

Suivi de la dynamique d'un mélange de sables et graviers avec un scan densitométrique

B. Camenen, E. Perret, C. Brunelle, M. Des Roches, L.F. Daigle, P. Francus

► To cite this version:

B. Camenen, E. Perret, C. Brunelle, M. Des Roches, L.F. Daigle, et al.. Suivi de la dynamique d'un mélange de sables et graviers avec un scan densitométrique. Colloque "Transport Solide et Mophody-namique des Rivière" TSMR2017, Nov 2017, Villeurbanne, France. pp.1, 2017. hal-02606672

HAL Id: hal-02606672 https://hal.inrae.fr/hal-02606672v1

Submitted on 16 May 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Colloque "Transport Solide et Morphodynamique des Rivières", TSMR 2017 Villeurbanne, 8-9 novembre 2017

Dynamics of a fine and coarse sediment mixture using a medical CT scan

B. Camenen¹, E Perret¹, C. B. Brunelle², P. Francus², M. des Roches² and L.-F. Daigle²

1 : Irstea Hydrologie-Hysraulique, Lyon, France (benoit.camenen@irstea.fr) 2 : INRS, Lab CT Scan, Québec QC, Canada

Context and objectives of the study: Dynamics of a sediment mixture

- Typical issue for alpine rivers where poorly sorted sediments are found
- A long history in laboratory experiments:
 - Many studies with unimodal sediment (starting from Shields, 1936)
 - Some studies with bimodal/multimodal mixture including gravel/silt (Gravel/sand : Wilcock and Southard, 1988; Patel and al., 2013)
 - Few experiments on fine sediment dynamics over a coarse matrix (Grams & Wilcock, 2007, 2015; Kuhnle et al., 2013, 2017)

Experimental set-up

Use of a small horizontal channel (0.305x0.30x7m) with a coarse bed matrix 6 cm thick $(d_c=1.5 \text{ mm})$ and a fine sand reservoir upstream $(d_f=0.2 \text{ mm})$ of pure silice (99%)

Propagation of fines sands over the coarse sand matrix

- Very few experiments on fine sediment dynamics over a mobile coarse matrix (Venditti et al., 2010; Barzilai et al., 2013; Perret et al., 2015, 2017)
- Objectives of the study
 - Evaluate fine sand dynamics on a coarse matrix (ripples, bedload and suspension)
 - Estimate impacts of a clogged bed on coarse sediment bedload transport

Interest and use of the CT-scan

- Provide a 3D description of the density
 - 3D attenuation coefficient matrix scaled in Hounsfield unit (HU) which are related to matter density : α_{air} = -1000 HU; α_{water} = 0 HU; α_{ouartz} = 1500 HU
 - 1 voxel : 0.6x0.6x2mm
- Estimation of the porosity / concentration of sediments

due to dynamic scan?

Porosity increasing from 0.4 (*z*=60mm) to 0.6 (*z*=20mm)

High definition insctrumentation

Sediment transport : ripple characteristics

Estimation of ripple height and steepness for fine sand alone

Small values compared to literature (not in equilibrium?)

 $H_r/L_r \approx 1000 d_{50} \approx 0.2$ $H_r \approx 150 d_{50} \approx 3 \,\mathrm{cm}$

Impact on bed shear stress to be discussed with vectrino and PIV results

Example of vertical profiles of 3D attenuation coefficients for a specific cross-section of the experiment and corresponding vertical concentration profile estimated

Estimation of infiltration of fines in the coarse matrix

Need to be validated for a dynamic scan; possibility to do a static scan with a sample taken after the experiment (commonly done for sediment core, Crémer et al., 2002) → difficulty to take the sample without modifying the structure...

■ Estimation of the air/water and water/bed interfaces → 2D vue of the water depth and bed structures

Critical values in HU to be estimated : $\alpha_{water/bed} \approx 300 \text{ HU}$

dune-tracking method

- Possible statistical analysis of bed structures (Marion et al., 2003)
- Possible estimation of bedload using « dune tracking » method with multiple scans

Ripple characteristics for fine sand on a coarse matrix

Similar results as for fine sand alone Smaller ripples expected (underestimated in the test exp. ?)

Presence of ripples for larger bed shear stresses

Sediment transport : bedload flux

🗕 qsCL (coarse)

h=9cm (fine, DT)

h=15cm (fine, tra

h=15cm (fine, DT)

gsCL (fine)

Synthesis of the results for test experiments and experiments using CT-scan

1.00E-01

1.00E-02

1.00E-03

1.00E-04

1.00E-05

1.00E-06

1.00E-07

1.00E-08

Test experiment

Experiments with fine sediments propagaging over the coarse matrix

Experimentwith CT-scan

Bedload flux estimated as a function of the Shields parameter Comparison between experimental data and semi-empirical fomulas (Meyer-Peter & Müller, 1948 ; Camenen & Larson, 2005)

Reduction of the fine capacity (trapping effect) and increase of the coarse capacity (lubrification effect)

Results from dune tracking with the scan overestimated apart for two cases (high bed shear stress, ripples half-washed); Skin bed shear stress estimated using log friction law with $k_s = 2d_{50,c}$

Conclusions and perspectives

- Interaction between fine sediments infiltrated on a coarse matrix and coarse sediments (new data set for bedload and suspended load with detailed hydrodynamics and ripple characterisation)
- Possible comparisons of methodologies (Vectrino and PIV for flow measurements, dune-tracking methodologies -moving volume or surface PIV + active layer-, sediment trap and dune-tracking results)
- Limitation of the CT-scan (need of improving images reconstructions with more accurate HU) values, infiltration quantification, ripple characteristics)