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Highlights

• Method for quantifying rating curve uncertainties in discharge predic-
tion is proposed

• A rainfall-stage model is developed and calibrated in stage space

• Such a rainfall-stage model couples a hydrological model with an inverse
rating curve

• We consider both structural and parametric uncertainties of the rating
curve

• Shares of these errors in the total uncertainty of stages and discharges
are assessed

• Structural uncertainties of hydrological model dominates other uncer-
tainty sources

• Ignoring rating curve errors affects the estimation of hydrological model
parameters
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Abstract

Hydrological models are typically calibrated with discharge time series de-
rived from a rating curve, which is subject to parametric and structural
uncertainties that are usually neglected. In this work, we develop a Bayesian
approach to probabilistically represent parametric and structural rating curve
errors in the calibration of hydrological models. To achieve this, we couple
the hydrological model with the inverse rating curve yielding the rainfall-
stage model that is calibrated in stage space. Acknowledging uncertainties
of the hydrological and the rating curve models allows assessing their con-
tribution to total uncertainties of stages and discharges. Our results from a
case study in France indicate that a) ignoring rating curve uncertainty leads
to changes in hydrological parameters, and b) structural uncertainty of hy-
drological model dominates other uncertainty sources. The paper ends with
discussing key challenges that remain to be addressed to achieve a meaningful
quantification of various uncertainty sources that affect hydrological model,
as including input errors.
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1. Introduction1

1.1. The importance of rating curve uncertainty in hydrological modeling2

Flood risk analysis relies on estimates of hydrological models and associ-3

ated uncertainty [1, 2, 3]. This uncertainty results mainly from four compo-4

nents: (i) parametric uncertainty of the hydrological model, (ii) its limited5

approximation of the catchment hydrological processes (model structural er-6

ror), (iii) uncertainty in external model inputs (typically rainfall, tempera-7

ture or evapotranspiration), and in (iv) output calibration data (typically8

discharge series) [4, 5, 6, 7, 3, 8, 9].9

Among these four uncertainty contributors, input errors are considered to10

be one of the major uncertainty sources in hydrological models [10, 11, 12, 3]11

and thus more research has been devoted to investigate their effect on hy-12

drological predictions than the effect of output uncertainty. Hence, different13

techniques have been proposed to represent input uncertainty which include14

a rainfall multiplier approach [10, 11, 13, 3], an addition to the bias [14, 8],15

or a more advanced stochastic description [15]. All of these studies, however,16

indicated that the inclusion of input errors raises several challenges. First,17

the computational cost is much higher than with traditional calibration. But18

even more importantly, substantial difficulties arise from the interaction be-19

tween input errors and other uncertainty components. For instance, Renard20

et al. [6] discussed the challenge of identifying both input and structural21

errors; similarly, Del Giudice et al. [15] reported difficulties in distinguish-22

ing between different observational errors (input and output) if they have23

similar properties, i.e., are systematic. Hence, in this study we do not de-24

scribe input errors explicitly, to be able to focus entirely on the effect of25

output uncertainty (due to the rating curve) on calibration and prediction26

of a hydrological model. Input errors will be implicitly encompassed in the27

structural error of the hydrological model.28

As opposed to input errors, less attention has been given to the output29

uncertainty which is often assumed to be relatively small in comparison to the30

other three parts and thus has been evenly neglected in uncertainty analysis31

frameworks [16, 17]. Such a strong assumption might be justified for a direct32

measurement of discharge, for which measurement errors of 5% on average33

could be assumed [18, 19]. For practical applications, however, measuring34
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discharge continuously becomes impossible [20, 21]. Instead, a measure of dis-35

charge is obtained from an observed stage using a stage - discharge relation-36

ship (called rating curve) [22, 23]. This relationship needs to be established37

at a hydrometric station with few direct (discrete) measurements of gaug-38

ing pairs (stage and discharge) [18]. Using pre-established rating curves to39

compute discharges therefore allows deriving continuous quasi-observed dis-40

charge series [22, 23], which next serve for calibration of hydrological models41

[24, 25].42

Awkwardly, these computed discharge series are often communicated to43

modellers or practitioners without any uncertainty statement [22, 26]. It is44

however clear that such estimated discharge series contain several errors. It45

has been reported in literature that although these errors are on average46

about 3− 6% of an estimated value, they may increase to about 20% under47

poor measurement conditions [27], and to more than 25% outside the range48

of measured stage-discharge pairs [16, 28]. However, the level of these errors49

is case-specific [29] and results from many sources: measurement errors of50

gauging pairs (instrumental errors, measurement technique), temporal shifts51

in the rating curve (unstable stream channel due to vegetation, bank erosion,52

sediment deposition, ice jams, etc.), transient hydrological conditions during53

measurement of gauging pairs, hysteresis effect, and rating curve parametric54

and structural uncertainties [12, 30, 31, 26, 32].55

All these errors affect calibration of the hydrological model and have56

serious implications for discharge simulations [12, 26, 23], flood frequency57

analysis [33, 34, 35], and for regionalization of model parameters [36]. As58

these errors are often not explicitly considered in uncertainty estimation,59

their effect on discharge uncertainty cannot be quantified. Moreover, when60

fully neglected, the uncertainty caused by rating curve errors may be wrongly61

attributed to other uncertainty source(s), leading to biased estimates that62

might be misunderstood by practitioners [35]. Given the above considerations63

and the number of studies dealing with calibration of hydrological models64

based on such quasi-observed discharge series, an accurate assessment of65

the rating curve uncertainties and their impact on the hydrological model66

becomes essential for flood risk assessment and management.67

1.2. Existing approaches to describe rating curve uncertainty68

Although a number of recent studies have investigated different aspects69

of rating curve uncertainties [20, 22, 37, 24, 38, 30, 39], the contribution70

of the rating curve to the uncertainty in hydrological simulations has not71
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been assessed systematically so far. In many uncertainty frameworks, rating72

curve errors are either not explicitly represented or are combined with other73

error sources. For instance, a common practice in uncertainty analysis is74

to pool all uncertainties (apart from parametric uncertainty but including75

rating curve uncertainty) into a lumped error term, which properties need76

to be mathematically described [40]. We call the latter approach when only77

parametric and structural errors of hydrological model are represented and78

the model is calibrated against discharges computed from rating curves as79

a standard uncertainty estimation approach. Another possible solution is80

mapping all uncertainty sources (including rating curve errors) to parameter81

uncertainty as in the original GLUE (generalized likelihood uncertainty esti-82

mation) methodology [41]. Further developments allowed to relate ”limits of83

acceptability” with the rating curve uncertainty, although the need to extend84

these limits to account for other error sources (input errors in particular) was85

recognized [42]. Other approaches allow distinguishing input and structural86

errors [43, 11]. However, they don’t explicitly represent rating curve errors,87

which are hence implicitly merged with structural errors. Finally, a recently88

introduced bias addition approach [14] gives the possibility to distinguish,89

aside from the parametric uncertainty, two different structural error types90

of the hydrological model, i.e., systematic and random errors. These er-91

rors are interpreted as structural and observational errors respectively. The92

bias approach pools however all observational errors (i.e., input and output)93

together and thus the uncertainty linked to the rating curve cannot be as-94

sessed. Hence, the major drawback of all these different approaches available95

to assess uncertainty of hydrological models is their inability to quantify the96

uncertainty contribution of the rating curve in total uncertainty estimates of97

hydrological models.98

One possibility to indirectly tackle rating curve uncertainty is to prop-99

agate rating curve errors to discharge series which are then represented as100

spaghetti lines or uncertainty bands [44]. Such multiple realizations of dis-101

charge series yield however a practical question of how to calibrate a hydro-102

logical model with hundreds of “observed” discharges.103

As an alternative, Sikorska et al. [26] and Thyer et al. [45] have recently104

proposed to avoid the issue of multiple “observed” discharges by simulating105

directly stages instead of discharges. Thus, they proposed to couple the106

hydrological model with the inverse rating curve yielding a so-called rainfall-107

stage model, for which uncertainty was evaluated in the stage space. In this108

way, rating curve uncertainty could be directly incorporated into simulations109
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of the hydrological model and the contribution of the rating curve uncertainty110

could be assessed. Yet, this method was mostly suitable to estimate stages111

while it was lacking the possibility to provide discharge predictions along with112

their uncertainty estimates (as discharge was only an intermediate step and113

was not directly modelled). Moreover, only the assessment of the parametric114

rating curve uncertainty was possible, while the structural errors of the rating115

curve could not be separated from those of the hydrological model.116

Finally, other authors proposed specific error models to describe rating117

curve errors, based on an analysis of the rating curve itself [24]. Thyer et118

al. [37] and Renard et al. [12] proposed a specific error model within the119

Bayesian total error analysis methodology (BATEA) of Kavetski et al. [43,120

10], to represent structural errors of rating curves in discharge data along121

other uncertainty components (input and structural errors of hydrological122

model). In this way, contributions of those three main uncertainty compo-123

nents could be evaluated. Yet, they did not make an explicit distinction124

between parametric and structural uncertainties of rating curves, pooling all125

rating curve errors into a lumped structural error.126

1.3. Objectives127

Therefore, within this work, we further advance uncertainty quantifica-128

tion of rating curves by developing a Bayesian approach to probabilistically129

represent rating curve errors in the estimation of the hydrological model.130

In contrast to previous works, for the first time, we explicitly represent the131

parametric and the structural uncertainties of both the hydrological and the132

rating curve models. To achieve this, we couple the hydrological model with133

the inverse rating curve yielding the rainfall-stage model that can be cali-134

brated in stage space, as previously proposed by Sikorska et al. [26]. Specifi-135

cally, we describe structural errors of the hydrological model as an Ornstein-136

Uhlenbeck process [46] in the form implemented by Sikorska et al. [47], and137

the structural errors of the rating curve as Gaussian errors with a zero mean138

and a standard deviation proportional to the discharge value following the139

BaRatin method [23]. Because of such an explicit consideration of different140

uncertainty components of the rating curve and the hydrological model, the141

coupled total error can be decomposed into its constitutive sources. Hence,142

the approach is suitable for providing both stage and discharge simulations143

along with their associated uncertainties.144

Specifically, we formulate the following objectives for this study:145
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1. Propose a generic framework for quantifying parametric and structural146

uncertainties of rating curves in hydrological models, and derive the147

corresponding inference equations;148

2. Examine the effects of ignoring a specific source of rating curve uncer-149

tainty (parametric or structural) in the inference of model parameters150

and in model simulations;151

3. Discuss pros and contras of using an advanced calibration approach152

(representing both structural and parametric rating curve errors ex-153

plicitly) over a “standard” uncertainty estimation approach (when un-154

certainty is attributed only to parametric and structural errors of the155

hydrological model and uncertainties of rating curve are neglected).156

Our approach is developed and tested on a medium-size study catchment in157

France. This study restricts its attention solely to investigate uncertainties158

in output (discharge) of hydrological models, while uncertainty in input data159

(typically rainfall), although non negligible, is not explicitly acknowledged160

and is implicitly represented in structural errors of the hydrological model.161

We debate possible consequences of this assumption in the discussion part.162

Moreover, we recognize that an explicit and reliable treatment of all error163

sources remains a key challenge for hydrologic modeling: while not the ob-164

jective of this paper, we also discuss this long-term objective in section 5.5.165

2. Uncertainty representation166

2.1. Rating curve167

2.1.1. Rating curve model168

We describe an instantaneous discharge at time t predicted with the rating169

curve (RC), q̆t, as170

q̆t = fRC (ht,θRC) (1)

where fRC (ht,θRC) is the deterministic RC equation, ht is the instantaneous171

stage at time t and θRC = (θRC1
, ..., θRCw

) are parameters of the RC. Because172

parameters of the RC are unknown, they must be calibrated and thus they173

will introduce parametric uncertainty to the RC (see Sect. 3.1 for description174

of model calibration).175

2.1.2. Structural error176

The rating curve equation is a simplified mathematical representation of177

the true stage-discharge relationship prevailing at the gauging station. We178

8
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therefore introduce a structural error Et to describe the difference between179

the RC-predicted discharge q̆t and the (unknown) true discharge qt:180

q̆t = qt + Et (γ) (2)

The structural error Et is assumed to be a realization from a Gaussian distri-181

bution with mean zero and standard deviation varying with the RC-predicted182

discharge as parameterized below:183

Et
indep∼ N

(
0, g(q̆t,γ)

2
)
; g(q̆t,γ) = γ1 + γ2 · q̆t (3)

where γ = (γ1, γ2) are the unknown parameters of the RC structural error184

model. This equation calls for the following comments:185

1. The assumption that the standard deviation of structural errors is an186

affine function of the RC-predicted discharge is made to account for187

heteroscedasticity, which is often observed in practice (see e.g. [22,188

23]). A homoscedastic model can easily be obtained by fixing γ2 = 0.189

Conversely, more complex heteroscedasticity models can in principle190

be derived by replacing the affine function g by another function (e.g.191

an higher-order polynomial), at the cost of introducing more unknown192

parameters;193

2. Since the true discharge qt is unknown, we assume that the standard194

deviation of structural errors is a function of the RC-predicted discharge195

q̆t;196

3. Eq. 3 also makes the strong assumption that structural errors are in-197

dependent in time. This will be further discussed in section 5.2.198

2.1.3. Gauging measurement error199

The RC is typically calibrated using gaugings, i.e., pairs of stage-discharge200

values measured at different stage levels and flow conditions [48, 49, 50].201

The measurement error on stage is assumed to be negligible. Conversely, the202

measurement error on the gauged discharge can be considerable. Hence, we203

represent the gauged discharge observed at time t, q̃t, as the sum of the true204

discharge qt and a measurement error Wt:205

q̃t = qt +Wt (4)

The measurement error Wt is further assumed to be a realization from a206

Gaussian distribution with mean zero and known standard deviation δt:207

Wt
indep∼ N

(
0, δ2t

)
, (5)

9
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This equation calls for the following comments:208

1. We assume that δt is known because the uncertainty of the gauged dis-209

charge can be quantified before RC estimation by analyzing the mea-210

surement process (see e.g. [51, 52, 23]). Note that each gauging has its211

specific uncertainty;212

2. As for structural errors, eq. 5 also makes the assumption that mea-213

surement errors are independent in time. However this assumption is214

probably much more realistic here.215

2.2. Hydrological model216

2.2.1. Rainfall-runoff model217

For simplicity sake, we prefer to substitute the hydrological model with a218

rainfall-runoff model which abbreviates to RR since h notation is restricted219

for stage and thus could be confused with the abbreviation of a hydrological220

model. We represent a RR-predicted discharge at time t, q̂t, as:221

q̂t = fRR (x1:t,θRR) (6)

where fRR (x1:t,θRR) represent the deterministic RR equations, x1:t are in-222

puts time series up to time t and θRR = (θRR1
, ..., θRRz

) are the parameters.223

Note that for simplicity this notation makes initial conditions implicit. Sim-224

ilarly to the parameters of RC, parameters of the RR are unknown and they225

must be estimated from observations. Hence they will introduce parametric226

uncertainty to the RR model (see further Sect. 3.2 describing model calibra-227

tion).228

2.2.2. Structural error229

To account for the imperfect nature of the RR model, a structural error Bt230

is introduced to describe the mismatch between the RR-predicted discharge231

and the (unknown) true discharge qt:232

ψ(q̂t) = ψ(qt) + Bt (φ) (7)

where ψ(·) is a transformation function applied to the true and the RR-233

predicted discharges (typically, a Box-Cox transformation, see appendix sec-234

tion Appendix A). The aim of this transformation is to make the proba-235

bilistic model used to describe Bt (described next) more realistic.236

In order to explicitly describe the autocorrelated nature of structural errors,237

10
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Bt is represented as an Ornstein-Uhlenbeck (OU) process [46] with parame-238

ters φ = (φ1, φ2).239

Bt ∼ OU (φ1 , φ2 ) (8)

The OU process is a continuous-time equivalent of more standard time se-240

ries models such as the autoregressive (AR) error model, which are only241

defined for data sampled at regular discrete times. Such a continuous-time242

model allows dealing with unequally spaced data, which are commonly used243

for routine monitoring of instantaneous water stage or discharge (typically,244

more frequent records during floods than during low flows). We choose the245

correlation structure of Bt in such a way that it becomes similar to the AR(1)246

model [14, 47] with the variance at time ti conditioned on a previous time247

step tj being equal to:248

V ar(Bti|j) = φ2
1 ·

(

1− exp

(

−2 · |ti − tj|
φ2

))

(9)

φ1 can be interpreted as the asymptotic standard deviation (for infinitely-249

spaced time points) and φ2 is a characteristic correlation time.250

2.3. Rainfall-stage model251

The basic idea behind the construction of the rainfall-stage (RS) model is252

to apply the inverse of the RC to the discharge simulated by the RR model253

[26]. The advantage of such a RS model is that its parameters encompass254

both the RR and the RC parameters, which allows explictly accounting for255

RC uncertainty in the calibration of the RR parameters. However, the struc-256

tural errors affecting both the RR and the RC models propagate to the RS257

model and therefore need to be accounted for, as described next.258

2.3.1. Structural error259

Let ht denote the true stage value at time t. From the RC model eqs. 1260

and 2 we get:261

fRC (ht,θRC) = qt + Et(γ) (10)

Inverting the RC therefore yields the following relation:262

ht = f−1
RC (qt + Et(γ),θRC) (11)

11
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Moreover from the RR structural error model eq. 7 we get:263

qt = ψ−1 (ψ(q̂t)− Bt (φ)) (12)

where ψ(·) and ψ−1(·) are the forward and the backward transformation.264

Combining eqs. 11 and 12, the true instantaneous stage at time t can be265

written as:266

ht =

f−1
RC



ψ−1



ψ



fRR (x1:t,θRR)
︸ ︷︷ ︸

RR model



− Bt (φ)
︸ ︷︷ ︸

RR structural error



+ Et (γ)
︸ ︷︷ ︸

RC structural error

,θRC





(13)
We stress that the structural error model described in eq. 13 is a pure con-267

sequence of the individual error models used for the RR and the RC models:268

no new assumption has been made to derive eq. 13.269

2.3.2. Input/output measurement errors270

The RS model needs to be calibrated using observations of its input/output271

variables. The input variables typically comprise precipitation and potential272

evapotranspiration, while the output variable is stage.273

In this paper, we make the strong assumption that measurement errors274

in all input/output variables are negligible. We acknowledge that this as-275

sumption is unrealistic in most studies. For instance, errors in estimating276

areal precipitation may be large when the raingauge density is small (see e.g.277

[53, 12]). Similarly, continuously-measured stage values may be affected by278

non-negligible errors, of both random and systematic nature. Typically, the279

inherent uncertainty of the stage sensor corresponds to a random error, while280

the periodic recalibration of the stage sensor with respect to the staff gauge281

produces an unknown systematic error between two successive recalibrations282

(for more details, see e.g. [32]).283

Making this restrictive assumption allows focusing entirely on the un-284

certainty induced by the rating curve while minimizing possible interactions285

between input and output errors. In practice, unaccounted input/output er-286

rors will be implicitly absorbed by the structural error terms (Bt and Et).287

One should therefore keep in mind that while these terms are intended to288

represent structural errors, they may also encompass the effect of ignored289

input/output errors.290

12



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

3. Calibration291

In this paper, we apply Bayesian estimation to estimate all unknown292

parameters. The posterior distributions are explored by means of an adaptive293

Markov Chain Monte Carlo sampler described in Haario et al. [54]. The294

convergence of the chains is assessed visually by plotting the simulated chains295

and verifying their stationarity.296

The general calibration strategy is made of two successive steps. We297

first estimate the RC using available gauging pairs (these gaugings are not298

used afterwards). In a second stage, we estimate the RS model combining299

the RC and the RR submodels (thus the RC model is re-calibrated). Since300

the RS model comprises parameters related to the RC (namely, θRC and301

γ, see section 2.1), the posterior distribution of these parameters obtained302

after stage 1 becomes their prior distribution in stage 2. Note that this303

informative prior for the RC model, based on an analysis of rating curve data,304

strongly constrains the inference. This allows avoiding non-identifiability and305

equifinality problems in the estimation of all parameters during stage 2.306

3.1. Stage 1: rating curve calibration307

From the assumptions described in section 2.1, the gauged discharge at308

time t can be written as follows (combining equations 2 and 4):309

q̃t = fRC

(

h̃t,θRC

)

− Et(γ) +Wt (14)

Conditional on unknown parameters, the gauged discharge q̃t is therefore a310

realization from a Gaussian distribution with mean q̆t = fRC

(

h̃t,θRC

)

and311

variance (γ1+ γ2 · q̆t)2+ δ2t . The likelihood function can therefore be written:312

p
(

q̃|θRC,γ, h̃
)

=

Ngauging∏

k=1

fG
(
q̃tk ; q̆tk , (γ1 + γ2 · q̆tk)2 + δ2tk

)
(15)

where fG (u;m, v) is the Gaussian pdf with mean m and variance v, evalu-313

ated at u.314

The posterior distribution is then computed up to a constant of proportion-315

ality using Bayes’ theorem:316

p
(

θRC,γ|q̃, h̃
)

∝ p
(

q̃|θRC,γ, h̃
)

· p (θRC,γ) (16)
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The prior distribution for RC parameters θRC is derived from an analysis of317

the hydraulic configuration of the gauging station, as will be described in318

the case study (for more general considerations, see Le Coz et al. [23]). For319

the parameters γ governing the standard deviation of structural errors, wide320

non-informative priors are used.321

3.2. Stage 2: rainfall-stage model calibration322

Let h = (htk)k=1:N denote the observed time series of stage values used323

to calibrate the RS model. Computing the likelihood requires deriving the324

distribution of h conditional on all inferred quantities. Unfortunately, this325

cannot be done directly on the basis of eq. 13. Indeed, this conditional326

distribution is not Gaussian, because the Gaussian error terms Et and Bt327

transit through nonlinear models (the backward transformation ψ−1 and the328

inverse rating curve f−1
RC). Moreover, this non-Gaussian pdf cannot be derived329

analytically. Indeed, eq. 13 involves the sum of two independent random330

variables. The pdf of this sum can be obtained by convolution, but this331

convolution has no analytical solution because one of the random variables332

is not Gaussian.333

In order to circumvent this issue, we partly linearize eq. 13 as described next.334

We introduce the following shorthand notation for this section:335

q̂t(θRR) = fRR (x1:t,θRR)

d
(ψ)
t (θRR) = ψ′ (q̂t)

(17)

Using this notation and linearizing the backward transformation ψ−1, eq. 13336

can be approximated as follows (see Appendix B for details):337

ht ≈ f−1
RC







q̂t(θRR)−

Bt(φ)

d
(ψ)
t (θRR)

+ Et(γ)

︸ ︷︷ ︸

Zt

,θRC








(18)

The term Zt is now the sum of a constant plus two Gaussian terms, and338

is therefore itself Gaussian. More precisely, the vector Z = (Zt1 , ..., ZtN )339

follows a multivariate Gaussian distribution, with mean vector µ (size N)340

and covariance matrix Σ (size N ×N) defined as follows:341

µ(θRR) = (q̂t1(θRR), ..., q̂tN (θRR)) (19)
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Σ(θRR,φ,γ) =D
(ψ)Σ(RR)D(ψ) +Σ(RC) (20)

In the latter equation,D(ψ) denotes the square N×N diagonal matrix whose342

diagonal terms are equal to 1/d
(ψ)
t , while Σ(RR) and Σ(RC) are the N × N343

covariance matrices of RR and RC structural errors:344

D(ψ)(i, i) =
1

d
(ψ)
ti (θRR)

; D(ψ)(i, j) = 0 if i 6= j (21)

345

Σ(RR)(i, j) = φ2
1 · exp

(

−|ti − tj|
φ2

)

(22)

346

Σ(RC)(i, i) = (γ1 + γ2.q̂ti)
2 ; Σ(RC)(i, j) = 0 if i 6= j (23)

Having derived the pdf of Z, the pdf of h ≈ f−1
RC (Z) (eq. 18) can be ob-347

tained by applying the change-of-variables formula. After some computation348

(see Appendix B for details), this yields the following likelihood:349

p (h|θRR,θRC,φ,γ,x) =

fMG (fRC(h,θRC);µ(θRR),Σ(θRR,φ,γ))×
N∏

k=1

|f ′

RC(htk ,θRC)|
(24)

where fMG (u;m,v) is the multivariate Gaussian pdf with mean vector m350

(size N) and covariance matrix v (size N × N), evaluated at vector u (size351

N).352

The posterior distribution is then computed up to a constant of proportion-353

ality using Bayes’ theorem:354

p (θRR,θRC,φ,γ|h,x) ∝ p (h|θRR,θRC,φ,γ,x) · p (θRR,θRC,φ,γ) (25)

The prior distribution for RC-related parameters θRC and γ is set to the355

posterior distribution obtained after calibration of the RC using gaugings356

at stage 1 (eq. 16). For the parameters of the RR model (θRR), priors are357

case-specific and related to the RR model and available information. For the358

parameters φ governing the properties of RR structural errors, wide non-359

informative priors are used.360

Note that the RS model is calibrated against time series with observed361

stages. However, during the evaluation both the output of the RS model,362

stage, and the output of the RR model, discharge, will be examined. This is363

possible thanks to the explicit treatment of RC and RR errors.364
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3.3. Calibration strategies365

The posterior distribution in eq. 25 corresponds to a full calibration strat-366

egy, schematized in Figure 1: the parameters related to both the RR model367

and the RC are estimated together, thus enabling interactions between them368

and hence assessing how RC uncertainties impact the estimation of RR pa-369

rameters. In particular, both parametric (θRC) and structural (E) uncer-370

tainties of the RC are accounted for. In order to understand in more depth371

the impact of these two types of uncertainty, we also implement incomplete372

calibration strategies, where some uncertainty sources are ignored. As shown373

in Table 1, these strategies are the following:374

1. Strategy NoS ignores RC structural uncertainty. This corresponds to375

assuming that E = 0, which is achieved by using Σ(RC) = 0 in eq. 20.376

A similar representation of RC uncertainty has been used by Steinbakk377

[55] in the context of flood frequency analysis, and by Sikorska et al. [26]378

in the context of model calibration.379

2. Strategy NoP ignores RC parametric uncertainty. This is achieved by380

removing θRC from the list of inferred parameters. The RC is therefore381

used with a fixed parameter vector θ̂RC, taken as the maxpost esti-382

mate (i.e. the vector maximizing the stage-1 posterior of eq. 16). This383

strategy is similar to the representation of RC uncertainty used by e.g.384

Thyer at al. [37] or Renard et al. [6].385

3. Strategy NoPNoS ignores both RC parametric and structural uncer-386

tainty, hence using both a fixed parameter vector θ̂RC and setting387

Σ(RC) = 0. In this strategy, there is no explicit representation of RC388

uncertainty, which corresponds to the most widely-used approach in389

hydrological modeling (standard uncertainty estimation approach).390

4. Strategy FULL* is similar to the full strategy, except that the prior for391

RC parameters θRC is truncated. More precisely, we set the prior pdf392

to zero outside of 95% probability intervals for each component of θRC.393

This strategy stongly limits the possible interactions between θRC and394

other inferred parameters. It guarantees that after calibration of the395

RS model, the RC parameters will still be within the 95% credibility396

intervals derived by calibrating the RC to gaugings. Note that bluntly397

truncating the prior as done here makes the resulting distribution un-398

normalized; however this is not problematic in the Bayesian-MCMC399

context of this paper since the posterior only needs to be known up to400

a normalizing constant.401
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5. Similarly, strategy NoS* is a variation of the NoS strategy, with a402

truncated prior for θRC.403

4. Case study: the Ardèche river at Meyras404

4.1. Ardèche catchment405

The river Ardèche is a right tributary of the River Rhône and has it406

sources in the Massif Central in France (Figure 2). The gauging station407

Meyras, located at 318 m a.s.l., controls an area of 98.43 km2. The mean408

elevation of this catchment is 899 m a.s.l., with the highest point located at409

1467 m a.s.l. The catchment is quite steep with an average slope of 23.4 %410

and it is in 68% covered by forests [56]. The average annual precipitation,411

estimated based on fifty years of observations at the station Péreyres (840412

m a.s.l.), is 1774 mm/yr in this region, whereof approximately 40% is lost413

to evaporation. With the yearly mean daily temperature equal to 9.25◦C414

and the snowfall ratio of less than 3% of the annual precipitation, the snow415

processes can be neglected to model this catchment.416

4.2. Rating curve417

As a RC model (eq. 1), we use a piecewise combination of power functions418

of the form q = a(h − b)c. This combination is defined by the succession of419

hydraulic controls governing the stage-discharge relationship, as explained in420

more details by Le Coz [23]. At the Meyras gauging station, three controls421

can be identified (Figure 3). Low flows are first governed by a natural gravel422

riffle (control 1). When the stage gets above a certain level, this riffle is423

drowned and a channel control takes over (control 2). Finally, for very high424

stage values, the main channel may be full and some flow may also occur in425

the floodplain (control 3). This configuration leads to the following rating426

curve equation:427

fRC (ht,θRC) =







a1 (ht − b1)
c1 if κ1 < ht ≤ κ2 (control 1)

a2 (ht − b2)
c2 if κ2 < ht ≤ κ3 (control 2)

a2 (ht − b2)
c2 + a3 (ht − b3)

c3 if κ3 < ht (control 2 + 3)

(26)
where (κ1, κ2, κ3) are the (unknown) activation stages for each control. Note428

that parameters b1, b2 and b3 do not need to be inferred because they can be429

deduced by continuity of the RC as shown in eq. 27 below. Consequently,430
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the parameters of the rating curve are θRC = (κ1, a1, c1, κ2, a2, c2, κ3, a3, c3)431

where the relationships between κ and b are as follows:432

b1 = κ1; b2 = κ2 −
(
a1
a2

· (κ2 − b1)
c1

) 1

c2

; b3 = κ3 (27)

The parameters θRC are related to physical characteristics of the gauging433

section, which opens the possibility to specify informative priors. For in-434

stance, the first control by a natural riffle can be approximated using a rect-435

angular weir formula, as shown in Table 2. This formula indicates that the436

exponent c1 should be close to 1.5. Moreover, the parameter a1 is linked437

to the weir width Bw and to a discharge coefficient Cr. The width can be438

approximated at 1 Bw = (8 ± 2) m, while literature suggests values of the439

coefficient Cr = 0.4± 0.1 (see [48, 23]). These two uncertainties can be com-440

bined by using the uncertainty propagation formula recommended by the441

Guide to the Expression of Uncertainty in Measurement [57]. This yields442

the Gaussian prior distribution for a1 shown in Table 2. Lastly, the eleva-443

tion of the weir crest, which defines the activation stage κ1, is estimated at444

κ1 = (−0.05± 0.05) m.445

A similar approach can be used to specify priors for parameters of controls446

2 and 3, using the Manning-Strickler formula for wide rectangular channels447

(see Table 2). For the main channel, the Strickler coefficient is set to KS =448

(25±2.5) m1/3 · s−1, the channel width to Bw = (15±2.5) m and the slope to449

S = (3± 1) m · km−1. For the floodplain, we use KS = (15± 2.5) m1/3 · s−1,450

Bw = (30 ± 5) m and S = (3 ± 1.25) m · km−1. This completes the prior451

specification shown in Table 2.452

4.3. Rainfall-runoff model (HBV)453

The rainfall-runoff process within the Ardèche catchment is modelled with454

a HBVmodel [58, 59, 60]. The HBV consists of four main routines responsible455

for modelling snow dynamics, soil moisture, runoff response, and flow routing456

in the channel. Because snow processes can be neglected in this catchment,457

we use a simplified version of the HBV model, i.e., with an inactive snow458

component. To further simplify the model, we model the catchment as a459

single subcatchment without any elevation-dependent correction factors for460

inputs. This further reduces the number of inferred parameters to 6 (Table 3).461

1in the notation x± s, s is the standard deviation.
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Such a simplified HBV model requires mean areal precipitation and long462

term evaporation estimates as input, while temperature data responsible for463

modeling the snow component are not strictly required. In this study, the464

HBV model is run at hourly time steps. Since the HBV model was not465

applied before in this catchment, no previous knowledge was available for its466

parameters. Thus, we formulate prior for each HBV parameter as a uniform467

distribution restricted to possible ranges that were defined for each parameter468

independently (Table 3).469

4.4. Calibration data470

4.4.1. stage 1: rating curve calibration471

To infer the RC parameters θRC and γ, we use 41 gaugings made between472

2001 and 2008, for a period with no noticeable shift of the RC. For each473

gauged discharge, we assume a constant relative uncertainty of ±3.5%, i.e.474

for a gauged discharge equal to qt, the standard deviation δt in eq. 5 is set to475

δt = 0.035 · qt. The gaugings and their uncertainty can be seen in Figure 4b.476

4.4.2. stage 2: rainfall-stage model calibration477

The RS model described with the Eq. 13 requires mean areal precipita-478

tion at the hourly time step as input. Yet, the stage observations at the479

gauging station are recorded by the limnigraph with unequal time steps ad-480

equate to the current dynamics of flow processes (i.e., between 1 hour and481

10/15 days). Hence, we chose to use directly these data instead of convert-482

ing them into the hourly estimates, which would yield additional errors due483

to the stage approximation. Note that this involves interpolating the HBV-484

discharge simulations on the temporal (irregular) grid used for stage values.485

Using irregularly spaced data is possible with the correlated error term on486

the hydrological model introduced (Eqs. 8 and 9).487

4.5. Results: rating curve calibration (stage 1)488

Figure 4a shows the prior RC resulting from the hydraulic analysis of489

the gauging station (Table 2). Figure 4b shows the posterior RC and illus-490

trates the uncertainty reduction resulting from the information brought by491

the gaugings. The posterior RC is overall quite precise, especially for stages492

smaller than 1 m. For such relatively small stages, parametric uncertainty493

is only a small part of the total uncertainty, which is hence dominated by494

structural uncertainty. For stage values beyond 1 m, total uncertainty in-495

creases, mostly due to an increase of parametric uncertainty which becomes496
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dominant for such high stages. In particular the parameter κ3 representing497

the activation stage of the third control is not precisely estimated (between498

1 m and 1.5 m, see green band in Figure 4b).499

The posterior distribution of RC parameters θRC and γ obtained after this500

first stage is now being used as a prior distribution for the second stage. Note501

that the posterior on RC is in fact represented with Monte Carlo samples.502

Hence, to specify the prior distribution for the second stage of calibration,503

we fit a multivariate Gaussian distribution to the Monte Carlo samples from504

the first stage. The resulting corresponding marginal distributions can be505

seen as gray boxplots in Figure 5.506

4.6. Results: parameter estimates (stage 2)507

Posteriors for the RS model for all six calibration strategies are plotted508

as boxplots against prior information (obtained from stage 1) in Figure 5.509

For parameters of the RR and RC sub-models and of the structural error510

of the RR model, we observe that parameters tend to form three groups511

in terms of their posterior behaviours. These groups are shaped as follows:512

(1) calibration strategies FULL and NoS, (2) NoP and NoPNoS, and (3)513

FULL* and NoS*, as seen in the figure. It appears that this grouping is514

driven by the way of accounting for RC parametric uncertainty, i.e.: fully515

accounting (group 1), non-accounting (group 2), and accounting but within516

the constrained truncated prior (group 3). The grouping effect is obviously517

not visible for parameters responsible for the RC structural uncertainty (γ)518

as these parameters are excluded from the inference in the strategies NoS,519

NoPNoS and NoS*.520

4.6.1. Hydrological model521

With respect to the HBV parameters (θRR, i.e., PERC:MAXBAS, top522

two rows in Figure 5), which mainly control the response and routing func-523

tion, we specifically observe that posterior parameters vary among three pat-524

tern groups and particularly between FULL and NoPNoS strategy (standard525

uncertainty estimation approach). We observe that using a simplified de-526

scription of errors as in NoPNoS leads to different values of inferred model527

parameters than when explicitly representing all major contributing sources.528

Such modified parameters of the RR model should mostly transfer to altered529

discharge simulations (being an intermediate step within the RS model) and530

might lead to biased estimates. Confronting posterior ranges of different cal-531

ibration strategies indicates that generally parametric uncertainty of the RR532
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model is very similar for most parameters in all strategies. The interpretation533

of individual parameter uncertainty is however difficult due to their interac-534

tions. Therefore, not the uncertainty of individual parameters but rather the535

resulting parametric uncertainty in predicted discharge is our major interest536

(see Sect. 4.8.2).537

Diagnosis of the structural error model of the RR model (φ) show that the538

error standard deviation (φ1) is the smallest for the FULL and the largest for539

NoPNoS strategy (Fig. 5). This seems logical as in the FULL strategy the to-540

tal residual variance is decomposed into two contributing sources originating541

from the RR model (φ) and from the RC model (γ, see further below), while542

in the strategy NoPNoS all variance is explained with φ only. Hence, only543

this error can be increased to capture the mismatch between the observed544

and the simulated stage. Posterior error standard deviations of all other cal-545

ibration strategies lie between these two strategies. This seems reasonable as546

they represent transitional steps between FULL and NoPNoS strategies in547

terms of the level of the variance decomposition from the simplest strategy548

(NoPNoS) towards the most complex strategy (FULL). As it also seems logi-549

cal, excluding RC parameters (θRC) from the inference results in an increased550

error φ1 (NoP and NoPNoS) in comparison to strategies which include θRC551

into the inference (NoS) even if restricted prior is used (FULL* or NoS*).552

The error autocorrelation length (φ2) generally follows the behavior of the553

error standard deviation and is the longest for strategy NoP and NoPNoS,554

and the shortest for NoS* and FULL*.555

4.6.2. Rating curve model556

Posterior RC parameters (θRC) are presented in three bottom rows in557

Figure 5 (parameters k1 till c3). Note that RC parameters in strategies NoP558

and NoPNoS are not altered during the inference and are kept at the values559

of maxpost from the calibration stage 1 from section 4.5. For other four560

strategies, again two groups of parameter behaviors can be observed.561

Specifically, using informative but unbounded prior for RC parameters562

θRC during the inference (FULL and NoS) results in a significant shift of563

posteriors often outside of the 95% prior bounds. This effect appears to be564

a result of a possible compensation for other uncertainty sources, specifically565

for the one originating from the RR model parameters. As it appears, nine566

parameters of the RC in addition to six parameters of the RR model gives567

a higher level of freedom for modifying model simulations to match stage568

observations. It is worth recalling that although RC parameters are related569

21



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

to physical characteristics of the gauging station and informative prior is570

used, prior information on the third control is very imprecise as it is con-571

strained with only very few gaugings (see section 4.5). Indeed, posteriors on572

parameters of the third control are strongly modified during the inference.573

As all RS parameters are inferred at the same time, the possible compensa-574

tion between parameters of the RR and the RC sub-model cannot be avoided575

given unbounded priors on all parameters being inferred. This shifting of the576

RC parameters outside of hydraulically reasonable boundaries is expected to577

have a consequence on the shape of an updated RC (see section 4.7).578

Using a truncated prior on RC parameters indeed prevents from a strong579

modification of RC parameters (FULL* and NoS*). As it is visible in the580

Figure 5, posteriors attempt to move towards the values from unbounded581

strategies but remain within the 95% limits set. This also results in a smaller582

RC parametric uncertainty in strategies FULL* and NoS* than in unbounded583

strategies FULL and NoS.584

Finally, the structural error of the rating curve (γ) varies in different cal-585

ibration strategies. As it is represented with two parameters, the combined586

structural error of the RC cannot be easily quantified from estimated poste-587

riors. We observe, however, an inverse relationship between its behavior and588

the behavior of the RR structural error. This relationships seems also logical589

as both structural and parametric uncertainties of the RC are decomposed590

from the total uncertainty in FULL and FULL* strategies.591

4.7. Results: updated rating curve (stage 2)592

Updated RCs for four strategies accounting for RC parametric uncertainty593

(i.e., FULL, NoS, FULL* and NoS*) are plotted in Figure 6 with uncertainty594

bands (blue polygons) against the prior (red polygons). RCs for strategies595

NoP and NoPNoS are not plotted as their parameters are not altered during596

the calibration. As expected, a strong shift in the RC posterior parameters597

observed for strategies which use non-bounded prior (FULL and NoS) leads598

to a strong modification of the RC shape. This effect is especially visible in599

the range of the third control for which the updated RC distinctly transcends600

the prior ranges (red polygons) by pushing the RC towards assigning smaller601

discharge values for the same stages. As previously mentioned, the prior602

for parameter inference on the third RC control is established with very few603

measures and thus is very uncertain (see Figure 4), which allows for freely604

modifying these parameters. It is clear that setting bounded priors on RC605
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parameters in strategies FULL* and NoS* prevents from destroying the RC606

shape which remains within the 95% prior limits.607

This issue of using the RC parameters to compensate for limitations of608

the RR model has clearly serious implications for using such updated RCs609

and will be further discussed in section 5.1.610

4.8. Results: predictive uncertainty (stage 2)611

4.8.1. Total uncertainty bands612

Total uncertainty bands (TUB) for the FULL strategy are plotted in613

Figure 7 for stages and in Figure 8 for discharges (top panels). For both614

variables TUB appear to be reasonable as they cover most of the data points615

and are smaller for low flow and higher for high flow conditions (assessed616

visually). The smaller uncertainty during low flows is more apparent for617

discharges than for stages.618

Widths of TUB for all other strategies are plotted in Figure 9 for both619

stages (top) and discharges (bottom). The TUB width in the FULL strategy620

is used as a reference. Widths of TUB for all other strategies are represented621

with respect to the FULL TUB width and thus are plotted as curves (a622

value larger than one representing a TUB width larger than that of the623

FULL strategy). The top panel of Figure 9 shows that for stage, the TUB624

widths of all strategies are larger than that of the FULL strategy for almost625

the entire calibration and validation periods. Specifically, during low flow626

periods (e.g. around the vertical red line), TUB widths are larger than that627

of the FULL strategy by a factor of up to 2, while during high flows this628

factor decreases to about 1.25. Similar patterns are observed with respect to629

discharges apart for the strategy NoS*, for which TUB width is similar to630

the FULL strategy on average.631

Although the effect of obtaining the smallest TUB width for the FULL632

strategy is visible for both stage and discharge, it has greater implications for633

modeling discharge. Much smaller TUB for FULL strategy clearly demon-634

strates a benefit compared to the strategy NoPNoS (standard uncertainty635

estimation approach). This finding indicates that accounting for both (struc-636

tural and parametric) RC uncertainties allows for removing these uncertainty637

parts from the total discharge uncertainty and this results in narrower TUB638

in comparison to strategies which do not present such ability (NoPNoS, NoP,639

NoS). Using bounded prior on RC parameters results in wider TUB in com-640

parison to their respective unbounded strategies, which confirms that the641
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structural error of the RR model is used for compensation of other unrepre-642

sented uncertainty components.643

4.8.2. Uncertainty contributors644

An explicit representation of different uncertainty components within the645

TUB (i.e. of rating curve and of hydrological model) allows for their relative646

assessment. Depending on the strategy, these are parametric and structural647

uncertainty of the RR model and/or the RC model. Clearly, the most inter-648

esting is the FULL strategy which makes it possible to assess all four uncer-649

tainty components in predictions of stages and two components in prediction650

of discharges. Note that by an explicit representation of the parametric and651

structural uncertainties of RC in the FULL strategy, these uncertainty com-652

ponents can be decomposed from the TUB and thus are not propagated on653

the discharge (since the aim is to predict the “true” discharge and not the654

RC-estimated one). On the contrary, not accounting for structural or para-655

metric uncertainty of the RC does not allow for removing these uncertainty656

parts from the total uncertainty and thus they will be implicitly propagated657

on the discharge simulations. Uncertainty contributions for the FULL strat-658

egy are presented visually in Figure 7 for stages and in Figure 8 for discharges659

(bottom panels).660

With respect to stages, it can be seen that the structural error of the661

RR model (φ) represents the majority of the total uncertainty while the662

next major contributor is the structural error of the RC model. Parametric663

uncertainty of the RR model and of the RC model are both less relevant.664

These contributions vary slightly over time and the contribution of the RC665

structural error is slightly higher during recession periods, whereas the con-666

tribution of the RC parametric error increases during high flows. The contri-667

bution of the parametric uncertainty of the RR model is higher during high668

flows and successive recession periods, while it is smaller during low flows.669

In a similar fashion, the structural error of the RR model accounts for the670

majority of the total uncertainty of discharge prediction.671

The visual assessment of uncertainty contributions is accompanied by672

the time-averaged relative contributions of each uncertainty source for all six673

strategies and these are presented in Table 4. Generally, we observe quite674

stable uncertainty contributions of different error sources in all six calibration675

schemes. For all calibration strategies, the structural error of the RR model676

explains the majority of the total uncertainty which is ranging from 81% in677

the FULL strategy to 94% in NoPNoS for stages, and from 92% in FULL to678
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94% for NoP, NoPNoS, FULL* and NoS* for discharges. Both the parametric679

uncertainties of the RR and of the RC model vary only insignificantly and680

are much less relevant than other two uncertainty components. Hence, the681

change in contribution shares is thus mainly due to structural uncertainties682

of both the RC but mostly the RR model. The latter component is thus used683

to compensate for all unrepresented uncertainty source(s).684

5. Discussion685

5.1. Feasibility of accounting for rating curve uncertainty through a rainfall-686

stage model687

The approach proposed in this paper to explicitly account for RC un-688

certainty in the calibration of a RR model is to include both RC and RR689

parameters within a rainfall-stage (RS) model. However, the results of the690

case study show that the initial RC (established using gaugings) is strongly691

modified after calibration of the RS model (strategies FULL and NoS), unless692

a restrictive truncated prior is used for RC parameters (strategies FULL* and693

NoS*). We consider that the extent to which the RC is modified is hardly694

defensible; we therefore do not consider this modification as a meaningful695

improvement of the RC, but rather as a sign that the results produced by696

strategies FULL and NoS should be taken with caution.697

It is of interest to further discuss this issue in terms of the information698

content used in the two successive calibration stages. The initial RC is estab-699

lished using the information brought by 41 independent gaugings, along with700

the prior information derived from the hydraulic analysis (the latter being701

informative but still quite imprecise). The posterior distribution of calibra-702

tion stage 1 reflects this quantity of information. During calibration stage 2,703

this posterior is used as a prior, but the RC can be further modified by the704

information brought by more than 1000 stage values used for calibration of705

the RS model. At first sight, the information imbalance between 41 gaugings706

vs. 1000 stage values may explain why the RC is strongly modified by the707

calibration of the RS model (well beyond the prior constraint induced by the708

gaugings). However, one should keep in mind the following points:709

1. Since the RR structural error uses an autocorrelation component, the710

information content of these 1000 stage values does not correspond to711

that of 1000 independent data;712
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2. The information contained in the 41 gaugings is only used to estimate713

the RC, while the information contained in the 1000 stage values is714

used to infer both the RC and the RR model.715

These clarifications notwithstanding, the strong modification of the RC is a716

sign that the error models we used do not convincingly weight the information717

brought by the gaugings and the stage time series. We see at least two718

avenues to improve this:719

1. Improve the error models, as discussed in the next section 5.2;720

2. Do not re-estimate the RC during calibration stage 2. This can be721

achieved by means of a propagation approach, as discussed in section722

5.3723

5.2. Limitation of the error models724

The RC structural error model in Eq. 3 assumes independent errors, which725

is questionable at least for time steps close to each other. In principle, it is726

feasible to avoid this independence assumption e.g. by using an autocorrela-727

tion component. However, identifying an autocorrelation structure based on728

gaugings is difficult in practice, if not impossible, because gaugings are made729

too sporadically. Typically two successive gaugings are separated by weeks730

or months, which makes shorter autocorrelation structures non-identifiable.731

While implementing dedicated high-frequency gauging strategies might be732

feasible, we do not see any obvious solution with existing operational gaug-733

ing datasets.734

Unlike RC structural errors, RR structural errors are not assumed inde-735

pendent and instead an explicit autocorrelation component is used (Eq. 8).736

This autocorrelation structure is identifiable because the stage time series is737

sampled at a high frequency. However, due to the particular dynamics of the738

RR model, even this autocorrelation structure is too simplistic. In partic-739

ular, autocorrelation properties are likely very different during dry periods740

and rainy periods, when quick-flow components are activated. As input er-741

ror is implicitly encompassed into the model bias, these different properties742

cannot be distinguished with the RR error model used here and the inferred743

bias is “averaged” over dry and wet conditions. More flexibility should hence744

be added to the autocorrelation component to allow distinguishing these dis-745

tinct properties, for instance by making a bias dry/wet period dependent or746

input-related (for further discussion on input error see Sect. 5.5).747
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Moreover, a common limitation of both RC and RR structural error mod-748

els is the lack of a systematic component. A structural error is indeed defined749

as the difference between the model prediction (forced with perfect inputs)750

and the unknown truth. For a given set of inputs, this error is likely to751

have a non-zero mean, because it is (at least partly) due to model struc-752

tural deficits that will systematically manifest themselves when the model is753

forced with similar inputs. Such a non-zero mean can also be interpreted as754

a “conditional bias” (conditional to the inputs and initial conditions). The755

fact that the structural error models we used ignore this conditional bias (as756

do the error models we are aware of in the literature) probably explains the757

undesired modification of the RC discussed in section 5.1: the calibration can758

only use parameters θRR and θRC (whose modification induces a systematic759

difference in model prediction) to minimize this conditional bias. Deriving760

an error model that explicitly describes the conditional bias is an important761

perspective in our opinion, but also a challenging one: its formulation and762

identifiability from the data in the absence of prior knowledge are open ques-763

tions. Finally, we note that this discussion has some links with the problem764

of describing epistemic errors with statistical models, which motivated the765

development of “informal” likelihoods for hydrological [61] and rating curve766

[39] models.767

5.3. An alternative: propagating RC uncertainty768

An alternative to the approach used in this paper is to propagate RC769

uncertainty by performing many calibrations of the RS model, with each770

calibration using a distinct RC. As an illustration, consider the box-plots771

shown in Figure 10. They have been obtained by performing 5 calibrations772

using the strategy NoP, where parameters θRC are fixed to 5 distinct values773

randomly chosen in the MCMC simulations of calibration stage 1. For the774

sake of simplicity, we demonstrate this approach on the basis of only one RR775

and RC parameter (θRR and θRC respectively). One given box-plot represents776

the uncertainty in RR parameter θRR, conditional on one particular RC.777

Merging all 5 box-plots together allows “’unconditioning”, i.e. representing778

the total uncertainty in RR parameter θRR, given all plausible RCs. In a779

similar fashion, “unconditional” estimates are derived for all RR parameters780

θRR. This propagation approach has been used for instance by Steinbakk [55]781

or Petersen-Øverleir [34] in a flood frequency analysis context.782

Formally, the propagation approach leads to the following pdf represent-783

ing uncertainty in RR parameters θRR:784
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ppropa (θRR|h) =
∫

p (θRR|h,θRC) p (θRC) dθRC (28)

By contrast, the approach used in this paper represents uncertainty in RR785

parameters θRR using its marginal posterior distribution, defined as follows:786

p (θRR|h) =
∫

p (θRR,θRC|h) dθRC

=

∫

p (θRR|h,θRC) p (θRC|h) dθRC (29)

The difference between the two approaches appears clearly in these equations:787

the latter uses the information contained in the stage calibration data to788

update the inference of RC parameters (term p (θRC|h) in Eq. 29), while the789

former ignores this information and only uses the prior RC estimates (term790

p (θRC) in Eq. 28), i.e. the RC inferred with gaugings only.791

Future work should investigate the pros and cons of each approach. The792

propagation approach is akin to repeating the NoP approach many times,793

except that the RC parameters are not fixed at their maxpost estimate, but794

are rather sampled from the prior distribution derived from the analysis of795

rating curve data. The advantage compared to NoP is that RC parametric796

uncertainty is not ignored. However, an obvious drawback of the propagation797

approach is its computational cost, since a potentially costly calibration has798

to be repeated many times.799

5.4. Limitation of the proposed approach in terms of time steps800

The approach proposed in this paper uses the inverse of the RC to de-801

rive a RS model. This only makes sense if the RC is invertible, or in other802

words, if the stage-discharge relationship can be represented by a bijective803

function. This may not be the case under some particular circumstances804

(e.g. hydraulic hysteresis or variable backwater effects). But even more gen-805

erally, the stage-discharge relationship can only be represented by a bijective806

function at a nearly-instantaneous time step. Consider for instance a given807

daily-averaged discharge value: for this particular day, an infinity of stage808

time series could lead to the same daily discharge. Consequently, it is not809

possible to relate this daily discharge to a single daily stage indicator (e.g.810

daily mean/median/etc.).811
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Consequently, the approach proposed here is restricted to time steps for812

which the within-step variability of stage can be neglected. Whether and how813

the approach can be extended for larger time steps remains unclear yet. A814

possible strategy would be to define a RC between e.g. daily-averaged stage815

and discharge, equipped with a stochastic component in order to account816

for the non-uniqueness of the daily discharge associated with a given daily817

stage. The variability of this stochastic component would directly depend of818

the within-step variability of stage.819

5.5. Towards a complete decomposition of input/output/structural errors820

Deriving a complete uncertainty framework that allows explicitly repre-821

senting all uncertainty sources remains a major challenge of hydrologic mod-822

eling. Several methodological frameworks have been proposed for this pur-823

pose, e.g., SODA [62], BATEA [63], Kalman and particle filters (e.g. [64, 65])824

and many more. These methodological frameworks need to be equipped with825

specific error models to describe the various sources of uncertainty (input,826

output and structural errors), and realistic error models are a prerequisite827

for a meaningful uncertainty analysis. Moreover, specifying precise and ac-828

curate prior distributions to characterize input and output errors is another829

prerequisite to limit the interactions between the various error sources (e.g.,830

[6, 15]). Consequently, studies focusing on a specific uncertainty component831

are valuable to derive realistic error models and investigate their properties.832

For instance, previous research was devoted to investigate properties of in-833

put errors (e.g., [13, 15]) and their impact on model calibration. Following834

the same line of thought, we focus in this paper on rating curve output835

errors, and their impact on model calibration. The specific error models836

we propose could later be included into a more general framework such as837

SODA, BATEA or a Kalman/particle filter. Finally, we stress that there is no838

unique solution to uncertainty estimation in hydrologic modelling. Instead,839

varied and flexible error models are necessary to adapt to the objective of840

the study, the available information, etc. As an illustration, we note that the841

output error model we propose in this paper requires a significant amount842

of information (hydraulic analysis of the gauging station, gaugings and their843

uncertainty). While this allows making valuable use of local information, it is844

primarily adapted to the detailed analysis of a small number of catchments.845

This information may not be available for larger-scale analyses that may in-846

volve hundreds or thousands of catchments. In this case, an alternative error847
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model would need to be considered (see, e.g., the nonparametric discharge848

uncertainty estimate of Vrugt et al. [62]).849

6. Conclusions850

In this work, we develop a Bayesian approach to probabilistically repre-851

sent parametric and structural uncertainties of the rating curve in the esti-852

mation of the hydrological model. To achieve this, we couple the hydrological853

model with the inverse rating curve yielding the rainfall-stage model that is854

calibrated in the stage and not in the discharge space. Such a model de-855

scription enables us for explicitly representing and quantifying uncertainties856

associated with both the hydrological and the rating curve model in the total857

uncertainty of stage and discharge predictions. For a case study in France,858

we consider six different calibration strategies with a different representation859

level of rating curve uncertainties (parametric and/or structural). Our re-860

sults show that a) ignoring rating curve uncertainty leads to visible changes861

in hydrological model parameters, and b) structural uncertainty of the hy-862

drological model dominates other uncertainty sources. The major limitation863

of the current method arises from a strong modification of the rating curve864

shape if rating curve parameters are re-estimated during the calibration of865

the rainfall-stage model and unbounded prior is used. We see this problem866

to be related to the shortcomings of the error models used to describe cor-867

related errors of the hydrological model and structural errors of the rating868

curve. Thus, the next step should be to test the method with a more ad-869

vanced description of errors and/or to explore the proposed alternative of870

propagating rating curve parametric uncertainty in more detail.871

Acknowledgments872

The support of the Ambassade de France en Suisse in the enforcement873

of this research is thankfully acknowledged. The authors thank the editor874

Harrie-Jan Hendricks-Franssen and three anonymous reviewers for their use-875

ful comments, which helped improving the manuscript.876

References877

[1] A. Montanari, What do we mean by uncertainty? the need for a consis-878

tent wording about uncertainty assessment in hydrology, Hydrol. Pro-879

cess. 21 (6) (2007) 841–845. doi:10.1002/hyp.6623.880

30



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[2] M.-H. Ramos, T. Mathevet, J. Thielen, F. Pappenberger, Communicat-881

ing uncertainty in hydro-meteorological forecasts: mission impossible?,882

Meteor. Appl. 17 (2) (2010) 223–235. doi:10.1002/met.202.883

[3] A. E. Sikorska, A. Scheidegger, K. Banasik, J. Rieckermann, Bayesian884

uncertainty assessment of flood predictions in ungauged urban basins for885

conceptual rainfall-runoff models, Hydrol. Earth Syst. Sci. 16 (4) (2012)886

1221–1236. doi:10.5194/hess-16-1221-2012.887

[4] N. K. Ajami, Q. Duan, S. Sorooshian, An integrated hydrologic bayesian888

multimodel combination framework: Confronting input, parameter, and889

model structural uncertainty in hydrologic prediction, Water Resour.890

Res. 43 (1) (2007) W01403. doi:10.1029/2005WR004745.891

[5] G. Kuczera, B. Renard, M. Thyer, D. Kavetski, There are no hydrologi-892

cal monsters, just models and observations with large uncertainties!, Hy-893

drol. Sci. J. 55 (6) (2010) 980–991. doi:10.1080/02626667.2010.504677.894

[6] B. Renard, D. Kavetski, G. Kuczera, M. Thyer, S. W. Franks, Under-895

standing predictive uncertainty in hydrologic modeling: The challenge896

of identifying input and structural errors, Water Resour. Res. 46 (5)897

(2010) W05521. doi:10.1029/2009WR008328.898

[7] H. McMillan, T. Krueger, J. Freer, Benchmarking observational uncer-899

tainties for hydrology: rainfall, river discharge and water quality, Hydrol.900

Process. 26 (2012) 4078–4111. doi:10.1002/hyp.9384.901

[8] A. E. Sikorska, J. Seibert, Value of different precipitation data for flood902

prediction in an alpine catchment: A bayesian approach, J. Hydrol. - (-)903

(2016) in press. doi:10.1016/j.jhydrol.2016.06.031.904

[9] A. Montanari, D. Koutsoyiannis, A blueprint for process-based modeling905

of uncertain hydrological systems, Water Resour. Res. 48 (9) (2012)906

W09555. doi:10.1029/2011WR011412.907

[10] D. Kavetski, G. Kuczera, S. W. Franks, Bayesian analysis of input un-908

certainty in hydrological modeling: 2. application, Water Resour. Res.909

42 (3) (2006) W03408. doi:10.1029/2005WR004376.910

31



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[11] J. Vrugt, C. ter Braak, M. Clark, J. Hyman, B. Robinson, Treatment911

of input uncertainty in hydrologic modeling: Doing hydrology back-912

ward with Markov chain Monte Carlo simulation, Water Resour. Res.913

44 (2008) W00B09. doi:http://dx.doi.org/10.1029/2007WR006720.914

[12] B. Renard, D. Kavetski, E. Leblois, M. Thyer, G. Kuczera, S. W.915

Franks, Toward a reliable decomposition of predictive uncertainty916

in hydrological modeling: Characterizing rainfall errors using condi-917

tional simulation, Water Resour. Res. 47 (11) (2011) n/a–n/a, w11516.918

doi:10.1029/2011WR010643.919

[13] H. McMillan, B. Jackson, M. Clark, D. Kavetski, R. Woods,920

Rainfall uncertainty in hydrological modelling: An evaluation of921

multiplicative error models, J. Hydrol. 400 (1-2) (2011) 83–94.922

doi:10.1016/j.jhydrol.2011.01.026.923

[14] P. Reichert, N. Schuwirth, Linking statistical bias description to multi-924

objective model calibration, Water Resour. Res. 48 (9) (2012) W09543.925

doi:10.1029/2011WR011391.926

[15] D. Del Giudice, C. Albert, J. Rieckermann, P. Reichert, Describing the927

catchment-averaged precipitation as a stochastic process improves pa-928

rameter and input estimation, Water Resour. Res. 52 (4) (2016) 3162 –929

3186. doi:10.1002/2015WR017871.930

[16] G. Di Baldassarre, A. Montanari, Uncertainty in river discharge obser-931

vations: A quantitative analysis, Hydrol. Earth Syst. Sci. 13 (6) (2009)932

913–921.933

[17] G. Di Baldassarre, P. Claps, A hydraulic study on the applicabil-934

ity of flood rating curves, Hydrology Research 42 (1) (2011) 10–19.935

doi:10.2166/nh.2010.098.936

[18] WMO, Guide to hydrological practice, volume i, hydrology – from mea-937

surement to hydrological information, 6th edn, World Meteorological938

Organisation, Geneva, Switzerland, 2008, p. pp. 296.939

[19] J. Le Coz, A literature review of methods for estimating the uncertainty940

associated with stage-discharge relations (2012).941

32



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[20] R. Clarke, Uncertainty in the estimation of mean annual flood due942

to rating-curve indefinition, J. Hydrol. 222 (1-4) (1999) 185–190.943

doi:10.1016/S0022-1694(99)00097-9.944

[21] T. Morlot, C. Perret, A.-C. Favre, J. Jalbert, Dynamic rating curve as-945

sessment for hydrometric stations and computation of the associated un-946

certainties: Quality and station management indicators, J. Hydrol. 517947

(2014) 173–186. doi:http://dx.doi.org/10.1016/j.jhydrol.2014.05.007.948

[22] A. Petersen-Øverleir, A. Soot, T. Reitan, Bayesian rating curve inference949

as a streamflow data quality assessment tool, Water Resour. Manag.950

23 (9) (2009) 1835–1842. doi:10.1007/s11269-008-9354-5.951

[23] J. Le Coz, B. Renard, L. Bonnifait, B. F., R. Le Boursicaud, Combining952

hydraulic knowledge and uncertain gaugings in the estimation of hydro-953

metric rating curves: A bayesian approach, J. Hydrol. 509 (2014) 573 –954

587. doi:http://dx.doi.org/10.1016/j.jhydrol.2013.11.016.955

[24] H. McMillan, J. Freer, F. Pappenberger, T. Krueger, M. Clark, Im-956

pacts of uncertain river flow data on rainfall-runoff model calibration957

and discharge predictions, Hydrol. Process. 24 (10) (2010) 1270–1284.958

doi:10.1002/hyp.7587.959

[25] Q. Shao, J. Lerat, G. Podger, D. Dutta, Uncertainty estimation with960

bias-correction for flow series based on rating curve, J. Hydrol. 510961

(2014) 137 – 152. doi:http://dx.doi.org/10.1016/j.jhydrol.2013.12.025.962

[26] A. E. Sikorska, A. Scheidegger, K. Banasik, J. Rieckermann, Considering963

rating curve uncertainty in water level predictions, Hydrol. Earth Syst.964

Sci. 17 (11) (2013) 4415–4427. doi:10.5194/hess-17-4415-2013.965

[27] V. B. Sauer, R. W. Meyer, Determination of error in individual discharge966

measurements (1992).967

[28] A. Domeneghetti, A. Castellarin, A. Brath, Assessing rating-curve un-968

certainty and its effects on hydraulic model calibration, Hydrol. Earth969

Syst. Sci. 16 (4) (2012) 1191–1202. doi:10.5194/hess-16-1191-2012.970

[29] G. Coxon, J. Freer, I. K. Westerberg, T. Wagener, R. Woods, P. J.971

Smith, A novel framework for discharge uncertainty quantification ap-972

plied to 500 UK gauging stations, Water Resour. Res. (2015) 5531 –973

5546doi:10.1002/2014WR016532.974

33



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[30] G. Di Baldassarre, F. Laio, A. Montanari, Effect of observation errors975

on the uncertainty of design floods, Phys. Chem. Earth, Parts A/B/C976

42–44 (2012) 85 – 90.977

[31] J. Guerrero, I. K. Westerberg, S. Halldin, C.-Y. Xu, L.-C. Lundin, Tem-978

poral variability in stage–discharge relationships, J. Hydrol. 446–447979

(2012) 90 – 102. doi:http://dx.doi.org/10.1016/j.jhydrol.2012.04.031.980

[32] I. Horner, J. Le Coz, B. Renard, F. Branger, G. Pierrefeu, et al., Ac-981

counting for stage measurement errors in the uncertainty analysis of982

streamow records, J. Hydrol (2016) in prep.983

[33] G. Kuczera, Correlated rating curve error in flood frequency inference,984

Water Resour. Res. 32 (7) (1996) 2119–2127. doi:10.1029/96WR00804.985

[34] A. Petersen-Øverleir, T. Reitan, Accounting for rating curve imprecision986

in flood frequency analysis using likelihood-based methods, J. Hydrol.987

366 (1-4) (2009) 89–100, cited By 20. doi:10.1016/j.jhydrol.2008.12.014.988

[35] M. Lang, K. Pobanz, B. Renard, E. Renouf, E. Sauquet, Extrap-989

olation of rating curves by hydraulic modelling, with application990

to flood frequency analysis, Hydrol. Sci. J. 55 (6) (2010) 883–898.991

doi:10.1080/02626667.2010.504186.992

[36] I. K. Westerberg, T. Wagener, G. Coxon, H. K. McMillan, A. Castel-993

larin, A. Montanari, J. Freer, Uncertainty in hydrological signatures for994

gauged and ungauged catchments, Water Resour. Res. 52 (3).995

[37] M. Thyer, B. Renard, D. Kavetski, G. Kuczera, S. W. Franks, S. Srikan-996

than, Critical evaluation of parameter consistency and predictive un-997

certainty in hydrological modeling: A case study using bayesian998

total error analysis, Water Resour. Res. 45 (12) (2009) W00B14.999

doi:10.1029/2008WR006825.1000

[38] I. Westerberg, J.-L. Guerrero, J. Seibert, K. Beven, S. Halldin, Stage-1001

discharge uncertainty derived with a non-stationary rating curve in1002

the choluteca river, honduras, Hydrol. Process. 25 (4) (2011) 603–613.1003

doi:10.1002/hyp.7848.1004

34



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[39] H. K. McMillan, I. K. Westerberg, Rating curve estimation un-1005

der epistemic uncertainty, Hydrol. Process. 29 (7) (2015) 1873–1882.1006

doi:10.1002/hyp.10419.1007

[40] G. Schoups, J. A. Vrugt, A formal likelihood function for parameter and1008

predictive inference of hydrologic models with correlated, heteroscedas-1009

tic, and non-Gaussian errors, Water Resour. Res. 46 (2010) W10531.1010

doi:10.1029/2009WR008933.1011

[41] K. Beven, A. Binley, The future of distributed models: Model cali-1012

bration and uncertainty prediction, Hydrol. Process. 6 (1992) 279–298.1013

doi:10.1002/hyp.3360060305.1014

[42] Y. Liu, J. Freer, K. Beven, P. Matgen, Towards a limits of ac-1015

ceptability approach to the calibration of hydrological models: Ex-1016

tending observation error, J. Hydrol. 367 (1–2) (2009) 93 – 103.1017

doi:http://dx.doi.org/10.1016/j.jhydrol.2009.01.016.1018

[43] D. Kavetski, G. Kuczera, S. W. Franks, Bayesian analysis of input un-1019

certainty in hydrological modeling: 1. Theory, Water Resour. Res. 42 (3)1020

(2006) W03407. doi:10.1029/2005WR004368.1021

[44] H. Sellami, I. La Jeunesse, S. Benabdallah, M. Vanclooster, Parameter1022

and rating curve uncertainty propagation analysis of the swat model1023

for two small mediterranean catchments, Hydrol. Sci. J. 58 (8) (2013)1024

1635–1657. doi:10.1080/02626667.2013.837222.1025

[45] M. Thyer, B. Renard, D. Kavetski, G. Kuczera, Can hydrological model1026

predictions be improved by developing streamflow measurement error1027

models using rating curve data?, STAHY workshop - Advances in Sta-1028

tistical Hydrology, 2010.1029

[46] G. E. Uhlenbeck, L. S. Ornstein, On the theory of the Brownian Motion,1030

Phys. Rev. 36 (1930) 823.1031

[47] A. E. Sikorska, D. Del Giudice, K. Banasik, J. Rieckermann,1032

The value of streamflow data in improving TSS predictions –1033

Bayesian multi-objective calibration, J. Hydrol. 530 (-) (2015) 241–254.1034

doi:10.1016/j.jhydrol.2015.09.051.1035

35



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[48] R. W. Herschy, Hydrometry: principles and practice, John Wiley & Sons1036

Ltd, 1998.1037

[49] ISO, Hydrometry – measurement of liquid flow in open channels using1038

current-meters or floats (2007).1039

[50] J. Le Coz, B. Camenen, X. Peyrard, G. Dramais, Uncertainty in open-1040

channel discharges measured with the velocity–area method, Flow Meas.1041

Instrum. 26 (0) (2012) 18–29.1042

[51] P. M. Pelletier, Uncertainties in the single determination of river dis-1043

charge: a literature review, Can. J. Civil Eng. 15 (5) (1988) 834–850.1044

[52] T. A. Cohn, J. E. Kiang, R. R. M. Jr., Estimating discharge measure-1045

ment uncertainty using the interpolated variance estimator, J. Hydrol.1046

Eng. 139 (5) (2013) 502–510.1047

[53] R. Linsley, M. Kohler, Hydrology for Engineers, McGraw Hill, London,1048

1988.1049

[54] H. Haario, E. Saksman, J. Tamminen, An adaptive metropolis algo-1050

rithm, Bernoulli 7 (2001) 223–242.1051

[55] G. H. Steinbakk, T. L. Thorarinsdottir, T. Reitan, L. Schlichting,1052

S. Hølleland, K. Engeland, Propagation of rating curve uncertainty1053

in design flood estimation., Water Resour. Res. (2016) in press-1054

doi:10.1002/2015WR018516.1055

[56] M. Adamovic, I. Braud, F. Branger, J. W. Kirchner, Assessing the sim-1056

ple dynamical systems approach in a mediterranean context: application1057
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Table 1: Calibration strategies.

Strategy θRC Et π (θRC)

infer fix active zero full truncated
FULL X X X

NoS X X X

NoP X X N/A
NoPNoS X X N/A
FULL* X X X

NoS* X X X

Table 2: Prior distributions for rating curve parameters. The Manning–Strickler equation
is a simplified version valid for wide rectangular channels.

Control Idealized formula π(κ) π(a) π(c)

Control 1
natural riffle

Rectangular weir

q = CrBw

√

2g
︸ ︷︷ ︸

a

(h− h0
︸︷︷︸

b

)
1.5
︸︷︷︸

c
N(−0.05, 0.052) N(14, 52) N(1.5, 0.0252)

Control 2
main channel

Manning–Strickler equation

q = KSBw

√
S

︸ ︷︷ ︸

a

(h− h0
︸︷︷︸

b

)

5/3
︸︷︷︸

c
N(0.1, 0.052) N(20, 52) N(1.67, 0.0252)

Control 3
floodplain

Manning–Strickler equation N(1.2, 22) N(25, 7.52) N(1.67, 0.0252)

Table 3: HBV parameters being inferred during calibration and their prior.

Parameter Significance [unit] Prior min Prior max
PERC Percolation threshold parameter [mm h−1] 0 2
UZL Groundwater runoff threshold parameter [mm] 0 100
K0 Recession coefficient of the 1st storage [h−1] 0 0.4
K1 Recession coefficient of the 2nd storage [h−1] 0 0.2
K2 Recession coefficient of the 3rd storage [h−1] 0 0.1

MAXBAS Length of the triangular weighing function [h] 1 10
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Table 4: Time-averaged relative contribution (in %) of each source of uncertainty.

Prediction of stage discharge

Calibration strategy θRR Bt θRC Et θRR Bt

FULL 6 81 5 8 8 92
NoS 7 89 4 0 7 93
NoP 6 88 0 6 6 94

NoPNoS 6 94 0 0 6 94
FULL* 5 87 2 6 6 94
NoS* 6 92 2 0 6 94
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Figure 1: Schematic of the full calibration strategy.

40



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

!.

!. !.!.!.
!.

!.

!. !.

!.

!.

!.

##

#

#

#

#

#

#

#

#

#

#

0 10 20 305
km

R
h
o
n
e
R
iv
e
r

T
h
in
e
s

B
o
rn
e

Baume

Al
tie
r

A
rd
ech
e
R
iver

Ch
as
se
za
c

FRANCE

Elevation [m]

42-249

250-499

500-749

750-999

1000-1249

1250-1681

# Gauging station

Rainfall station

!. Dam

±

#

0 5 10 202.5
km
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station. Modified from Adamivic et al. [56].
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Figure 4: Prior (a) and posterior (b) rating curves in the 1st stage of calibration.
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Figure 5: Calibration of the rainfall-stage model (stage 2): boxplots of prior (gray) and
posterior (colored) distributions obtained with the six calibration strategies for the RR
model (top panel) and RC model (bottom panel). Both error models (of RR and RC) are
marked in the dashed boxes.
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Figure 6: Comparison of rating curves before (red) and after (blue) calibration of the
rainfall-stage model (stage 2) for the four calibration strategies accounting for RC para-
metric uncertainty.
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Figure 7: Stage prediction using the FULL calibration strategy. Top panel shows predicted
vs. observed stage along with 95% intervals representing the total uncertainty. Bottom
panel shows the relative contribution of each source of uncertainty. The calibration period
is before the vertical line. Note the irregular time step of observed stages as demonstrated
on the x-axis.
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Figure 8: Discharge prediction using the FULL calibration strategy. Top panel shows
predicted vs. observed discharge along with 95% intervals representing the total uncer-
tainty. Bottom panel shows the relative contribution of each source of uncertainty. The
calibration period is before the vertical line. Note that the irregular time step of discharges
results from the irregular time step of observed stages.
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vertical line. Note the irregular time steps of both stages and discharges.
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Figure 10: Schematic overview of the RC parametric uncertainty propagation approach.
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Appendix A. Box-Cox transformation ψ(·)1089

The Box-Cox transformation [66] with parameters λ1 and λ2 can be writ-1090

ten as follows:1091

ψ (y) =

{
(y+λ2)

λ1−1
λ1

if λ1 6= 0

ln (y + λ2) if λ1 = 0
(A.1)

Parameter λ2 ≥ 0 aims at ensuring that the term y + λ2 remains positive.1092

Note that for (λ1 = 1, λ2 = 1), the Box-Cox transformation is the identity,1093

while for (λ1 = 0, λ2 = 0) it simplifies to a logarithmic transformation.1094

Typically parameter λ1 is taken between 0 and 1.1095

The inverse of the Box-Cox transform and its derivative can be written as1096

follows:1097

ψ−1 (ẏ) =

{

(λ1 · ẏ + 1)1/λ1 − λ2 if λ1 6= 0

exp (ẏ)− λ2 if λ1 = 0
(A.2)

ψ′ (y) = (y + λ2)
λ1−1 (A.3)

Appendix B. Likelihood computation for the RS model1098

The task is to derive the joint pdf of (ht1 , ..., htN ), where ht is given by1099

eq. 13 (recalled below in a simplified form):1100

ht = f−1
RC

(
ψ−1 [ψ (q̂t)− Bt] + Et

)
(B.1)

The first step is to use a first-order approximation of the backward transform1101

ψ−1 based on a first-order Taylor expansion, whose general form can be1102

written as:1103

f(x+ e) ≈ f(x) + f ′(x)× e (B.2)

Applied to the function ψ−1 in eq. B.1, this yields:1104

ψ−1 [ψ (q̂t)− Bt] ≈ ψ−1 [ψ (q̂t)]− (ψ−1)′ [ψ (q̂t)]× Bt (B.3)

We then use here the inverse-derivative rule:1105

(ψ−1)′(z) =
1

ψ′(ψ−1(z))
(B.4)

Plugging this back into eq. B.3 yields:1106
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ψ−1 [ψ (q̂t)− Bt] ≈ q̂t −
Bt

ψ′(ψ−1 [ψ(q̂t)])
= q̂t −

Bt

ψ′(q̂t)
(B.5)

Finally, eq. B.1 becomes:1107

ht ≈ f−1
RC







q̂t −

Bt

ψ′(q̂t)
+ Et

︸ ︷︷ ︸

Zt








(B.6)

The second step is to deduce the joint pdf of (ht1 , ..., htN ) from that of1108

(Zt1 , ..., ZtN ). We use the change-of-variables formula for this purpose, which1109

can be written in general terms as follows. Let y = (y1, ..., yN) = r(x1, ..., xN),1110

where r is a one-to-one transformation. The pdf of y can be deduced from1111

the pdf of x using the following formula:1112

py(y1, ..., yN) = px
(
r−1(y)

)
|det (Jr−1(y))| (B.7)

where Jr−1(y) is the N ×N Jacobian matrix (partial derivatives) of the in-1113

verse transform r−1.1114

Applying the change-of-variables formula above to the transformation (ht1 , ..., htN ) =1115
(
f−1
RC(Zt1), ..., f

−1
RC(ZtN )

)
yields the following formula:1116

ph(ht1 , ..., htN ) = pZ (fRC(ht1), ..., fRC(htN ))

∣
∣
∣
∣
∣
∣
∣

det






f ′

RC(ht1) 0
...

0 f ′

RC(htN )






∣
∣
∣
∣
∣
∣
∣

= pZ (fRC(ht1), ..., fRC(htN ))
N∏

k=1

|f ′

RC(htk)| (B.8)

which corresponds to the likelihood function from section 3.2 (eq. 24).1117
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