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Summary

1.

Climate change is expected to affect hydrologic and thermal regimes of river
ecosystems. During dry periods when river flows decrease and water temperatures
increase, the hyporheic zone (HZ) can provide a refuge to surface aquatic organisms
and enhance the resilience capacity of riverine ecosystems. However, shifts from up-
to downwelling flow conditions in the HZ could jeopardize this capacity.

Using laboratory mesocosms and high resolution fiber-optic distributed temperature
sensing, we explored the combined effects of 5 different increased surface water
temperature treatments (from 15 to 27 °C at 3 °C intervals) and the direction of water
exchange on the ability of Gammarus pulex (Crustacea, Amphipoda) to migrate into
the HZ as a response to warming. We determined the survival rates of this ubiquitous
hyporheic dweller and its rates of consumption of A/nus glutinosa leaf litter in the HZ.
Results showed that at increasing surface water temperature leaf litter breakdown was
observed at a greater depth in the sediments under downwelling flow conditions, i.e.
Gammarus pulex migrated deeper into the HZ compared to upwelling conditions,
resulting in greater survival rates (64 + 11 vs. 44 = 10 %). However, under both
upwelling and downwelling conditions, we found evidence for potential use of the
hyporheic zone as a thermal refuge for G. pulex. Below sediment depths of 25 cm,
temperatures remained low (< 22 °C) even when surface waters were at 27 °C, so
temperatures deep in the hyporheic zone never exceeded critical thermal thresholds
for G. pulex.

This study provides evidence that alterations to the direction of groundwater-surface
water exchange can alter the capacity of the HZ to provide a refuge for benthic
invertebrates, thereby affecting the resilience of river communities to warming under

climate change.
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Freshwater Biology

Introduction

Significant changes in the hydrologic and thermal regimes of rivers are expected to occur
under global warming (Webb & Nobilis, 2007; van Vliet et al., 2013), affecting biodiversity
and functioning of freshwater ecosystems (Woodward, Perkins & Brown, 2010; Ledger &
Milner, 2015; Leigh et al., 2015). Typical consequences include geographical range shifts in
animal and plant communities (Walther et al., 2002; Root et al., 2003; Holzinger et al.,
2008), habitat loss or fragmentation (Mantyka-Pringle, Martin & Rhodes, 2012) and altered
food webs interactions (Woodward, Dybkjeer, Olafsson et al., 2010; Kratina et al., 2012;
Ledger et al., 2013). As most aquatic organisms are ectotherms, they are highly sensitive to
temperature increases (Sibly & Atkinson, 1994; Daufresne et al, 2004; Daufresne,
Lengfellner & Sommer, 2009; Vander Vorste et al., 2016a). So changes to river thermal
regimes alter freshwater community diversity and composition (Brown, Hannah & Milner,

2007; Datry et al., 2014; Leigh et al., 2016).

The hyporheic zone (HZ), defined as the saturated interstices below and adjacent to river
channels (White, 1993) in which groundwater and surface water mix (Krause, Hannah,
Fleckenstein et al., 2011), can provide a refuge for river organisms (Palmer, Bely & Berg,
1992; Stubbington, 2012; Vander Vorste et al., 2016a). Refuges, sensu Sedell et al. (1990),
can favour the survival of many riverine species including invertebrates and fish, particularly
in a context of global change (Keppel ef al., 2015; Ledger & Milner, 2015). Because the HZ
is characterized by reduced daily and annual temperature amplitudes compared to surface
water (Hannah, Webb & Nobilis, 2008; Krause, Hannah & Blume, 2011), it is a potential
refuge for surface river organisms during adverse thermal conditions (Palmer et al., 1992;
Stubbington, 2012; Vander Vorste et al., 2016a). Surface and HZ habitats are vertically
interconnected by upwelling (exfiltration) and downwelling (infiltration) fluxes of water,
solutes and organisms (Brunke et al.,, 1997; Boulton, Findlay & Marmonier, 1998).

3
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Freshwater Biology

Upwelling conditions reflect water fluxes from the HZ into the surface, whereas downwelling
is the infiltration of surface water into the HZ. Water temperatures in the HZ are generally
lower than channel water in summer and higher in winter (Evans, Greenwood & Petts, 1995;
Arrigoni et al., 2008; Krause, Hannah & Blume, 2011). Therefore, the HZ represents a
potential thermal refuge for surface organisms when surface temperatures become
unfavourable. Early signals of Gammarus pulex actively using the HZ to avoid exposure to
elevated temperatures (Wood et al., 2010; Vander Vorste et al., 2016a) or desiccation
(Vadher, Stubbington & Wood, 2015; Vander Vorste et al., 2016b) have been detected in
natural systems. Hence, the HZ may mitigate the negative effects of climate warming on
organisms resilience and associated ecosystem processes, such as organic matter

decomposition (Stubbington, 2012; Kawanishi et al., 2013; Vander Vorste et al., 2016a).

In a climate change context, the capacity of the HZ to provide a thermal refuge may be at risk
due to shifts in the direction of groundwater-surface water exchange, potentially reducing the
resilience of riverine ecosystems. The combination of reduced runoff and greater demand for
water resources increases human reliance upon groundwater causing increased pumping and
lower groundwater levels (Green et al., 2011; Treidel, Martin-Bordes & Gurdak, 2012;
Taylor et al., 2013). Lower groundwater tables contribute less groundwater to river base flow
(Fetter, 2001; Sophocleous, 2002), altering interactions between groundwater and surface
waters (Krause & Bronstert, 2007; Klove et al., 2014) and reversing conditions from
upwelling to downwelling (Stanley & Valett, 1992; Dole-Olivier & Marmonier, 1992b;
Dahm et al., 2003). The consequences of such complex interacting pressures, (warming under
climate change, more frequent and extreme events and increased groundwater abstraction),
on the refuge capacity of the HZ are still poorly understood (Dole-Olivier, 2011;
Stubbington, 2012). On one hand, enhanced downwelling could increase hyporheic water

temperatures with heat being propagated deeper into the HZ by additional heat advection
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Freshwater Biology

(Boulton et al., 1998; Malard et al., 2002; Krause, Hannah & Blume, 2011), and this could
preclude the HZ from acting as a thermal refuge during warming. On the other hand,
downwelling conditions may favour the passive downward migration of aquatic organisms
from the surface into the HZ and promote their survival (Dole-Olivier, Marmonier & Beffy,
1997; Stubbington, Wood & Reid, 2011). To accurately predict the response of riverine
communities and ecosystem processes to climate change, it is crucial to understand how the
direction of groundwater-surface water exchange, heat transport and animal behaviour

interact and possibly alter the potential capacity of the HZ to act as a refuge.

In this study, we addressed the effects of change in the direction of groundwater-surface
water exchange on the capacity of the HZ of gravel-bed rivers to act as a thermal refuge for
surface organisms. Using laboratory mesocosms, we simulated real ranges of increased
surface water temperatures, representing for instance disconnected standing pools associated
with stream channel contraction, and we manipulated the direction of water exchange. We

tested the following hypotheses:

1) The HZ provides a thermal refuge for river organisms when surface water temperature
increases because it will remain cooler with a narrower range of temperatures than surface

waters, as predicted under climate change in many riverine systems;

2) The direction of groundwater-surface water exchange mediates this refuge capacity, which
will be lower in downwelling conditions than in upwelling conditions because warmer
surface water flow into the HZ will raise the temperature of the HZ under downwelling

conditions, but upwelling water will remain cooler than surface waters.
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Methods

Experimental design

We used a set of 10 experimental mesocosms to mimic gravel-bed river HZs and simulated
increased surface water temperature and reversed flow direction due to climate change. We
applied 5 temperature treatments, from 15 to 27 °C, and 2 contrasting hydrological
conditions, comprising upwelling (exfiltration) and downwelling (infiltration) flow (Table 1),
and observed the vertical migration of G. pulex in response to these treatments. This

amphipod was used as a model organism (see details below).

We conducted Fiber-Optic Distributed Temperature Sensing (FO-DTS) high-resolution
monitoring of vertical temperature profiles and kept dissolved oxygen levels close to
saturation to avoid any possible anoxia. To assess the vertical migration of G. pulex into the
HZ we used rates of Alnus glutinosa leaf litter breakdown (Navel et al., 2010; Vander Vorste
et al., 2016a; Foucreau et al., 2016). The experiments ran for 15 days and were repeated 3

times (n total = 30) within a 4-month period (see details below).

Mesocosm design

The mesocosms were made of opaque PVC, 120 cm high, 25 cm in diameter and filled to the
height of 90 cm with washed gravel (sediment size = 10-14 mm), to provide a substrate not
limiting to the vertical migration of G. pulex (Navel et al., 2010; Vadher et al., 2015) into the
HZ (Fig. 1a,b,c). Each mesocosm was divided into two main parts (Fig. 1¢); a 30-cm surface
zone: 10 cm at the top were left for gas exchange and 20 cm for surface water; and a 90-cm
sediment zone representing the HZ. To analyse physical and chemical pore water properties,

mesocosms had lateral tubing outlets every 15 cm from -5 cm from the free water-sediment
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Freshwater Biology

interface to -80 cm depth (6 in total each), screened with 500 pm mesh to prevent G. pulex

from escaping the mesocosms.

Temperature treatments

We generated five distinct surface water temperatures of 15, 18, 21, 24 and 27 °C to simulate
climate-induced warming of rivers water (Table 2). The chosen temperature values spanned
the range of temperatures observed in-situ (Zwolsman & van Bokhoven, 2007; van Vliet &
Zwolsman, 2008) or projected for rivers in temperate regions under future climate change
through modelling approaches (Mantua, Tohver & Hamlet, 2010; van Vliet et al., 2013). To
heat the water, we used heating cables (0.5 cm diameter) (Hydrokable, Hydor Inc.
Sacramento, CA USA) placed onto the sediment surface in the free water column and coiled
around the inner wall of the mesocosms (Vander Vorste et al., 2016a). We controlled surface
water temperature using an electronic thermostat (+ 0.1 °C) (Hobby, Dohse Aquaristik
GmbH & Co., Grafschaft, Germany) and kept surface water temperatures constant until the
end of the experiment. A 12:12-h light:dark cycle was applied using Grolux (35 W, 8500 K,
Sylvania Inc., Noida, India) aquarium lights above mesocosms. Throughout the experiment,

we kept mesocosms in a temperature-controlled room (16.4 + 0.4 °C).

Hydrological treatments

We used peristaltic pumps to generate up- and downwelling conditions. The resulting
infiltration rate in the mesocosms was 1.9 L/h (Darcy velocity: 6.7 cm/h) which generated an
interstitial water velocity of 22.3 cm/h. Upwelling flow was simulated by pumping
continuously dechlorinated tap water (which was kept aerated by air bubblers) from a 1000-L
tank into the bottom of the mesocosms (n = 5). Water drained (1.9 L/h) through a 2-cm
diameter hole, screened with 500 um mesh, located 10 cm below the top of each mesocosm.

Downwelling flow was simulated by pumping water from the tank into the top of the
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Freshwater Biology

mesocosms (n = 5) and forcing water to flow through the sediments by pumping out
interstitial water from the bottom of the column (1.85 L/h), while 0.05 L/h drained trough a
2-cm diameter hole, screened with 500 um mesh, located 10 cm below the top of each

mesocoSsm.

In each mesocosm water volume (22.8 L) was renewed for both flow paths every 12 hours to
avoid any possible hypoxia, particularly for downwelling treatments. We measured dissolved
oxygen and temperature in interstitial water twice during each experimental run. They were
measured at 3 depths (5, 35 and 80 c¢cm in the HZ) by drawing interstitial water from the
outlets and using a portable multi-parameter meter (HQ40D, Hach, Loveland, USA, DO
resolution = 0.01 mg/L, temperature = 0.1 °C). An air bubbler kept surface water in each
mesocosm aerated, and dissolved oxygen concentrations in interstitial water varied between

6.53 and 9.64 mg/L in the HZ.

High resolution temperature sensing profiles

Raman-backscatter Distributed Temperature Sensing (DTS) is being increasingly used in
environmental applications including hydrological processes (Selker et al., 2006) because it
provides high-resolution, continuous temperature data collection in space and time (Briggs et
al., 2012). DTS systems provide temperature measurements along a fiber-optic cable by
analysing the ratio of the amplitudes of the temperature-independent backscatter, Stokes, to
temperature-dependent anti-Stokes signal of the light pulse emitted by the instrument (Selker
et al., 2006; Tyler et al., 2009). The timing of these backscatter returns yields a measure of
location (Briggs et al., 2012). The precision of the measurements depends on the accuracy of
Stokes/anti-Stokes ratio, and greater signal strength requires longer integration time (Selker et

al., 2006).

Page 8 of 77
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We continuously monitored vertical temperature profiles in the mesocosms for each of the
15-day experimental runs at high spatial and temporal resolution using 10 high resolution
temperature sensing profiles (HRTS) (Briggs et al., 2012), specifically constructed for the
purpose. The DTS instrument applied was a Silixa XT-DTS (Silixa, Elstree, UK), having a
sampling resolution of 25 cm, suggesting a minimal spatial resolution of > 50 cm along the
fiber based on the Nyquist criterion (van de Giesen et al., 2012). A small armoured bend-
insensitive fiber-optic temperature sensing cable with stainless steel loose tube containing 2
optical fibers, 1.6 mm diameter (Brugg Kabel AG, Brugg, Switzerland) was wrapped around
a PVC pipe (6-cm external diameter hollow PVC pipe, 1.2 m long), pre-threaded at a specific
pitch, to create a HRTS with 0.004 m vertical sampling resolution. The PVC pipes were
threaded along the central 1 metre of length, leaving the first and last 10 cm of the pipes
unthreaded. Each HRTS was placed vertically in the centre of the 10 mesocosms.
Temperature values were taken continuously every 2 minutes for the total length of the
experiment. Alternate single-ended monitoring mode was adopted (Krause & Blume, 2013),
and a dynamic instrument calibration was used, based on matching the temperatures of two
separate sections of the fibre in a control bath. Specifically, at both ends of the fibre-optic
cable, sections of > 20 metres were coiled and kept at a constant temperature in a 0 °C ice
bath during the experiment (Tyler et al., 2009) and their monitoring temperatures matched
during calibration to account for potential drift caused by differential loss along the cable

length.

The number of HRTS that could be connected in series by splicing the fiber cable together
before signal loss occurred was affected by the total number of splices (Tyler et al., 2009).
This limited the number of mesocosms that could be employed in a single experimental run.
For this reason, based on published literature (Briggs et al., 2012), we limited the number of

mesocosms to 10 and repeated the experiment three times using an identical design.
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Model organism

We used G. pulex (Amphipoda: Crustacea, Linnaeus, 1758) as a biological model because of
its wide distribution and abundance throughout Europe (Graga, Maltby & Calow, 1994;
Macneil, Dick & Elwood, 1997). It is a facultative component of the hyporheos (Dole-Olivier
& Marmonier, 1992a), able to burrow up to 2 m into deep sediments during adverse surface
conditions (Dole-Olivier et al., 1997; Stubbington et al., 2011), is eurythermic (Foucreau et
al., 2014) and can tolerate moderate hypoxia for several days (Danielopol, 1989). Its crucial
role in leaf litter breakdown has been well documented in streams (Graga ef al., 1994; Navel
et al., 2010; Piscart et al, 2011). Together, these reasons make G. pulex a valuable and
widely used model for laboratory and environmental change studies (Navel et al., 2010;

Foucreau ef al., 2014; Vander Vorste et al., 2016a).

During the experiment, we twice collected (early March and mid-May 2016) adult amphipods
of similar size (5-7 mm) from a first-order stream near Dijon, France (see Vander Vorste et
al. 2016a;b for details). We kept the amphipods in a temperature-controlled room (16.4 + 0.4
°C) and allowed them to acclimatize to temperature, water (collected from the same stream as
amphipods , pH = 6.99, T = 10.4 °C, EC = 527 us/cm) and food source in aquaria (40 x 22 x
25 cm) for two weeks before the start of the experiment (Navel ef al., 2010). A thermostatic
water pump (TECO, Ravena, Italy) kept water temperature constant (16.4 + 0.4 °C) and air
bubblers kept dissolved oxygen concentration near saturation. We fed the amphipods with
conditioned alder leaves (Alnus glutinosa), their most preferred food source (Graca, Maltby
& Calow, 1993a; Friberg & Jacobsen, 1994; Foucreau et al., 2014). At each experimental
run, we introduced 120 G. pulex into each mesocosm (3849 individuals/m’), representing a
density occurring in natural streams (Stubbington et al., 2011; Vander Vorste ef al., 2016a), a

couple of hours before starting to warm the surface water.

10
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Assessing G. pulex survival rate

We quantified the percentage of individuals alive after 15 days by elutriating the sediments of
each mesocosm. Water was removed from the mesocosms, and amphipods were washed out
with the water and collected using sieves (500 um). Wet sediments were then vacuumed
(Kércher WD6 Premium, 2000 W power, 30 L capacity) and mesocosms carefully washed.
Prior experiments showed that vacuuming did not kill amphipods. Mesocosm sediments were
then placed into separate large plastic cases and carefully elutriated, taking small sediment
portions each time. Amphipods found with eyes intact and with no signs of soft tissue
breakdown were counted as alive prior to mesocosm deconstruction. Amphipods that did not

meet this criterion were considered dead.

Assessing G. pulex vertical migration

For each mesocosm, we assessed the average depth to which G. pulex migrated by
determining (G. pulex mediated) leaf litter breakdown rates at different depths in the HZ (Fig.
lc, Table 1). Alder leaves, dried at 60 C for 24 h (0.4317 + 0.0036 g dry mass) with primary
veins removed, were enclosed in 7.5 x 8-cm plastic mesh bags (0.8 cm diameter) (n = 6) and
positioned in the HZ at 6 different depths for each mesocosm (Fig. 1c). The mesh size
allowed amphipods to enter the bags freely and consume leaf litter. To facilitate colonization
by fungi and increase leaf palability (Graca, Maltby & Calow, 1993b; Graga ef al., 1994), leaf
bags were pre-conditioned in aerated stream water for 7 days (Suberkropp & Chauvet, 1995),
before being placed into the sediments. To account for microbial leaf litter decomposition,
fine mesh leaf bags (500 um, 7.5 x 6-cm) pre-conditioned in the same way (n = 6) were
placed next to the coarse mesh bags at all depths (Foucreau et al., 2016). The mesh size of
fine mesh leaf bags excluded G. pulex without limiting microbial colonization (Boulton &

Boon, 1991). In the same way, we prepared and pre-conditioned 3 additional coarse and 3

11
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fine mesh leaf bags in order to correct the initial weight for loss due to handling and leaching

of soluble components within 24-h after immersion (Gessner, Chauvet & Dobson, 1999).

After each run, leaves from both coarse and fine leaf bags were dried at 60 °C for 24 h and
weighed. At each depth, we calculated the net leaf litter breakdown (net LLB) rate as: (final
dry coarse leaf mass - initial dry coarse leaf mass corrected for leaching) — (final dry fine leaf

mass - initial dry fine leaf mass corrected for leaching).

Statistical analysis

Temperature vertical patterns in the HZ for down- and upwelling conditions

To test our first hypothesis that the HZ provides a thermal refuge for G. pulex when surface
water temperature increases, we first explored the vertical temperature profiles for each
treatment. Secondly, to evaluate whether flow direction and surface water temperature
influenced differences in HZ temperature between depth 1 and depth 6 (hereafter AT), we
used linear mixed effect models with Gaussian error distribution (LME) (Bolker et al., 2009;
Ockinger et al., 2010). Run was considered a random effect to account for variability among
runs. Temperatures were log-transformed prior to statistical analysis. Linear regressions were
performed to determine the significance of the correlations among variables when interaction

effects were statistically significant.

Survival rates and vertical migration of G. pulex

To test our second hypothesis that flow direction can impair the capacity of the HZ to provide
a refuge when surface water temperature increases, we tested for differences in G. pulex
survival rates among temperature and flow direction treatments using an LME. The
percentage of G. pulex found alive at each run was treated as the response variable, and flow

and mean surface water temperature were modelled as fixed effects. Run was considered a
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random effect. Percentages of G. pulex found alive were arcsin-transformed prior to statistical

tests to meet the assumption of normality.

Subsequently, we tested for differences in vertical migrations of G. pulex among treatments.
To do so, we first calculated a leaf litter breakdown averaged depth (D) for each mesocosm,

as follows:

6
6
D = Z (net LLB *depth) / Z net LLB
1
1

D represents the average depth (m) at which G. pulex mediated leaf litter breakdown (LLB)
was the highest. We then fit a LME to test for differences in D among treatments. Mean D for
each mesocosm calculated for each run was treated as the response variable; mean surface
water temperature, flow direction and the percentage of G. pulex found were modelled as
fixed effects. We included in the model the percentage of G. pulex found in each mesocosm

to account for the influence of the number of amphipods found at each run on D.

All statistical analyses were performed using the nlme package (Pinheiro et al., 2016) in R

3.3.1 (R Core Team, 2016).

Results

Is the HZ a thermal refuge when surface water temperature increases?

For every treatment across the 3 runs, temperature was highest in the shallow sediments of
the HZ (depth 1, - 5 cm) and strongly decreased from depth 3 (- 35 cm) (Fig. 2). On average,
temperature at depth 3 was below 20 °C and ranged from 15.9 + 0.1°C (18 °C, upwelling

treatment) to 19.6 + 1.2 °C (27 °C, downwelling treatment).
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Temperatures in the HZ under downwelling conditions were on average 1.1 + 0.3, 2.0 + 0.3,
2.5 + 0.5 and 3.6 £ 0.5 higher for 18, 21, 24 and 27 °C treatments respectively than under
upwelling conditions (one-way ANOVA, flow effect, P <0.01). At 15 °C, mean temperatures
in the HZ under downwelling flow conditions were not different from those under upwelling
conditions (15.9 + 0.3 and 16.0 + 0.3, respectively). Vertical temperature profiles in the HZ

varied with flow direction (Table 3, interaction factor, P < 0.0001).

When surface water temperature increased, AT increased more under downwelling (R* =
0.98) than upwelling (R* = 0.60) conditions (Fig. 3). AT values ranged from -0.5 to 8.1 °C
(mean value: 3.7 £ 0.4 °C) under downwelling flow, and it varied from 1 to 4.1 °C (mean

value: 2.7 + 1.1 °C) under upwelling conditions.

Does the direction of groundwater-surface water exchange affect the

capacity for HZ to provide a refuge?

The percentage of amphipods found alive at the end of each run varied with flow direction,
but not with surface temperature (Fig. 4, Table 4). On average, 64 = 11 % of amphipods
survived under downwelling conditions, whereas 44 + 10 % survived under upwelling
conditions (Fig. 4). At the end of the experiment, the mean percentage of amphipods found
dead was similar between downwelling and upwelling flow condition, 3 + 3 and 3 £ 2 %
respectively (Table 5). The mean percentage of G. pulex not found, presumably consumed by

conspecifics (due to G. pulex propensity for cannibalism), was 43 + 15 % (Table 5).

D, (leaf litter breakdown averaged depth), increased with surface water temperature (Table 4,
P =0.012) and varied with flow direction (P < 0.0001), with no significant interaction (Fig.
5, Table 4). In upwelling conditions, D ranged from 0.13 £ 0.1 (15 °C treatment) to 0.22 +

0.05 m (27 °C treatment), with a mean value of 0.18 £ 0.1 m. In downwelling conditions, D
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ranged from 0.27 £ 0.0 (15 °C treatment) to 0.49 = 0.1 cm (27 °C treatment), with a mean

value 0f 0.37 £ 0.1 m.

Discussion

Vulnerability of aquatic organisms to global warming has been demonstrated (Verberk &
Bilton, 2013; Pyne & Poff, 2017), particularly for those species occupying habitats near the
limits of their thermal tolerance, (e.g. in arid regions Stewart, Close, Cook et al., 2013). The
identification and conservation of potential refuges has therefore become a priority (Keppel et
al., 2012, 2015). By manipulating surface water temperature and the direction of
groundwater-surface water exchange to mimic potential climate change effects on the thermal
and hydrological regime of HZs, we showed that hyporheic sediments could be a potential
refuge for G. pulex. Specifically, we found that the survival of G. pulex in the HZ under the
range of interstitial flow velocity tested is strongly influenced by the direction of
groundwater-surface water exchange when surface temperatures increase. However, our
hypothesis that downwelling flow areas provide less effective refuges compared to upwelling
zones was not supported. These results challenge the current paradigm that upwelling areas
provide better refuges for river invertebrates during disturbance. Although we tested the
response of only one species, these results show that a more comprehensive understanding is
required of the potential consequences of climate change for riverine biodiversity and

ecosystem resilience and how to mitigate these effects.

The HZ acts as a thermal refuge

When the temperature of surface water increased, the resulting vertical temperature patterns
in the HZ differed between up- and downwelling flow conditions. However, in all treatments

the deeper hyporheic sediments remained a potential thermal refuge for G. pulex. It is known
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that the downward flow of water transports heat from the surface into hyporheic sediments
(Constantz & Stonestrom, 2003), and that higher infiltration rates lead to greater advection,
deeper penetration and shorter lags of thermal surface signals at a given depth (Clark, Webb
& Ladle, 1999; Arrigoni et al., 2008; Constantz, 2008; Krause, Hannah & Blume, 2011). In
our case, hyporheic temperatures were steady and not influenced by increased surface water
temperature at a depth of 80 cm. Within the range of temperatures tested, similar vertical
temperature patterns under downwelling conditions have been reported from previous field
studies (Constantz & Stonestrom, 2003; Vogt et al., 2010; Briggs et al., 2012). Upwelling
conditions generally provide more stable and cooler temperatures due to upward advection of
groundwater and smaller variations in sediment temperature are produced compared to
downwelling conditions (Alexander & Caissie, 2003; Constantz & Stonestrom, 2003; Caissie
et al., 2014). Similarly, in our mesocosms, increases in surface water temperature were
buffered in the shallow sediments of the HZ even at the highest temperature treatment. The
simulated upwelling flow had a mean temperature of 15.3 = 0.3 °C, which is a frequent
hyporheic temperature observed in-situ, for example in lowland alluvial rivers in the UK
(Evans & Petts, 1997; Krause, Hannah & Blume, 2011), France (Capderrey et al., 2013) and
within the range of temperatures observed in an anthropogenic channel in Germany (Schmidt,
Bayer-Raich & Schirmer, 2006). Although heat propagated deeper into the HZ under down-
than upwelling conditions, for all treatments, at sediment depths below 25 cm the hyporheic
temperature was < 22°C, providing a potential thermal refuge for even the most sensitive

aquatic invertebrates like Ephemeroptera (mayflies) (Stewart, Close, Cook et al., 2013).

The use of the HZ by G. pulex when surface water temperature increases

Even when surface temperature increased up to 27°C, far above the upper limit of the thermal
window for G. pulex (10 - 20 °C, Maazouzi et al., 2011), there was no significant effect of

temperature on G. pulex survival rate, suggesting that the HZ successfully provided a thermal
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refuge. G. pulex is known to be an active vertical crawler (Elser, 2001) and it has been found
in hyporheic sediments during spates under downwelling conditions (Marmonier & des
Chatelliers, 1991; Dole-Olivier & Marmonier, 1992a), low flow (Stubbington et al., 2011)
and drying events (Wood et al, 2010). In our mesocosms, we created optimal physical
conditions for observing such vertical migration behaviour because of the porous gravel
matrix, the absence of fine sediments clogging interstices, sufficient interstitial dissolved
oxygen concentrations and food resources available at different depths. Under both up- and
downwelling conditions we found evidence that G. pulex used the HZ to avoid increased
surface water temperatures but no evidence that these increased temperatures led to lower
survival rates. This indicates that the HZ acts as a refuge under flow in both directions. In
addition to the findings reported in recent laboratory studies (Vadher ef al., 2015; Vander
Vorste et al., 2016a b), this study shows that the HZ may also act as a thermal refuge under
both up- and downwelling conditions and therefore its potential capacity to mitigate the

negative effects of climate change on river ecosystems.

The direction of groundwater-surface water exchange flow affects G. pulex

success in using the HZ as a thermal refuge

The direction of groundwater-surface water exchange influenced the survival of G. pulex and
its use of the HZ. Across the temperature treatments, G. pulex survival rates were always
higher under downwelling (64 + 11 %) compared to upwelling (44 £ 10 %) conditions. For
upwelling conditions, survival rates were in the range of those reported by Vander Vorste et
al. (2016a). Surprisingly, downwelling conditions seemed to better promote the survival of G.
pulex. This result is in contrast to the assumption that upwelling zones represent thermal
refuges during unfavourable surface conditions due to the upwelling of cool groundwater

(Malard et al., 2002; Dole-Olivier, 2011; Stubbington, 2012).
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Higher survival rates under downwelling conditions corresponded to a deeper migration into
the HZ by G. pulex compared to upwelling conditions. The average depth at which most of
the leaf litter was consumed by G. pulex increased with surface water temperature, but was
always higher under downwelling than upwelling conditions. While higher temperatures
flowing into the HZ with downwelling water triggered the vertical migration of G. pulex
deeper into the sediments, upwelling flow seemed to constrain habitat availability resulting in
more organisms occupying shallow hyporheic sediments. If available habitat was constrained
to the shallow hyporheic sediments, biotic interactions might have intensified as competition
for food resources (leaf litter) and space increased, and organisms were exposed to high
temperatures. These factors could explain the lower survival rates found for upwelling
conditions, also corroborated by the fact that the mean percentage of organisms that
disappeared at the end of the experiment under upwelling was higher than under downwelling
conditions; we assumed that missing amphipods were the victims of cannibalism, commonly
observed when G. pulex is under stress (Dick, 1995; McGrath et al., 2007; Vander Vorste et

al., 2016a).

Potentially, the relatively high hyporheic water velocities used here might have prevented G.
pulex from moving against the flow direction in upwelling water, whilst favouring
downwards migration under downwelling conditions. Interstitial water velocity was ~ 22.3
cm/h, slightly higher than the one generated in previous mesocosms experiments (Mermillod-
Blondin, Mauclaire & Montuelle, 2005; Navel et al., 2010; Vander Vorste et al., 2016a), but
in the range of those reported from field surveys (Morrice et al., 2000; Gerecht et al., 2011).
Stubbington ef al. (2011) hypothesized that the energetic costs for organisms of long-term
position maintenance in upwelling flow could be very high and our results corroborate this
hypothesis. In contrast, downwelling conditions may facilitate downwards migration. This

likely helped G. pulex to avoid lethal temperatures at the surface in the mesocosms and
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facilitated access to the thermal refuge in the HZ. Consequently, the broader range of depths
accessed by G. pulex under downwelling condition as indicated by the leaf litter breakdown
rates could reveal that organisms were actively moving up and down in the HZ. Organisms
might have used the flow to move deeper into the HZ to escape warmer surface temperatures,
but could also have moved against the flow (positive rheotaxis) to compensate downstream
drift (Hughes, 1970). This seems not to have happened under upwelling conditions, probably
because of the higher metabolic costs required. In natural systems upwelling zones are often
characterized by depleted dissolved oxygen levels (Dole-Olivier, 2011) which may also
decrease the refuge potential of the HZ. Further exploration of the capacity of the HZ to
enhance the resilience of riverine biodiversity is needed because the responses by individual
species to changing climate vary depending on species traits and interacting drivers of change
(Chen et al., 2011), and because these results may not hold in the face of more severe

warming that, even in the HZ, exceeds the thermal tolerances of organisms.

Determining the complex relationships between groundwater-surface water exchange and
organismal behaviour under climate change pressure will require further analysis to advance
our understanding of the use of the HZ as a refuge. Indeed, to date, most ecological research
seems to have overlooked the eco-hydraulics of HZs, focusing more on how the
physicochemistry and biotic interactions shape hyporheic communities. Although laboratory
experiments simplify reality (e.g. one taxon, controlled conditions), the use of mesocosms
provided useful insights for understanding organismal responses to interacting factors linked
to climate change which would have been virtually impossible to disentangle in the natural
environment. As a next step, the novel experimental design applied in this study can be
replicated and refined to recreate more realistic mesocosms conditions (Ledger et al., 2009;

Stewart, Dossena, Bohan ef al., 2013) where for instance water quality mimics that of natural
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systems and thus differs between up- and downwelling conditions and sediment grain size

distribution is more heterogeneous.

HZs could provide thermal refuges for some surface-dwelling organisms when vertical
connectivity is efficient, enabling the HZ to contribute strongly to the survival and resilience
of surface species in a changing climate. Our results indicate that downwelling conditions
might promote the use of different depths of the HZ by G. pulex even when surface water
temperatures increase up to 27 °C. However, the combination of increased temperature and
shifts between up- and downwelling conditions can jeopardize this refuge capacity. These
results show the need to develop a landscape perspective of the HZ in rivers (Malard et al.,
2002) and call for additional field surveys to gain a better understanding of how hydrological
conditions, and their temporal shifts, can influence riverine communities and ecosystem
resilience. Additional laboratory experiments addressing the effects of altered vertical
connectivity in a context of climate change where increased surface temperature, drying
events and increased biotic interactions occur represents a promising research avenue for

developing efficient tools and guidelines to manage river ecosystems.
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Tables
Treatment N of levels Labels
. . up
Flow direction 2
down
15°C
18°C
Surface water 5 21 0C
temperature
24°C
27°C
Depth 1 =5 cm
Depth2 =20 cm
Leaf litter Depth 3 =35 cm
breakdown (LLB) 6
in the HZ Depth 4=50cm

Depth 5 =65 cm
Depth 6 = 80 cm

Table 1. Overview of 2 flow, 5 temperature and 6 leaf litter breakdown (LLB) treatments generated in the
experiment. The surface water temperature treatments chosen represented real or projected water temperature
values for rivers under global warming.
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Surface water T. (°C) | Flow direction | Mean (+ SD) surface water T (°C) measured (n=3)
15 up 164+ 0.6
15 down 155+£0.5
18 up 17.8£0.2
18 down 18.0£0.1
21 up 20.7+0.3
21 down 20.8+0.1
24 up 23.8+0.0
24 down 23.6£0.1
27 up 26.6+0.3
27 down 26.8+£0.2

Table 2. Mean value (= SD) for surface water temperature (°C) as given by the high resolution temperature sensing
(HRTYS) profiles for each temperature and flow direction treatment during the three experimental runs.

Dependent variable Factor d.f. | F-value | P-value
Flow direction (Flow) | 1 14.75 0.1465

AT Mean surface water T measured (T) | 1 285.16 <.0001
Flowx T | 1 | 49.69346 <.0001

Table 3. Linear mixed effect model (LME) analysis results for temperature differences between deep and shallow
hyporheic sediments (AT, °C) associated with flow direction and measured mean surface water temperature and the
interaction between these factors.

Dependent variable Factor d.f. | F-value | P-value
% G. pulex found alive Flow direction (Flow) | 1 131.88 <.0001
Mean surface water T measured (T) | 1 0.11 0.7407

Flowx T | 1 1.51 0.2304

Leaf litter breakdown Flow direction (Flow) | 1 31.34 <.0001
averaged depth (D) Mean surface water T measured (T) | 1 7.67 0.0118
% G. pulex found | 1 0.03 0.8663

Flowx T | 1 1.77 0.1988

Flow x % G. pulex found | 1 0.16 0.6950

Tx % G. pulex found | 1 0.46 0.5052

Flow x T x % G. pulex found | 1 0.05 0.8280

Table 4. Linear mixed effect model (LME) analysis results for G. pulex survival rates associated with flow direction
and measured mean surface water temperature and the interaction between these factors; LME analysis results for
leaf litter breakdown averaged depths associated with flow direction, measured mean surface water temperature and
the percentage of organisms found alive and the interactions between these factors.
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% G. pulex found n=3) | % G. pulex not found
Surface water T. (°C) | Flow direction Alive Dead (mean £ SD,
(mean + SD) | (mean £ SD) n=3)

15 up 46+ 5 3+1 50+ 10
15 down 62+ 13 64 32+£5

18 up 47+ 15 3+£2 50+ 15
10 18 down 60+ 8 4+3 36+8

" 21 up 48+ 14 242 50+ 17
21 down 69+17 2+1 29+ 13
14 24 up 38+3 2+1 61+14
15 24 down 67+ 16 3+3 3142
16 27 up 41+9 3+2 57+10
17 27 down 63+ 8 3+1 34+ 6

O©CoO~NOOODWN -

19 740 Table 5. Mean (+ SD) percentage of G. pulex found with distinction between alive and dead organisms and mean (+
p 2 ). g
20 741 SD) percentage of organisms not found for each temperature and flow direction treatment.
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Figure 2. Mean temperature values with standard deviation (n = 3) in the HZ for both up-and downwelling
flow treatments at increasing surface water temperature. Dashed horizontal line represents location of the
free water-sediment interface.
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Figure 3. Median of the temperature differences (= SD) between deep and shallow hyporheic sediments (AT,
°C) for both down-and upwelling flow conditions at increasing surface water temperature.
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Figure 4. Mean (£ SD) percentage of G. pulex found alive (arcsin-transformed) for each surface water
temperature and flow direction treatments.
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