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List of Contributors

To quantify ES along the different components of the ES cascade, we need to address two questions: what do we measure and how do we measure (Figure 1)? For the purpose of this chapter, we assume that the question as to why we measure (e.g., policy questions, scope of an ecosystem assessment) has been answered.

The first question is addressed in the scientific literature by developing and proposing indicators. Ecosystem service indicators are used to monitor the state or trends of ecosystems and ecosystem service delivery within a determined time interval. In recent years a substantial indicator base has been developed world wide to assess or measure ES.

Once an indicator is proposed or selected for inclusion in an ecosystem assessment, the second question becomes important: how can we measure the service or the indi-
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cator in biophysical terms or units? Which methods or procedures should be applied to come to an reasonable estimate of the quantity of service provided? 

What

Direct measurements of ecosystem services

Direct measurements of an ecosystem service indicator is the actual measurement of a state, a quantity or a process from observations, monitoring, surveys or questionnaires which cover the entire study area in a representative manner. Direct measurements of ES deliver a biophysical value of ES in physical units which correspond to the units of the indicator. Direct measurements quantify or measure a stock or a flow value. Direct measurements are also referred to as primary data.

Examples of direct measurements of ES (see also As many of these indicators are effectively measured for other reasons, it is not always needed to set up expensive measurement schemes. Most provisioning ES including crops, fish, timber and water are recorded by national and regional governments. Furthermore, certain species groups and taxa are monitored to assess trends in biodiversity.

TESSA1 is a toolkit for rapid assessment of ES at site level which provides many procedures and suggestions for on-site measurement of ES.

Direct measurements and the use of primary data are the most accurate way to quantify ES but they become impractical and expensive beyond the site level or they are simply not available for all ES.

Therefore the next step to consider for biophysical quantification is indirect measurements.

Indirect measurements of ES

Indirect measurements of ES deliver a biophysical value in physical units but this value needs further interpretation, certain assumptions or data processing, or it needs to be combined in a model with other sources of environmental information before it can be used to measure an ecosystem service. Indirect measurements of ES deliver a biophysical value of ES in physical units which are different from the units of the selected indicator.

In For regulating services, modelling is sometimes the only option in order to quantify actual ecosystem service flows. This is particularly evident when ecosystems are regulating or mediating stocks and flows of soil, carbon, nitrogen, water or pollutants. Consider soil protection -also termed as erosion regulation or erosion control -which is the role ecosystems and vegetation plays in retaining soil or avoiding soil being eroded as a result of wind or run-off water. Soil erosion can be measured directly on sites which are prone to erosion, usually cropland on slopes. However, estimating the quantity of soil that is not eroded due to the protective cover of vegetation cannot be measured. It can however be modelled by comparing the amount of soil erosion with a model which simulates the presence of vegetation with a model where the protective vegetation cover is deliberately set to zero or to parameters which correspond to parameters for cropland or bare soil. The difference between these two models results in an estimate of avoided soil erosion and can represent the realised service flow. A similar rationale applies to water purification, air quality regulation or other services which exert control on the fate and transport of abiotic and organic material.

Implementing biophysical methods for decision-making

Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. Therefore ES assessments have to integrate data and information on biophysical ecosystem components, including biodiversity, with socio-economic system components and the societal and policy contexts in which they are embedded.

Quantification of ES using biophysical methods have been used for a number of perspectives and for a variety of purposes, Chapter 4 101 including landscape management, natural capital accounting, awareness raising, priority setting of projects or policies and policy instrument design. However, transferring the outcomes of the biophysical assessments to policy is not straightforward and some additional work is required to ensure a minimum degree of consistency and avoid over-simplistic conclusions.

Different methods are relevant at different policy levels (ranging from international, EU, national, regional and local scales).

Existing literature frequently acknowledges that, in these cases, the interrelationship between different scales must be taken into consideration, which can pose significant challenges. Broad framings for these methods include the work done globally of the Inter-governmental Platform on Biodiversity and Ecosystem Services (IPBES) and the Mapping and Assessment of Ecosystems and their Services (MAES) in the context of the EU Biodiversity Strategy. The initial methodological work on biophysical methods will be the basis for the assessment of the economic value of ES and promote the integration of these values into accounting and reporting systems.

Conclusions

"You can't manage what you don't measure". This well-known expression is also valid for ES which is, in essence, a concept to guide and support the management of natural resources, ecosystems and socio-ecological systems. ES represent the flows of material, energy and information from ecosystems to society. Accurate measurement of these flows as well as the extent and the condition of ecosystems which support these flows is therefore key to base decisions, to monitor progress to biodiversity targets and to create a sound knowledge base for natural capital.

Figure 1 .

 1 Figure 1. Biophysical quantification of ecosystem services (Icons by Freepik).
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 1 Examples of sources, websites and key publications for ecosystem service indicators.
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