A method for mapping topsoil field-saturated hydraulic conductivity in the Cévennes-Vivarais region using infiltration tests conducted with different techniques
Isabelle Braud, J.F. Desprats, P.A. Ayral, C. Bouvier, J.P. Vandervaere

To cite this version:
Isabelle Braud, J.F. Desprats, P.A. Ayral, C. Bouvier, J.P. Vandervaere. A method for mapping topsoil field-saturated hydraulic conductivity in the Cévennes-Vivarais region using infiltration tests conducted with different techniques. EGU General Assembly 2017, Apr 2017, Vienna, Austria. pp.1, 2017. hal-02606800
A method for mapping topsoil field-saturated hydraulic conductivity \(K_{fs}\) in the Cévennes-Vivarais region using infiltration tests conducted with different techniques

Isabelle Braud(1), Jean-François Desprats(2), Pierre-Alain Ayral(3), Christophe Bouvier(4), Jean-Pierre Vandraevaere(5)

(1) Irstea, UR HHLY, Villeurbanne, France (isabelle.braud@irstea.fr), (2) BRGM, Montpellier, France (3) LGEI, IMT Mines d’Alès, Alès, France, (4) HydroSciences, Montpellier, France, (5) IGE, Grenoble, France

1. CONTEXT AND OBJECTIVES

Context:
Flash floods are natural hazards that affect the Mediterranean region. They are caused by intense rainfall events but catchment characteristics, and particularly topsoil field-saturated hydraulic conductivity \(K_{fs}\), are also influential on the hydrological response. For distributed hydrological models, maps of \(K_{fs}\) are useful, as \(K_{fs}\) impacts Hortonian runoff, but they are difficult to obtain from point measurements.

Objectives:
- Propose a method to map \(K_{fs}\) from GIS data with application to the Cévennes-Vivarais region where infiltration measurements obtained with different methods were available (Fig. 1)
- Propose a method to pool available infiltration measurements obtained with various techniques in the region for regionalization

2. STUDY AREA AND DATA

Study catchment and available data (Fig. 1 and 2):
- Infiltration measurements performed using Guelph permeameter (GP) and Double Ring infiltration devices (DR) between 2002 and 2008 in the Gardon and Avène catchments
- Single Ring (SR) infiltration measurements in the Claduègne catchment (2012) and Yzeron catchment (2008, blue rectangle in Fig. 1)
- Tension Disk Infiltrometers (TI)

3. POOLING INfiltrATION MEASUREMENTS

Raw data show significant difference in distribution among methods (Fig. 3) so pooling the data requires specific treatments

4. HYDRAULIC CONDUCTIVITY MAPS

A two steps method for pooling \(K_{fs}\) data from various methods:
- Pooling of GP and DR data by geology * land use (Desprats et al., 2010, Fig. 4) and conversion of GP data to equivalent DR data
- Pooling SR and DR + TI data (Fig. 5) to get a final set of homogenized equivalent DR + TI data set

5. MAPPING TOPSOIL \(K_{fs}\)

Mapping method:
- Field data analysis show that geology and land use are significant explaining factors of \(K_{fs}\) and one value is assigned by geology * land use class (Fig. 6)
- Geology and land use were used to produce a map of \(K_{fs}\) (Fig. 7a) that is compared to a map derived from Rawls and Brakensiek (1985, RB85) pedotransfer function (Fig. 7b) based on a pedology map with associated soil data base including information about soil texture

6. CONCLUSIONS AND PERSPECTIVES

- A method was proposed to pool infiltration measurements of \(K_{fs}\) obtained with different techniques
- Geology and land use were found to be discriminant factors explaining the variability of \(K_{fs}\)
- Geology and land use can be used to map \(K_{fs}\)
- Perspective: use the map in a distributed hydrological model to assess if flash flood simulation is improved as compared to the use of pedotransfer functions

References:

Acknowledgements: This work was conducted with the support of ANR FloodScale, Schiap. OHM-CV and MSITRALSpotMix