Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Majorization-Minimization Algorithms for Maximum Likelihood Estimation of Magnetic Resonance Images

Abstract : This paper addresses maximum likelihood estimation of images corrupted by a Rician noise, with the aim to propose an efficient optimization method. The application example is the restoration of magnetic resonance images. Starting from the fact that the criterion to minimize is non-convex but unimodal, the main contribution of this work is to propose an optimization scheme based on the majorization-minimization framework after introducing a variable change allowing to get a strictly convex criterion. The resulting descent algorithm is compared to the classical MMdescent algorithm and its performances are assessed using synthetic and real MR images.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01653033
Déposant : Saïd Moussaoui <>
Soumis le : vendredi 1 décembre 2017 - 02:36:03
Dernière modification le : mercredi 18 novembre 2020 - 03:07:57

Identifiants

  • HAL Id : hal-01653033, version 1
  • IRSTEA : PUB00055723

Citation

Qianyi Jiang, Said Moussaoui, Jérôme Idier, Guylaine Collewet, Mai Xu. Majorization-Minimization Algorithms for Maximum Likelihood Estimation of Magnetic Resonance Images. Seventh IEEE International Conference on Image Processing Theory, Tools and Applications (IPTA'2017), Nov 2017, Montréal, Canada. pp.6. ⟨hal-01653033⟩

Partager

Métriques

Consultations de la notice

286