (equation (15)) for the two considered time windows
is h0 = 200 km (1958–1977) and h0 = 121 km (1993–2012), respectively.

with F(z) = exp(−1∕z) the unit Fréchet cumulative distribution function. These pairwise estimations provide
estimations �̂�h for all distances h between two stations (grey points in Figure 4). Then, the theoretical extremal
functions (8)–(10) are fitted by least squares on the pairwise estimations �̂�h, leading to 𝛽 =[�̂�, �̂�]T the vector

of parameter estimates, Σ=
[

var(𝜆) cov(𝜆, 𝜅)
cov(𝜆, 𝜅) var(𝜅)

]
the variance-covariance matrix for these estimates, and

𝜃(h), the estimated extremal function (red curve in Figure 4).

3.6. Range of Extremal Dependence
We define the range of extremal dependence as the distance h0 such as 𝜃(h0) = 1.9 (Figure 4). The range
denotes the distance above which snowfall maxima become weakly dependent in extremes, i.e., close to inde-
pendence in practice. The stronger the extremal dependence at large distances, the larger the range. Inverting
(8)–(10) gives the following expressions of the range: for the Brown-Resnick extremal function

h0(𝛽) = h0(𝜆, 𝜅) = 𝜆

[
2
{
Φ−1
(1.9

2

)}2
]1∕𝜅

, (15)

for extremal-t extremal function

h0(𝛽) = 𝜆

⎡⎢⎢⎢⎣− log

⎛⎜⎜⎜⎝
1 − 1

𝜈+1

{
T−1
𝜈+1

(
1.9
2

)}2

1 + 1
𝜈+1

{
T−1
𝜈+1

(
1.9
2

)}2

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

1∕𝜅

, (16)

and for geometric Gaussian extremal function

h0(𝛽) = 𝜆

⎡⎢⎢⎢⎣− log

⎛⎜⎜⎜⎝1 −
2
{
Φ−1
(

1.9
2

)}2

𝜎2

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

1∕𝜅

. (17)

We estimate a 95% confidence interval for each estimation window by the delta method [Cox, 1998],
propagating the standard error on 𝛽 in equation (18). Hence, the 95% confidence interval for h0(𝛽) is
given by [

h0(𝛽) −
Φ−1(0.975)

n
∇h0(𝛽)TΣ∇h0(𝛽), h0(𝛽) +

Φ−1(0.975)
n

∇h0(𝛽)TΣ∇h0(𝛽)
]

(18)
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Figure 5. The 20 year moving averages of the considered variables: cumulated snowfall, mean snow water equivalent,
snow precipitation ratio, and mean temperature at 1800 m (blue lines) and 2400 m (red lines) elevation levels, NAO,
and AMO indexes. The X axis represents the center of the 20 year time window.

with ∇h0 the gradient of h0 with respect to 𝛽 , Σ the variance-covariance matrix for the estimates and n the
number of pairwise estimates of the extremal coefficient (number of pairs of stations).

4. Results and Discussion
4.1. Local and Synoptic Variables
Figure 5 shows the 20 year moving averages of the variables introduced in section 2.2. In the considered
period, we observe decreases of cumulated snowfall, mean snow water equivalent, and snow precipitation
ratio and increases of mean temperature, NAO and AMO. The period of strongest decrease for cumulated
snowfall and mean snow water equivalent (at 1800 m and 2400 m) is from 1985 to 1997. For snow precipita-
tion ratio, the period of strongest decrease is from 1981 to 1997 at 1800 m and from 1983 to 1993 at 2400 m.
At 2400 m, the snow precipitation ratio is close to 1 during the entire study period, which means that at
this elevation most of the precipitation falls as snow. Mean temperature mainly increases from 1978 to 1997
both at 1800 m and 2400 m. NAO index strongly increases from 1978 to 1985, and AMO index increases from
1978 to the end of the period of study. All of these trends come within the scope of the 1980s regime shift
[Reid et al., 2015].

4.2. Results Using the Entire Study Period
4.2.1. Goodness-of-Fit of the Models
Figure 6 shows the fitted Brown-Resnick, geometric Gaussian, and extremal-t extremal functions using the
entire study period in the case of the modified 2-D distance. The goodness-of-fit of the models can be
assessed comparing the estimated extremal functions to the class averages: a suitable extremal function
should be as close as possible to the class averages. We can observe graphically or with the computation
of the root-mean-square errors and the mean average errors that the three extremal functions fit well the
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Figure 6. Estimated Brown-Resnick, geometric Gaussian, and extremal-t extremal functions in the case of the
2-D modified distance. Here models are fitted on the whole temporal period. RMSE and MAE represent, respectively,
root-mean-square errors and the mean average errors between the fitted extremal functions and the class averages.

class averages. However, the Brown-Resnick extremal function seems to be slightly better, and from now we
will mainly consider this extremal function.
4.2.2. Anisotropy
For the Brown-Resnick extremal function with the modified 2-D distance, we find �̂� = 35.84∘ (with 0∘ for the
east and 90∘ for the north) and r̂ = 2.78. This anisotropy corresponds to the orientation of the main moun-
tains and valleys in the French Alps and means that the pairs of stations located along this direction are more
dependent at extreme levels. Similar observations were made in Gaume et al. [2013] for the French Alps with
fewer observations (40 stations from 1966 to 2009), in Blanchet and Davison [2011] for the Swiss Alps, and in
Padoan et al. [2010] for the Appalachians. This robust pattern may be interpreted as the effect of orography on
atmospheric fluxes generating extreme precipitations. Similar estimations are found using the other extremal
functions (�̂�=36.57∘ and r̂=2.78 with geometric Gaussian extremal function and �̂�=36.45∘ and r̂=2.78 with
extremal-t extremal function) and in the 3-D distance (�̂�=37.86∘ , r̂=2.76 and ŵ=42.27 with Brown-Resnick
extremal function). The estimate of the weight parameter ŵ=42.27 motivates the use of a weight parameter
Ω=40 for the crossing distance defined in section 3.4.3.

4.3. Results Using Moving Time Windows
4.3.1. Temporal Trend
With the Brown-Resnick extremal function and the 2-D distance, we find a positive temporal trend in the
extremal coefficient for distances exceeding 100 modified kilometers (Figure 7a) and, therefore, a tendency

Figure 7. (a) Temporal evolution of the fitted Brown-Resnick extremal functions under the 2-D modified distance, from
oldest time windows (blue curves) to the most recent ones (red curves). (b) Temporal evolution of the range of extremal
dependence. The range (equation (15)) is expressed as a function of the 2-D modified distance (equation (11)). It is
plotted (black dots) as a function of the center of the considered estimation window. The associated 95% confidence
interval is evaluated by the delta method using equation (18). The linear fit (straight blue regression line) is made on
the winter estimates (black dots).
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Table 1. Correlation Table Between the Range of Dependance in Extreme Snowfall Evaluated Over 20 Year Estimation
Windows and 20 Year Moving Averages of the Considered Winter Climate Variables (Section 2.2)a

SF 1800 SWE 1800 T 1800 SPR 1800 SF 2400 SWE 2400 T 2400 SPR 2400 AMO NAO Time

Range 0.86 0.90 −0.90 0.91 0.78 0.84 −0.92 0.76 −0.86 −0.68 −0.84

SF 1800 − 0.95 −0.83 0.92 0.98 0.97 −0.97 0.88 −0.92 −0.44 −0.79

SWE 1800 − − −0.94 0.97 0.88 0.96 −0.98 0.83 −0.95 −0.62 −0.92

T 1800 − − − −0.93 −0.72 −0.86 0.90 −0.65 0.86 0.83 0.96

SPR 1800 − − − − 0.82 0.91 −0.96 0.84 −0.95 −0.60 −0.91

SF 2400 − − − − − 0.94 −0.91 0.86 −0.86 −0.30 −0.68

SWE 2400 − − − − − − −0.95 0.86 −0.91 −0.48 −0.83

T 2400 − − − − − − − −0.88 0.96 0.56 0.86

SPR 2400 − − − − − − − − −0.87 −0.20 −0.63

AMO − − − − − − − − − 0.45 0.88

NAO − − − − − − − − − − 0.73
aCumulated snowfall (SF), mean snow water equivalent (SWE), mean temperature (T), and snow precipitation ratio

(SPR), AMO, and NAO indexes. Evaluation is made with 36 values for each variable, corresponding to the 36 estimation
windows from 1958–1977 to 1993–2012. The 1800 and 2400 indicate the elevation level for SF, SWE, T , and SPR. Time
denotes the center of each estimation window.

toward less dependence in extremes at large distance in recent years. At short distances (values of the
extremal function for small h), this decrease in strength of dependence is less visible.

There is a clear negative temporal trend in the range of extremal dependence. The correlation with time is
strong (Table 1), and a linear fit of the range estimates on the center of the considered estimation window
provides a determination coefficient as high as R2 =0.71 (Figure 7b). The range of extremal dependence
decreased by about 3 km/yr. It reduced by almost half over the 56 year study period, from a maximum of
237 km in 1978 to around 100 km over the most recent time windows. Yet most of the decrease has been
concentrated over the 1978–1997 period during which the 1980s regime shift happened [Reid et al., 2015].

The corresponding 95% confidence intervals computed with the delta method (Figure 7b) show that these
variations are significant. The widest confidence interval is in 1978 with a width of 79 km (95% confidence
interval (198 km, 277 km)), while the width of the confidence interval is between 15 km and 25 km for the
recent period.
4.3.2. Correlation With Local and Synoptic Variables
Table 1 shows that the range of extremal dependence is strongly positively correlated with the cumulated
snowfall, mean snow water equivalent, and snow precipitation ratio and is strongly negatively correlated with
the mean temperature, AMO, and NAO indexes. These correlations are overall slightly higher at 1800 m than
at 2400 m, which is consistent with the elevation of the stations of the data set. Yet correlations remain high
at 2400 m, and correlation with the mean temperature is even slightly higher at 2400 m than at 1800 m.
Remember that for coherence, these correlations are based on the moving averages of the local and synoptic
variables. This makes the correlations stronger than with “raw” annual values but more difficult to interpret in
terms of significance level. Yet their high values and physical consistency (see hereafter) are striking.
4.3.3. Potential Climate Control on Spatial Dependence of Extreme Snowfall
The negative correlation between the range of extremal dependence and the local and synoptic temperature
variables (mean temperature at the French Alps scale and AMO which refers to the temperature of the North
Atlantic Ocean sea surface) shows that the dependence in extreme snowfall in the French Alps is weaker when
winter temperatures are higher. Somewhat similar results were obtained very recently for extreme storms in
Australia, with a reduction of their spatial extent as temperatures increases [Wasko et al., 2016]. In our case
of extreme snowfall, especially convincing is the concomitance between the strongest decrease in extremal
dependence range (see Figure 7b) and the period of the strongest winter warming (section 4.1). Specifically,
the concomitant period of strongest decrease of snow precipitation ratio from 1981 to 1997 (section 4.1)
suggests that the decrease in spatial dependence of snowfall extremes could be due to a decrease of the
snow precipitation ratio caused by the increase of temperature in the context of the 1980s regime shift
[Reid et al., 2015]. Marty and Blanchet [2012] suggested the same explanation for the negative temporal trends
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Figure 8. Same as Figure 7b with (a) geometric Gaussian extremal function and (b) extremal-t extremal function.

in extreme snowfalls in the Swiss Alps. However, it is important to note that we show here something differ-
ent, since our results relate to the spatial dependence of extremes, and not to their magnitude. To the best of
our knowledge, this has never been shown for any geophysical variable. Hence, the main explanation for the
decrease in spatial dependence of extreme snowfall may be that the temperature increase makes these more
isolated in space, at least for heavy snowfall events occurring when temperatures are not too low. In such
a case, only the highest stations experience snow, while rain falls at low elevations, leading to less spatially
coherent patterns in winter maxima.

Yet we cannot exclude a magnitude effect with stronger dependence in extreme snowfall in the French Alps
during snowier winters. Indeed, even if the effect of snow/rain partitioning is very low at 2400 m with a snow
precipitation ratio close to 1 during the entire study period (section 4.1), there is a strong positive correlation
between the range and the snow variables (mean snowfall and mean snow water equivalent). This is coherent
with the negative correlation with NAO, since a negative NAO anomaly is associated with harsher winter
conditions widespread over the western Alps, including colder temperatures but also more intense snowfall
[López-Moreno et al., 2011]. Consequently, the decrease in intensity of snowfall could be an additional cause
of the decrease in dependence of extreme snowfall.

Figure 9. Same as Figure 7b when the marginal distributions are estimated and transformed into unit Fréchet on each
estimation window.
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Figure 10. Same as Figure 7b with (a) modified 3-D distance and (b) crossing distance.

4.3.4. Robustness to Modeling Assumptions
Figure 8 shows that a decreasing temporal trend of the range is also found for geometric Gaussian and
extremal-t extremal functions (with the 2-D modified distance), showing that this decrease is robust toward
the choice of model. Figure 9 shows that when transformation into unit Fréchet involves the marginal trans-
formations obtained on each temporal window (instead of the one obtained on the whole study period), then
a similar decrease in the range is found. Finally, this decreasing temporal trend of extremal dependence is still
observed under both the modified 3-D distance and the crossing distance (Figure 10). The decrease is very
similar to those either with the 2-D and 3-D modified distances. Nevertheless, the decrease starts slightly later
(around 1983) with the crossing distance. Yet in any case we see in Figures 8–10 that the decrease by half
in the range of extremal dependence during the study period is clear, whatever the chosen hypotheses to
evaluate it.

5. Conclusion and Outlook

In this paper, we show how the spatial dependence structure in extreme snowfall in the French Alps has
evolved over the last decades, with a significant negative trend in the strength of extremal dependence for
large distances (more than 100 km taking into account anisotropy). Specifically, we highlight a decrease of
3 km/yr of the range of extremal dependence, although this trend seems to slow down over the last years.
The division by two of the range over the study period is robust with regard to how the marginal distributions
are estimated, to how the way the distance between the stations is defined, and to the choice of the extremal
function model, i.e., the few assumptions we had to made to conduct the study.

The decrease in the range is strongly correlated with several climate variables, at both local and synoptic
scales. This suggests that climate change can have a significant impact on the spatial dependence structure
of extreme snowfall. This is, to the best of our knowledge, the first evidence of such an effect.

The very strong decreasing pattern that we observe is attributable at first to the increase of temperature and
to the major control exerted by temperature on the snow/rain partitioning. Yet a magnitude effect, with less
dependent extremes due to a decrease in intensity of precipitation, also exists. Our result obtained on snow
may therefore be of wider hydrological interest because similar trends could also exist in other variables less
influenced by temperature such as rainfall.

From a statistical point of view, we did not try to fit a complete max stable model, and we chose to use
a data-oriented approach. Indeed, we used time-dependent windows and took into account anisotropy,
so as to highlight potential changes by fitting Brown-Resnick extremal function to pairwise estimations of
extremal coefficient. Hence, even if our approach remains simpler than a model-based approach, it involves
state-of-the-art tools from multivariate EVT whose inferential power we demonstrate in geophysics. This
approach allows us to make minimal modeling assumptions in order to ensure the geophysical origin of the
displayed temporal trend rather than a consequence of modeling choices. Our framework could therefore be
useful for a variety of other studies addressing geophysical extremes in the context of climate change.
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