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ABSTRACT 123 

Humans require multiple services from ecosystems, but it is largely unknown whether 124 

trade-offs between ecosystem functions prevent the realization of high ecosystem 125 

multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 126 

ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) 127 

to extrapolate and map relationships between various ecosystem multifunctionality measures 128 

across Europe. These multifunctionality measures reflected different management objectives, 129 

related to timber production, climate regulation and biodiversity conservation/recreation. We 130 

found that trade-offs among them were rare across Europe, at both local and continental scales. 131 

This suggests a high potential for "win-win" forest management strategies, where overall 132 

multifunctionality is maximized. However, across sites, multifunctionality was on average 45.8-133 

49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using 134 

one of the most comprehensive assessments so far, our study suggests a high but largely 135 

unrealized potential for management to promote multifunctional forests.  136 

  137 
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INTRODUCTION 138 

One of the greatest challenges in ecology is to understand the effects of global change 139 

and nature management on the multiple ecosystem functions on which humans depend (MEA 140 

2005). Such an understanding would help predicting the circumstances under which trade-offs 141 

between different ecosystem functions are minimal and therefore when their simultaneous 142 

provisioning, i.e. ecosystem multifunctionality (Hector & Bagchi 2007; Gamfeldt et al. 2008), is 143 

maximised. Previous studies have identified conditions promoting local-scale ecosystem 144 

multifunctionality, e.g. through the maximization of biodiversity (Lefcheck et al. 2015). 145 

However, whether such relationships also exist at large spatial scales, and how they vary in 146 

space, is less clear (Isbell et al. 2017). Understanding this is essential if ecosystem-functioning 147 

studies are to provide policy-relevant advice, because most policy focuses on large scales. 148 

Forests provide a number of functions related to key services such as timber production, 149 

climate regulation and recreation (Gamfeldt et al. 2013), and are important for the conservation 150 

of many plant and animal species (FAO 2015). Understanding large-scale relationships between 151 

different functions is therefore important if we are to find “win-win” management scenarios, 152 

which meet different forest management objectives and promote forest multifunctionality. 153 

Quantifying many ecosystem functions at large scales has so far proven challenging. 154 

Studies have used exhaustive remote sensing or ground-based measurements (e.g. Prince & 155 

Goward 1995; Ratcliffe et al. 2016), mechanistic models (e.g. McGuire et al. 2001), indirect 156 

measures (e.g. where certain habitat types are assumed to promote certain functions; Maskell et 157 

al. 2013) or a combination of these (Maes et al. 2012; Mouchet et al. 2017) to quantify single or 158 

multiple functions at large spatial extents. However, for some important functions, such as 159 

biological pest control or timber quality, large scale maps have not yet been developed, limiting 160 
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our understanding of ecosystem functioning synergies and trade-offs. In contrast, many local-161 

scale studies, such as biodiversity experiments (e.g. Hector & Bagchi 2007; Zavaleta et al. 2009) 162 

or comparative studies (Lavorel et al. 2011), have accurately quantified a large number of 163 

functions. Extrapolating these small-scale observations to larger scales could increase our 164 

understanding of the drivers of ecosystem functioning trade-offs and the resulting provision of 165 

ecosystem multifunctionality.  166 

Forests are often managed for a particular subset of functions related to certain ecosystem 167 

services (e.g. timber production, climate regulation or nature conservation) that are prioritized by 168 

a specific stakeholder group. We aimed to identify areas where functions of all these different 169 

sets are high and where trade-offs are weakest. To this end, we combined a multi-site dataset, 170 

containing accurate measures of multiple ecosystem functions, with a continental-scale 171 

inventory-based dataset with high spatial plot coverage. We extrapolated regional scale 172 

relationships between ecosystem functions and their drivers (e.g. forest community composition 173 

and climate) to larger spatial scales (Fig. S1) to map both individual ecosystem functions and 174 

ecosystem multifunctionality across Europe, in forests without recent intensive management. We 175 

then tested for potential trade-offs between sets of functions, at scales relevant for policymakers.  176 

To do this, we developed different measures of multifunctionality corresponding to 177 

different management scenarios (Fig. 1). In these, functions related to (sustainable) timber 178 

production, climate regulation or biodiversity conservation/recreation were prioritized (Fig. 1). 179 

We also considered a scenario where all functions were valued equally. Our objectives were 180 

firstly, to identify "multifunctionality hotspots", i.e. areas with highest multifunctionality. 181 

Secondly, we investigated whether there are synergies (allowing for win-win management) or 182 

trade-offs between different multifunctionality measures at both continental and local scales, and 183 
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how these varied in space. Finally, we investigated whether forest protection status is associated 184 

with high multifunctionality, and thus whether potential win-win policies are realized in 185 

(protected) forests.  186 

 187 

MATERIALS AND METHODS 188 

Our approach to extrapolate ecosystem functioning relationships from regional to 189 

continental scales consisted of two main steps (Fig. S1). Firstly, statistical models were fitted to a 190 

comprehensive (many ecosystem functions), multi-site dataset (‘fitting dataset’). Secondly, these 191 

models were extrapolated to a continental-scale dataset containing forest plots distributed across 192 

Western Europe (‘inventory dataset’). These two datasets share variables related to climate, soils 193 

and tree composition, all potential drivers of ecosystem functioning. For three ecosystem 194 

functions which were independently measured in the inventory dataset, we cross-validated 195 

predicted ecosystem function values. Our approach allowed testing for trade-offs and synergies 196 

between individual ecosystem functions and between different multifunctionality measures, at 197 

different scales: 1) using all plots (thus including both local and large-scale variation in 198 

functions) and 2) within 20×20km localities. 199 

 200 

Fitting dataset: design 201 

As part of the EU-FP7 FunDivEUROPE project (www.fundiveurope.eu), which 202 

investigates how tree species composition and diversity drive forest ecosystem functioning, 209 203 

30×30 meter plots (Fig. S2) were established. The plots covered six major regions/countries, 204 

representing different forest types: 28 boreal forest (Finland), 43 temperate mixed forest 205 

(Poland), 38 temperate deciduous forest (Germany), 28 mountainous deciduous forest 206 
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(Romania), 36 thermophilous deciduous forest (Italy) and 36 Mediterranean mixed forest plots 207 

(Spain). These plots covered a broad climatic gradient: mean annual precipitation ranged from 208 

484 to 819mm, mean annual temperature from 1.4 to 14.1°C (WorldClim; Hijmans et al. 2005) 209 

and altitude from 87 to 1404m. Within regions, plots differed in the composition and diversity of 210 

regionally common tree species, while site-related factors were similar.  Management was either 211 

at low intensity or absent (Baeten et al. 2013).  212 

 213 

Measurement and collation of fitting data 214 

In all plots, we measured 28 different ecosystem characteristics/processes (‘ecosystem 215 

functions’ hereafter) linked to various ecosystem services (see overview in Fig. 1 and 216 

methodology in Supplementary Material). For each plot we compiled data on tree species 217 

composition (to derive measures of functional and phylogenetic diversity), stand structure, soil 218 

pH, altitude and 18 climatic variables. Previous studies demonstrated that climate (Cramer et al. 219 

2001), soil pH (Foy 1992), functional community composition (Diaz et al. 2004) and tree 220 

diversity (van der Plas et al. 2016; Liang et al. 2016) can all drive (forest) functioning. 221 

In each plot, we identified all tree stems ≥7.5cm in diameter at breast height (dbh) to 222 

species level. With these data, we calculated total and average tree basal area. In addition, by 223 

combining these observations with (1) published trait data (Kattge et al. 2011; Royal Botanic 224 

Gardens Kew 2015; see Table S1) representing key life-history strategies (Westoby et al. 2002), 225 

and (2) a phylogeny (Zanne et al. 2014), we calculated several metrics describing the functional 226 

identity, functional diversity and phylogenetic diversity of the tree communities. Firstly, we 227 

calculated Community Weighted Means (Garnier et al. 2004), reflecting functional identities of 228 

communities, based on species values for specific leaf area (cm2 g-1), maximum life span (log-229 
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transformed; yrs), maximum height (m), wood density (g cm-3), seed mass (mg), conifer 230 

(proportion) and evergreen (proportion). Secondly, we calculated the functional (trait) diversity 231 

within communities as Rao’s Quadratic Entropy (Botta-Dukát 2005), for each trait separately 232 

and for all traits combined. Finally, we calculated several phylogenetic diversity metrics: 233 

Phylogenetic Species Variability, Phylogenetic Species Evenness (Helmus et al. 2007), Faith’s 234 

Phylogenetic Diversity (Faith 1992) and (abundance-weighted) Mean Phylogenetic Distance 235 

(Webb et al. 2002). As inventory plots differed in size, tree species richness was not 236 

investigated, and we selected functional and phylogenetic diversity metrics uncorrelated with 237 

species richness. 238 

To represent soil conditions we used pH (methods in Supplementary Materials), as it 239 

drives many functions and was the only soil variable available for the inventory dataset. Eighteen 240 

variables (see Table S2) related to climate (worldclim data; Hijmans et al. 2005) were collated at 241 

a 30 seconds spatial resolution. Altitude data were collated from srtm.csi.cgiar.org. 242 

 243 

Analysis of the drivers of ecosystem functioning 244 

We used the Random Forest (Breiman 2001) algorithm to explain ecosystem function 245 

variation in the fitting dataset. Random Forest is a machine-learning algorithm, powerful for 246 

making predictions (but less suitable in explaining mechanisms) and incorporating both linear 247 

and non-linear relationships, as well as interaction effects (Strobl et al. 2007). It is relatively 248 

insensitive to multicollinearity and overfitting (Hastie et al. 2008), allowing for the inclusion of 249 

many predictors. Initially, we included the 42 predictor variables described above (see also Table 250 

S2), describing abiotic conditions, climate, stand structure, functional identity, and functional 251 

and phylogenetic diversity. Random Forests were run in R (R Core Team 2013) with the 252 
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‘randomForest’	library (Liaw & Wiener 2012). Following Seidl et al. (2011), we iteratively 253 

removed those variables not reducing the mean square error over random permutations of the 254 

same variable. For final Random Forests, we identified, using the ‘importance’	function, the 255 

degree to which the inclusion of each predictor decreases residual model variance.  256 

 257 

Forest inventory data 258 

We combined data from 163,451 plots of the National Forest Inventories (NFIs) of Spain 259 

(59,048 plots), France (40,844), Wallonia (Belgium, 1,238), Germany (47,832), Sweden (11,212) 260 

and Finland (2,456). NFIs contained data on individual trees in each plot, including species 261 

identity, dbh and basal area. Furthermore, estimates of timber production (increase in tree basal 262 

area per hectare per year), tree biomass and tree recruitment (tree saplings per hectare) were 263 

available for many plots. To ensure that data from different NFIs were comparable to the fitting 264 

dataset plots, we only included trees with dbh ≥7.5cm. Furthermore, we only included the 265 

105,316 plots that were at low to mid-altitudes (<1500m), without indication of recent logging, 266 

and dominated by one of the ‘target’	species of the fitting dataset (Baeten et al. 2013).  267 

We calculated the same climate, functional identity and functional and phylogenetic 268 

diversity variables for the NFI dataset as for the fitting dataset. Soil pH, calculated for the top 269 

10cm of the soil at 1km2 resolution, was obtained from the ESDAC database (Panagos et al. 270 

2012). These variables had similar ranges as in the fitting dataset (Table S3). 271 

 272 

Extrapolating and mapping ecosystem functions across Europe 273 

We used the ‘predict’	function in R to predict values of each ecosystem function in 274 

inventory plots, based on the Random Forests (built using the fitting dataset with independently 275 
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collected FunDivEUROPE data; Baeten et al. 2013) and the climate, functional identity, 276 

diversity (of the most recent survey) and abiotic conditions in the inventory plots. To determine 277 

the accuracy of our predictions, we correlated the three ecosystem functions (timber production, 278 

tree biomass and tree recruitment) that were measured in inventory plots with the values 279 

predicted by the Random Forests. We did the validations across all plots at continental scale 280 

(local and large scale variation) and within (only local variation) and among (only large-scale 281 

variation) 20×20km grid cells (‘localities’) containing ≥20 plots. In addition, we compared 282 

observed correlations between ecosystem functions with extrapolated ones. We also compared 283 

the average values for tree biomass and recruitment between fitting and inventory datasets 284 

(productivity was not comparable as it was measured in different units). To investigate how 285 

mapped functions changed across latitude, we fitted linear models with linear and quadratic 286 

effects of latitude as predictors. 287 

 288 

Calculating multifunctionality and quantifying trade-offs 289 

We used the ‘threshold-approach’	(Gamfeldt et al. 2008) to calculate ecosystem 290 

multifunctionality for each inventory plot, based on the predicted values of individual ecosystem 291 

functions. Ecosystem multifunctionality was measured at both local and continental scales and 292 

defined as the number of functions exceeding a threshold. The threshold was defined as the 293 

proportion (25%, 50% (default threshold reported in main results), 75% or 90%) of the 294 

‘maximum’ value observed for that function, either within a 20×20km locality (local scale) or 295 

across Europe (continental scale).  The maximum was defined as the 97.5th percentile of 296 

observed functioning across plots, thus removing extreme outliers. For a concrete example on 297 

quantifying multifunctionality, we refer to Fig. S3. We excluded ecosystem functions that (a) had 298 
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poor Ranfom Forest fit, with R2 (correlation between observed and predicted) values <0.20 299 

(default analysis; Fig. 1C) and (b), as a sensitivity analysis, also those which had a low validation 300 

R2 (see results: tree recruitment and the related function of seedling growth). As a further 301 

sensitivity analysis, we calculated ecosystem multifunctionality using Random Forest R2 values 302 

as weights.  303 

We also calculated multifunctionality according to various management objectives, 304 

following Allan et al. (2015). In these measures, we gave different weightings to the various 305 

ecosystem functions, according to their presumed importance (based on a consensus of expert 306 

opinions of all authors) for delivering the ecosystem services required for the given objective 307 

(Fig. 1). The equal weights measure described above corresponds with most previous studies 308 

(e.g. Lefcheck et al. 2015). In the measures representing management objectives, functions were 309 

weighted with loadings ranging from 0 (unimportant) to 1 (high importance).  Functions directly 310 

related to the objective received a weight of 1, i.e. timber production and quality for ‘timber 311 

production multifunctionality’, carbon sequestration-related functions for ‘climate regulation’	312 

and	functions directly measuring biodiversity (e.g. bird/understory diversity) for ‘biodiversity 313 

conservation/recreation’.	Other functions were weighted 0.25; 0.50 or 0.75, depending on their 314 

relevance (Fig. 1).  We also quantified a ‘narrow-sense’ biodiversity conservation measure, 315 

where only functions directly measuring biodiversity were included, with weights of 1 (Fig. 1). 316 

Relationships between multifunctionality measures can either be caused by large-scale 317 

climatic/biogeographical factors (e.g. temperature gradients) or local-scale factors (e.g. 318 

management, soil conditions). Therefore, using Pearson correlations, we tested for trade-offs and 319 

synergies, at both continental (all plots) and local scales (within localities with >10 plots). With 320 

t-tests we investigated whether local-scale correlations, differed from zero. 321 
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Several functions had high weights in multiple multifunctionality measures, reflecting their 322 

relevance for different ecosystem services (Fig. 1B).  Raw correlation coefficients between 323 

multifunctionality measures are therefore inflated by this overlap. To remove this effect, we 324 

calculated a null expectation for the correlation-coefficients by reshuffling ecosystem function 325 

values, without replacement, across plots 100 times. This eliminated any correlations among 326 

functions, while maintaining the original distribution of values. With these resampled ecosystem 327 

functions, we again calculated the different multifunctionality measures, and the average and 328 

95% confidence intervals of the correlations between them. We calculated correlation-329 

coefficients corrected for overlap in functions by subtracting expected values (in the absence of 330 

correlations among functions) from observed ones. As a sensitivity analysis, we repeated these 331 

analyses only including plots located within those 150 localities in which validations of both 332 

timber production and tree biomass were adequate (both r>0.1). 333 

 334 

Comparing multifunctionality between protected versus non-protected forests 335 

 In total, 11.8% of the inventory plots were within protected areas which, depending on 336 

the NFI, indicated either that forestry activities were restricted (Germany, Sweden) or that the 337 

plot was in a National Park or nature reserve (Finland, France, Spain, Wallonia), see 338 

Supplementary Material for more detailed information. Within each country, we investigated, for 339 

each measure, whether local-scale multifunctionality was higher inside versus outside protected 340 

areas, using Welch’s t-tests.  341 

 342 

RESULTS 343 

Explaining variation in ecosystem functioning 344 
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On average, across the different ecosystem functions in our fitting dataset, Random 345 

Forests explained 40.7% of the total variation. The explained variation in ecosystem functions 346 

ranged from high (timber production: 72.5%; resistance to insect herbivory: 67.6%) to low 347 

(browsing resistance: 2.4%, Fig. 1C). The single most important explanatory factor (i.e. with 348 

lowest residual variance) varied between the functions. For sixteen functions it was a climate 349 

variable, for six a functional identity variable, for two altitude, for two a functional diversity 350 

variable and soil pH and average stem diameter for one each (Fig. 1C; Table S4). 351 

Three ecosystem functions allowed for validation of predicted values in inventory plots. 352 

For timber production and tree biomass, across all plots, predicted values correlated reasonably 353 

well with observed values, with ‘extrapolation’	R2 values (correlation between predicted and 354 

observed values in inventory plots) of 0.219 and 0.280, respectively. For tree recruitment the R2 355 

was only 0.040; Fig. S4. Validations generally worked best at large spatial scales and less well at 356 

local scales. Correlations between predicted and observed values of timber production, tree 357 

biomass and tree recruitment were, respectively, 0.390; 0.472 and 0.027 across 20×20km 358 

localities, and on average 0.127 (range: 0-0.976); 0.124 (range: 0-0.971) and 0.091 (range: 0-359 

0.967) within localities. Absolute values of tree biomass were similar between NFI observations 360 

and Random Forest predictions, but for tree recruitment the values differed (Fig. S5). For more 361 

information on model validations, see Supplementary Material (S3). 362 

 363 

Levels of ecosystem functioning and multifunctionality throughout Western Europe 364 

After removing ecosystem functions poorly explained by the Random Forests (R2<0.2; 365 

see Fig. 1C), we predicted levels of 22 ecosystem functions for the inventory plots (Fig. S6). 366 

Many of the mapped functions showed clear continental trends. For example, some (e.g. timber 367 
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production) had highest levels in central Western Europe, while others had highest values in 368 

boreal (e.g. timber quality) or Mediterranean (e.g. bat diversity) regions (Fig. S6; Table S5). 369 

Most functions tended to be highest at mid-latitudes. Consequently, most continental-scale 370 

multifunctionality measures were highest in central Western Europe (multifunctionality hotspots) 371 

and lowest in southern Europe (Fig. 2). When only diversity measures were considered (narrow-372 

sense biodiversity conservation), multifunctionality was also high in southern/central Spain and 373 

parts of Scandinavia. These patterns were broadly similar when functions with a high proportion 374 

of explained variance were weighted more heavily (Fig. S7). As expected, local-scale 375 

multifunctionality values did not show any large-scale spatial patterns (Fig. S8). Local 376 

multifunctionality scores were on average 45.8%, 47.1%, 49.2%, 49.8% and 47.8% below their 377 

maximum possible score (i.e. all functions above the 50% threshold) in the timber production, 378 

climate regulation, broad-sense and narrow-sense biodiversity conservation and overall 379 

multifunctionality scenario, respectively, and higher than 90% of the maximum possible score in 380 

97, 49, 49 and 11,625 plots (out of 105,316 plots) in the timber production, climate regulation, 381 

broad-sense and narrow-sense biodiversity conservation scenario, respectively, whereas it 382 

exceeded 90% and 80% of maximum overall multifunctionality in only 3 and 446 plots 383 

respectively (Fig. 2B). Importantly, while ecosystem functions varied strongly at the continental 384 

scale (with 97.5 percentile values being on average 42.8% higher than mean values), there was 385 

also substantial variation within localities, with 97.5 percentile values being on average 12.6% 386 

higher than mean values (Table S6). 387 

 388 

Trade-offs and synergies  389 
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Pairwise correlations between individual functions were positive on average at both 390 

scales, although correlations were weaker at local (𝑟 = 0.012) than at continental scales (𝑟 = 391 

0.021), probably due to lower variation in functioning within localities (Table S6). Moderately to 392 

strongly positive correlations (r>0.3; n = 57 (continental-scale) and 22 (local scale)) 393 

outnumbered negative (r< -0.3; n = 45 (continental-scale) and 14 (local-scale)) correlations 394 

(Table S7,8). At the continental scale, correlations between timber production and tree biomass 395 

were similar for observed (r = 0.55) and extrapolated (r = 0.65) values. However, within 396 

localities this match was weaker (𝑟 = 0.63 observed and 0.24 predicted), with fits generally best 397 

in France and central/southern Spain, and weaker in Germany and northeast Spain (Fig. S9). 398 

As different multifunctionality variables had similar continental-scale patterns (Fig. 2), 399 

continental-scale correlations between most measures were positive (Table 1). Only correlations 400 

between narrow-sense biodiversity conservation and both timber production (r = -0.13) and 401 

climate regulation multifunctionality (r = 0.01) were not. These correlations became more 402 

positive at more extreme (25 and 90%) multifunctionality thresholds (Table S9-S11). 403 

Within localities, similar patterns were found. Relationships between timber production, 404 

climate regulation and broad-sense biodiversity conservation/recreation were positive, whereas 405 

relationships between narrow-sense biodiversity conservation and other multifunctionalty 406 

variables were close to zero, or negative, on average (Fig. 3, Table 1). Negative relationships 407 

largely disappeared when multifunctionality was based on 25% or 90% thresholds (Table S9-408 

S11). Importantly, positive relationships between timber production and climate regulation 409 

multifunctionality, and to a lesser extent between timber production/climate regulation 410 

multifunctionality and broad-sense biodiversity conservation/recreation multifunctionality, were 411 

very widespread across Europe (Fig. 3).  412 
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We used null models to investigate whether observed correlations between 413 

multifunctionality variables were larger than expected. Relationships between multifunctionality 414 

variables were to a large extent driven by functions contributing to multiple multifunctionality 415 

variables, as observed minus expected correlation-coefficients were often close to zero (Fig. 3, 416 

Table 1). Nevertheless, at a continental scale, relationships between timber production, climate 417 

regulation and broad-sense biodiversity conservation multifunctionality remained significantly 418 

positive (all P<0.05). At the local scale, relationships between timber production and climate 419 

regulation multifunctionality also remained significantly (although weakly) positive, whereas 420 

relationships between timber production and the biodiversity conservation measures became 421 

significantly, weakly, negative. In sensitivity analyses  these patterns hardly changed when (i) 422 

recruitment-related functions were omitted from multifunctionality measures, (ii) ecosystem 423 

functions with a high Random Forest fit had proportionally higher loadings in multifunctionality 424 

measures, or (iii) only plots from localities with high validation R2 values of Random Forests 425 

explaining timber production and tree biomass were included (Table 1).	Negative relationships 426 

largely disappeared when multifunctionality was quantified based on 25% or 90% thresholds 427 

(Table S9-S11). Importantly, functional overlap-corrected correlation-coefficients between 428 

different ecosystem multifunctionality scenarios varied greatly, from positive to negative, 429 

throughout localities (Fig. 3).	430 

 431 

Multifunctionality inside versus outside protected areas 432 

Local-scale associations between values of multifunctionality and protection status 433 

differed widely between countries and scenarios (Fig. 4). In Spain and Germany, timber 434 

production and climate regulation multifunctionality were lower inside protected areas, whereas 435 
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the opposite was observed in France. In Germany, biodiversity conservation-related 436 

multifunctionality was highest inside protected areas, whereas in France the opposite was found. 437 

These results were largely insensitive to the way in which multifunctionality was quantified 438 

(Table S12). 439 

 440 

DISCUSSION 441 

In our study trade-offs between groups of functions were rare in European forests, at both 442 

continental and local scales. We found synergies between individual ecosystem functions and 443 

few trade-offs between multifunctionality measures focused on timber production, climate 444 

regulation and biodiversity conservation/recreation. When corrected for overlap in functions 445 

among scenarios, some relationships were weakly positive throughout most of Europe (timber 446 

production versus climate regulation), some were weakly negative (timber production versus 447 

biodiversity conservation/recreation) and some were close to zero (climate regulation versus 448 

biodiversity conservation/recreation).The lack of strong trade-offs indicates that functions related 449 

to (sustainable) timber production can go hand in hand with functions related to services such as 450 

biodiversity conservation. Mapping local trade-offs and synergies across Europe revealed 451 

substantial variation in these relationships, showing that strong synergies are realized in a few 452 

environments. While  biodiversity and timber production are currently maximised in some 453 

forests, suggesting a "win-win" for conservation and commercial forestry, across plots, average 454 

multifunctionality values were almost 50% below maximum possible levels, and the proportion 455 

of forest plots providing high levels of ‘overall multifunctionality’ (where timber production, 456 

climate regulation and biodiversity conservation are all maximized) was very small. Hence, 457 

while forest management has the potential to realize high multifunctionality, this is currently not 458 
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common. Most multifunctionality measures had many ecosystem functions in common, as some 459 

ecosystem functions are valued under a range of different management objectives (e.g. Chan et 460 

al. 2006; Allan et al. 2015). Relationships between different multifunctionality measures were 461 

generally much more strongly positive if not corrected for this functional overlap. While these 462 

raw correlations are statistically spurious (as the different measures partly contain the same data), 463 

they can be highly relevant for management. For instance, tree growth is important for both 464 

timber production and climate regulation, which suggests that forest management promoting tree 465 

growth will maximize both services. Our results therefore suggest many possibilities for win-win 466 

forest management strategies. 467 

Our multifunctionality variables were intended to represent the bundle of functions 468 

needed to meet certain forest management objectives (following Allan et al. 2015). They should 469 

therefore be more useful to managers than traditional multifunctionality metrics that assume 470 

equal importance of each ecosystem function. However, they could be further improved to 471 

consider how multiple functions are related to final ecosystem services, using production 472 

functions, and then services can be valued in monetary or other units to calculate the overall 473 

benefits supplied by different management scenarios (e.g. Nelson et al. 2009; Bateman et al. 474 

2013). Ultimately, sustainable ecosystem management needs to minimize trade-offs between 475 

ecosystem benefits for different stakeholders (Díaz et al. 2015) and our targeted 476 

multifunctionality metrics represent a step towards quantifying and mapping these trade-offs at 477 

large scales. 478 

Other studies, performed in grasslands (e.g. Lavorel et al. 2011) or across different 479 

ecosystems or land-use types (Chan et al. 2006) have documented strong trade-offs between 480 

ecosystem functions and services, especially between productivity-related functions and those 481 
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associated with biodiversity conservation or recreation. However, in forests, relationships 482 

between tree biomass and the biodiversity of associated taxa often show more mixed patterns 483 

(Jukes et al. 2007). For example, the positive relationship between tree productivity and bird 484 

diversity in our data could be due to the strong dependence of specialist species on forests with 485 

many old trees (Gil-Tena et al. 2007), while the trade-off between productivity and understorey 486 

biomass may be driven by light competition between trees and understorey plants.  When 487 

biodiversity conservation multifunctionality was quantified using only the four direct measures 488 

of biodiversity, weakly negative relationships with timber production and climate regulation 489 

multifunctionality were found. Their approximately equal strength at continental and local scales 490 

(Table 1) suggests that the relationship was primarily driven by local-scale factors, such as stand 491 

composition. The negative response of understorey plants to tree growth is likely responsible for 492 

this trade-off, as it is difficult to maximize timber production whilst maintaining an open canopy. 493 

We also found that protected forests were not necessarily associated with high local-scale 494 

ecosystem multifunctionality. In Spain, several multifunctionality measures were in fact lower 495 

inside protected areas. In other countries, patterns were more mixed, but overall 496 

multifunctionality was never highest inside protected areas. Importantly, associations between 497 

forest protection status and multifunctionality were unlikely to be driven by climate, as local-498 

scale climatic variation is low within our 20×20km regions. Associations between local-scale 499 

multifunctionality and protection status seem therefore to be driven by local factors, such as tree 500 

diversity or composition. However, it is uncertain whether these observed relationships are 501 

causal, as forests were likely not designated to be protected at random. For example, they may 502 

have had low productivity and particular tree compositions before they were protected. 503 

Furthermore, services such as the conservation of forest specialist species were not quantified, 504 
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but these could be high inside protected areas. Many protected areas were only established 505 

relatively recently (Paillet et al. 2015), so protected forests may still be recovering from past 506 

management. Finally, we only investigated forests without evidence of recent logging activity, 507 

which may have reduced the contrast between protected and non-protected areas. Regardless, 508 

although our results suggest a high potential for win-win forest management scenarios, the 509 

simultaneous maximization of timber production, climate regulation and biodiversity has not yet 510 

been realized within protected areas.  511 

Our results also provide evidence that climate drives large-scale variation in many 512 

ecosystem functions and the synergies between them. Many functions, such as tree biomass or 513 

litter production, had highest levels in central Western Europe (Fig. S6) and some synergies 514 

between multifunctionality scenarios were stronger at continental than at local scales. A strong 515 

continental-scale synergy between earthworm biomass and litter decomposition (Table S7) may 516 

have arisen because they were both strongly associated with climate (Table S4). The correlation 517 

was also present at the local scale (Table S8), suggesting additional direct links between them. 518 

While earlier studies have already shown the importance of climate for functions such as primary 519 

production and carbon sequestration (e.g. Cramer et al. 2001), our more comprehensive study 520 

shows that climate may be a driver of many more ecosystem functions, such as earthworm or 521 

microbial biomass. The fact that so many functions appear related to climate, especially to wet 522 

season precipitation (Table S4), may have important implications. For example, timber 523 

production multifunctionality was lower in dry climates, suggesting detrimental effects of 524 

projected future decreases in precipitation (IPCC 2014). However, while our approach is 525 

powerful in describing patterns, it is not suited to identify underlying processes. Therefore, more 526 
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research on the causality of climate-ecosystem functioning relationships (e.g. De Boeck et al. 527 

2008; Šímová & Storch 2017) is needed to predict ecosystem responses to climate change. 528 

Extrapolations are still relatively rare in ecosystem functioning studies (but see Lee et al.	529 

2000; Isbell et al. 2014; Manning et al. 2015), although other subtopics of ecology, such as 530 

species distribution research (Elith & Leathwick 2009), have a much stronger tradition in this 531 

respect. Three ecosystem functions could be validated with independent observations, which 532 

showed that: (1) validations were generally adequate for timber production and tree biomass, but 533 

not for tree recruitment, (2) validations worked best at large spatial scales, whereas at local 534 

scales there was large variation in their accuracy but (3) relationships between different 535 

multifunctionality variables were insensitive to the inclusion of localities where the validation 536 

was less well supported. Our approach is therefore promising, but we emphasize that validations 537 

could only be carried out for those three ecosystem functions for which independent inventory 538 

data was available, so future validations of other functions are needed. Local-scale data related to 539 

soil fertility or management could thus further improve the accuracy of ecosystem function 540 

predictions. 541 

Our study presents a new approach to quantify ecosystem functioning at scales relevant 542 

for policy makers. The increasing availability of large datasets on ecosystem functioning from 543 

integrated projects means our approach may become increasingly feasible for other systems and 544 

regions. A further possibility would be to combine local-scale ecosystem functioning datasets 545 

with remote sensing data to map services at large scales. Remote sensing approaches have 546 

successfully predicted some ecosystem functions, but have difficulties with other functions, such 547 

as soil processes (de Araujo et al. 2015). By combining data on forest and climate attributes with 548 

remotely sensed parameters, we could map ecosystem functions even more accurately in the 549 
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future. Our study is a first step in reaching the ultimate goal of predicting how future ecosystem 550 

functioning and service provision will be altered by ongoing global trends, such as climate 551 

change (IPCC 2014), eutrophication and acidification (Galloway et al. 2008) or land-use change 552 

(Newbold et al. 2015). Future studies could combine our approach with models on climate 553 

change (e.g. IPCC scenarios), biodiversity change (e.g. Isbell et al. 2014) or management 554 

scenarios to investigate the impacts of these global trends for the future functioning and service 555 

provisioning of forests and other ecosystems.  556 

In conclusion, our study, among most comprehensive overviews of forest ecosystem 557 

functioning to date, showed that different measures of forest multifunctionality tend not to trade-558 

off with each other, at both local and continental scales. Within some areas there were strong 559 

synergies between different multifunctionality measures, indicating that even though they are 560 

currently uncommon, "win-win" forest management strategies are possible and could be 561 

promoted in the future. However, we also found that multifunctionality is often not higher inside 562 

than outside protected areas. Our study therefore suggests a high but unrealized potential for 563 

multifunctionality in European forests. 564 
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FIGURES 712 

 713 

Figure 1. A: Ecosystem functions included in this study, with the colours and numbers referring 714 

to the bars/circles representing them in B and C. B: Weightings used to produce five ecosystem 715 

multifunctionality measures, reflecting different management scenarios. From left to right, the 716 

‘equal-weights’, ‘timber production’, ‘climate regulation’,	the ‘broad-sense	biodiversity 717 

conservation/recreation’ and the ‘strict-sense biodiversity conservation’ measure. In the equal 718 

weights measure, all ecosystem functions are valued equally. In other measures, function 719 
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weightings reflect their importance for the management objective. Note that in the climate 720 

regulation scenario, loadings of the decomposition variables are negative. C: Proportion of 721 

variance of ecosystem functions explained by Random Forests. Letters above the bars indicate 722 

which type of predictor was most important in explaining variation: C = climate-related; I = 723 

functional identity-related; P = pH; A = altitude; D = biodiversity-related; S = stand structure 724 

related. In further analyses, only those functions with R2 values above 0.2 (dashed horizontal 725 

line) were included. 	726 
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 727 

Figure 2. While high values of continental-scale multifunctionality (A, C-F) in central Europe 728 

across a range of scenarios indicate large scale synergies, at local scales (B) high overall 729 

multifunctionality is realized in only a few sites. Mapped levels of predicted large-scale 730 

multifunctionality are rescaled as the proportion of functions above a 50% threshold. Green 731 

values indicate relatively high functioning, while brown values indicate relatively low 732 

functioning.  In A), locations of fitting dataset plot are shown in red. In B, where overall, local-733 

scale multifunctionality is shown, the histogram indicates that in only a few plots, levels exceed 734 

0.8.	 	735 
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 736 

Figure 3. Substantial variation in the degree of local scale synergies and trade-offs exists across 737 

Europe. Observed and observed minus expected correlation coefficients between 738 

multifunctionality measures, within 20×20 km grid cells. Top: Values of all observed 739 

multifunctionality measures, except for the narrow-sense biodiversity conservation measure, 740 

correlate positively at local scales. Bottom: these correlations are largely driven by overlap in 741 

ecosystem functions, as observed minus expected correlation-coefficients are close to zero. 742 

Average correlations that deviate significantly from zero are indicated with an asterisk (*). 743 
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 745 

Figure 4. Local-scale ecosystem multifunctionality is generally not higher inside protected areas, 746 

for different multifunctionality measures and countries. Bars above zero indicate that 747 

multifunctionality is higher inside than outside protected areas, while bars below zero indicate 748 

the opposite. A: Equal-weight multifunctionality. B: timber production multifunctionality. C: 749 

climate regulation multifunctionality. D: broad-sense biodiversity conservation/recreation 750 

multifunctionality. E: narrow-sense biodiversity conservation/recreation multifunctionality. 751 
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Table 1. Correlations between values of different multifunctionality measures at both continental 753 

and local scales and both across all plots and within countries. Here, multifunctionality was 754 

based on a 50% threshold level. Correlations were also quantified after correcting for the overlap 755 

in ecosystem functions between multifunctionality measures. This is indicated as ‘no functional 756 

overlap’ or ‘no FO’ in the table. As sensitivity analyses, correlations were also calculated based 757 

on (a) multifunctionality measures in which recruitment-related functions were excluded, (b) 758 

multifunctionality measures in which loadings of ecosystem functions was proportional to 759 

Random Forest R2 values and (c) only those plots within 20x20 km grid cells with a high 760 

validation R2 (>0.10) for timber production and tree biomass. Significant correlations are shown 761 

in bold. TP = timber production, CR = climate regulation, BCB = broad-sense biodiversity 762 

conservation and BCN = narrow-sense biodiversity conservation. 763 

 TP-CR TP-BCB TP-BCN CR-BCB CR-BCN 
Continental scale, raw 0.81 0.57 -0.13 0.63 0.01 
Continental scale, no FO 0.06 0.15 -0.13 0.16 0.01 
Continental scale, no FO, no recruitment-related EFs 0.07 0.16 -0.09 0.20 0.08 
Continental scale, no FO, corrected for EF R2 values 0.10 0.18 -0.17 0.12 -0.10 
Continental scale, no FO, only plots with high validation 0.05 0.12 -0.35 0.11 -0.17 
Local scale 0.79 0.31 -0.12 0.44 -0.01 
Local scale, Spain only 0.79 0.32 -0.11 0.46 0.02 
Local scale, France only 0.80 0.30 -0.12 0.42 -0.03 
Local scale, Wallonia only 0.78 0.12 -0.31 0.38 -0.07 
Local scale, Germany only 0.80 0.31 -0.16 0.47 -0.01 
Local scale, Sweden only 0.73 0.30 -0.03 0.33 -0.03 
Local scale, Finland only 0.77 0.34 -0.08 0.44 -0.02 
Local scale, no FO 0.01 -0.08 -0.13 0.03 -0.01 
Local scale, no FO, Spain only 0.01 -0.08 -0.11 0.05 0.02 
Local scale, no FO, France only 0.01 -0.09 -0.13 0.01 -0.03 
Local scale, no FO, Wallonia only 0.00 -0.26 -0.31 -0.03 -0.07 
Local scale, no FO, Germany only 0.02 -0.08 -0.16 0.06 -0.01 
Local scale, no FO, Sweden only -0.05 -0.09 -0.03 -0.08 -0.04 
Local scale, no FO, Finland only -0.01 -0.05 -0.08 0.03 -0.02 
Local scale, no FO, no recruitment-related EFs 0.03 -0.12 -0.14 -0.04 -0.02 
Local scale, no FO, corrected for EF R2 values 0.09 -0.07 -0.17 -0.04 -0.08 
Local scale, no FO, only plots with high validation 0.10 -0.15 -0.29 -0.06 -0.13 
	764 


