Progressive refining of spatial and temporal resolutions in a hydrological model: how far should we go?

Alban de Lavenne, Andrea Ficchí, Julien Goullet

To cite this version:

Alban de Lavenne, Andrea Ficchí, Julien Goullet. Progressive refining of spatial and temporal resolutions in a hydrological model : how far should we go ?. EGU General Assembly 2017, Apr 2017, Vienna, Austria. pp.1, 2017. hal-02606383

HAL Id: hal-02606383
https://hal.inrae.fr/hal-02606383
Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PROGRESSIVE REFINING OF SPATIAL AND TEMPORAL RESOLUTIONS IN A HYDROLOGICAL MODEL: HOW FAR SHOULD WE GO?

*de Lavenne A., Ficchi A., Goullet J. (Irstea, HBAN, Antony, France) *alban.de-lavenne@irstea.fr

We propose to analyse the potential synergy between spatial and temporal resolutions in a hydrological model. We aim to understand in which situations higher resolutions are needed for better simulation performances.

General methodology and input data

- Rainfall: Antilope dataset at 1 h and $1 \mathrm{~km}^{2}$ resolutions (Météo-France) PET: daily SAFRAN database disintegrated at hourly time step - Discharge: Hydro database at variable time step - Hydrological model: GRSD semi-distributed model (Lobligeois et al., 2014) at 5 temporal resolutions (from 1 h to 24 h) and 5 spatial resolutions (from $50 \mathrm{~km}^{2}$ to catchment scale). General methodology:
i) Calibrate GRSD at each resolution and for 240 catchments (2006-2014)
ii) Extract 10 most important rainfall-runoff events by catchment (Ficchi et al. 2016) Describe the spatio-temporal variability of each event using different indexes
iii) Aggregate time series at 24 h time steps (for comparison)
iv) Analysise performances according to rainfall and catchment characteristics

1) Rainfall-runoff events description

Different indexes performed to describe spatial variability, localisation and movement of the rainfall events:

- Weighted standard deviation (Smith et al., 2004) - $\quad I_{\sigma}=\frac{\sum_{t=1}^{T} \sigma_{t} \cdot P_{t}}{\sum_{t=1}^{T} P_{t}}$
- Gini index applied to rainfall (Fig. below) - Vertical gap (VG) and horizontal gap (HG) as proposed by Emmanuel et al. 2015 (Fig. below) Ratio of $90^{\text {th }}$ and $10^{\text {th }}$ quantiles of rainfall values - Localization index (Smith et al., 2004) according to the - $I_{p c p}=\frac{C_{p c p}}{C_{b s n}}$ distance to the outlet L_{i}

$$
C_{b s n}=\frac{\sum_{i=1}^{N} A_{i} \cdot L_{i}}{\sum_{i=1}^{N} A_{i}} \quad C_{p c p}=\frac{\sum_{i=1}^{N} P_{i} \cdot A_{i} \cdot L_{i}}{\sum_{i=1}^{N} P_{i} \cdot A_{i}}
$$

4) Conclusion

References :

2) Higher resolutions for which rainfall-runoff events?

- Highlight highly correlated rainfall indexes - Highly variable events benefit markedly more from higher resolutions than homogeneous events.

3) Higher resolutions for which catchments?

Volumetric Efficiency VE
Temporal resolution δT

Spatial resolution δS
Regression coef. $a b c$

Example catchment 1: Argens at Roquebrune-su Argens ($2530 \mathrm{~km}^{2}$) Example catchment 2:

- Catchment 1: No synergy detected between spatio-temporal resolutions - Catchment 2: Both spatial and temporal resolution lead to better performance
- No particular region seems to benefit from an increase of temporal resolution (coef. a)
whereas an increase of spatial resolution seems to be more beneficial in the South (coef. b)

Catchments that benefit from simultaneous increase of both resolutions are few

- Higher resolutions do not always lead to better performance - Increasing resolution should be thought both on time and space in order to overstep some thresholds in performance
A semi-distributed model that can deal with different resolutions is useful to better catch hydrological responses

Temporal and spatial resolutions do not affect performance similarly, a synergy is observed only for few catchments - Further efforts will be placed in a better anticipation of the resolution that suits catchment and rainfall characteristics (eg. for modelling ungauged catchments).

