Can the super model(SUMO) method improve hydrological simulations? Exploratory tests on lumped rainfall-runoff models
Léonard Santos, Guillaume Thirel, Charles Perrin

To cite this version:
Léonard Santos, Guillaume Thirel, Charles Perrin. Can the super model(SUMO) method improve hydrological simulations? Exploratory tests on lumped rainfall-runoff models. EGU General Assembly 2017, Apr 2017, Vienna, Austria. pp.1, 2017. hal-02606377

HAL Id: hal-02606377
https://hal.inrae.fr/hal-02606377
Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Can the super model (SUMO) method improve hydrological simulations? Exploratory tests on lumped rainfall-runoff models

Léonard Santos, Guillaume Thirié and Charles Perrin
Irstea, HBAN - Hydro systems and Bioprocesses, Antony, France

Objectives

- Improve the robustness of rainfall-runoff models
- Test an unusual multimodel method: the SUMO (Super Model) method

1. What is a Super Model?

- Dynamical multimodel method created by climatologists (van den Berge et al., 2011)
- Based on the continuous correction of internal variables during the run
- Addition of linear correction terms to the differential equation of the model variables
- Correction terms depend on other model variables and are parameterized by coefficients

The equation for a Super Model with two models (model 1 with a state vector and model 2 with a state vector) and parameterized by two diagonal matrices \(C_1 \) and \(C_2 \) is:

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1) + C_1 (x_2 - x_1) \quad \text{basic equation} \\
\dot{x}_2 &= f_2(x_2) + C_2 (x_1 - x_2) \\
\end{align*}
\]

2. The first tested hydrological Super Model

- Two GR4J models (Perrin et al., 2003, represented as state-space, see EGU2017-4851) with different parameterizations
- Calibrated using a simple “split-sample test” and the KGE as an objective function, the first GR4J model is calibrated on the high flow component and the second one on the low flow component (log)
- Correction of the levels of the production and routing stores

3. Evaluation methodology

- 250 French catchments to test the robustness of the Super Model
- Calibration of the SUMO coefficients using the KGE calculated on square root transformed flows
- Performances comparison with a benchmark GR4J model calibrated on the same objective function to test the real added value of the Super Model
- Sensitivity analysis of the Super Model coefficients
- Analysis of behaviour of the store levels during the run

4. Results

Performances

- No global improvement on average for the 250 tested catchments regarding the performances of the simple model GR4J
- BUT interesting results in particular catchments

SUMO behaviour

- SUMO coefficient values are informative (figure 4)
- The high flow model and the production store coefficients seem more sensitive in the Super Model
- Internal variables synchronize themselves, the two models come to a “compromise” (figure 2 left)
- Parameter sensitivity may depend on initial difference between internal variables (figure 2 and 3)

5. Test on different models

- With simple models implemented using the SUPERFLEX framework (Fenicia et al., 2013)
- The Super Model significantly improve the simulations of the 2 simple models on the tested catchments

Conclusion

- The Super Model does not improve the performances on average
- Tests on models which are different (e.g. SUPERFLEX) could lead to more interesting conclusions
- SUMO still shows interesting behaviour and can help to understand how its constitutive models work

References

