Test and application of the surface-subsurface physically based reactive transport model CATHY on a vineyard hillslope

Laura Gatel, Claire Lauvernet, Claudio Paniconi, Julien Tournebize, S. Weill, Nadia Carluer

To cite this version:

Laura Gatel, Claire Lauvernet, Claudio Paniconi, Julien Tournebize, S. Weill, et al.. Test and application of the surface-subsurface physically based reactive transport model CATHY on a vineyard hillslope. AGU, Dec 2016, San Francisco, United States. pp.1, 2016. hal-02606679

HAL Id: hal-02606679
https://hal.inrae.fr/hal-02606679
Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Evaluation of the surface-subsurface physically based reactive

 transport model CATHY at several scalesLaura Gatel ${ }^{a^{*}}$, Claire Lauvernet ${ }^{\text {a }}$, Claudio Paniconi ${ }^{\text {b }}$, Julien Tournebize ${ }^{\text {c }}$, Sylvain Weilld ${ }^{\text {, }}$, Nadia Carluer ${ }^{\text {a }}$
INRS
a-Irstea, UR MALY, 5 rue de la Doua, 69100 Villeurbanne, France (*corresponding author: laura.gatel@irstea.fr),
b-INRS, centre Eau-Terre-Environnement, 490 rue de la Couronne, Québec (Québec) G1K 9A9, Canada.
c-Irstea, UR HBAN, 1, rue Pierre-Gilles de Gennes, 10030 Antony, France

D-LhyGes, 1, rue Blessing, 67000 Strasbourg, France.
Context
Tools to help to understand and to quantify pesticide transfers in agricultural watersheds are necessary. Physically based and spatially distributed models can be particularly useful in representing precisely processes and interactions between the soil surface and subsurface and thus in evaluating landscape mitigation elements management.

Objectives:

- To better understand reactive solute transfers at the hillslope scale, in particular surface / subsurface interactions
- To deepen the expertise on the CATHY model

2 - Evaluation of surbsurface part of the new CATHY model on laboratory data

The laboratory MASHYNS tool

$1 \mathrm{~m}^{3}$ homogeneous soil 50% loam $+50 \%$ sand Drained system Measured parameters, Controlled conditions No macropores, Low dispersion

Experimentations on MASHYNS : four rain periods with three 2-hours solute inflow (batch 1, 2 and 3). For each batch, specific solutes and one tracer are used.

		Kd	DT50 ()
BATCH 1	Clomazone	5.7	89
	azamox	0.3	70
BATCH 2	Soproturon	2.32	12
	Mesosuluron	1.77	45
вАТСН 3	Bentazone	${ }^{0.72}$	45
	cotrion	0.68	25

Reaction parameters for the 6 studied solutes

Comparison of observations and CATHY simulations without calibration

Simulation results and observations on cumulative output
mass for each batch
\rightarrow Except for clomazone, all evaluations are between acceptable and good \rightarrow Yet for all simulations, breakthrough delay is non negligible

3 - Test of the new CATHY model on a vineyard hillslope

Study site : a 150-m long vineyard hilislope along the Morcille river (Beaujolais, France). The study will use data from a natural rain/runoff event.

Aerial view of the vineyard hillslope and corresponding

Vegetative buffer strip : a transfer mitigation landscape element involving complex processes interactions

domain as used in CATHY ($1 \mathrm{~m} \times 1 \mathrm{~m}$ mesh and 25 layers)

| $\begin{array}{l}\text { Real field situation : not all } \\ \text { parameters are well-known. }\end{array}$ |
| :--- | parameters are well-known. ${ }^{+} \quad$ and subsurface is complex.

$=$ Challenging The runoff repartition is complex The upscaling (compared to simulation! $+\begin{aligned} & \text { ("rases" : small ditches which } \\ & \text { artificially gather surface runoff). }\end{aligned} .+\begin{aligned} & \text { MASHYNS) will increase } \\ & \text { computing costs. }\end{aligned}$

Conclusion \& perspectives

On the CATHY model with reactive transfers :
The performed tests and the sensitivity analysis based on MASHYNS data validated the subsurface part of CATHY reactive transfers version : ability to reproduce observations, robustness regarding to parameters variation

On the hillslope modeling:
The field is ideal to study complex processes and thus represents a major challenge for CATHY with reactive transfers. Additionally, some existing processes are not explicitly represented (macroporosity, diffusion and dispersion) and we will verify CATHY's ability to globally report major processes at the hillslope scale. The aim is not to reproduce exact observations, but more to analyse model's results on chosen synthetic cases.

