J2000-Rhône: a distributed hydrological model including water-use modelling to assess sustainability of the water resource

Isabelle Braud, F. Branger, I. Gouttevin, Eric Sauquet, François Tilmant, Marielle Montginoul

To cite this version:

HAL Id: hal-02606805
https://hal.inrae.fr/hal-02606805
Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
J2000-Rhône: a distributed hydrological model including water use modelling to assess sustainability of the water management

Isabelle Braud (1), Flora Branger (1), Isabelle Gouttevin (3), Eric Sauquet (1), François Tilmant (1), Marielle Montginoul (2)
(1) Irstea, UR HHLY, Villeurbanne, France (isabelle.braud@irstea.fr)
(2) Irstea, UMR G-EAU, Montpellier, France

1. CONTEXT AND OBJECTIVES

Context:
Mediterranean and Alpine catchments are hot spots of climate, land use and practices changes, raising questions about the future of water resources in these catchments. To anticipate such changes and compare different adaptation solutions, process-based distributed models can provide useful results for stakeholders, provided the models are able to handle water uses impact and management.

Objectives:
• Develop a distributed hydrological model over the whole Rhône catchment
• Include a representation of the prevailing water uses: dam influence / irrigation / drinking water
• Use this tool for prospective studies as to the future of the water resource

2. THE RHONE CATCHMENT

Study catchment (Fig. 1)
• A 95 000 km² watershed
• A large diversity in topography (from 0 to 4807 m), climates (Alpine, Oceanic, Mediterranean)
• A large anthropogenic impact on water resources through a large diversity of water uses: dams and derivations, irrigation, drinking water (around 13 M inhabitants)

Figure 1: Location and topography of the Rhône catchment. Red triangles are the main dams. Photos illustrate the various landscapes and water uses (irrigation, dams). The bottom graph shows the impact of a dam on the interannual monthly water cycle.

J2000-Rhône principles
• A fully distributed process-based hydrological model, based on the Hydrological Response Unit (HRU) concept (modeling units are homogeneous in terms of topography, geology, land use and soil properties) (Fig. 2)
• Modular open-source code modules developed in the JAMS modeling platform
• Natural hydrology: adaptation of the J2000 model (Krause et al., 2006) to the French context (Fig.3)
• Building of new modules for dams and derivations (Fig. 5), irrigation (Fig. 6) and drinking water (ecometric model)

Figure 2: HRUs of the Rhône catchment and discharge gauging stations used for the evaluation

Figure 3: Processes modelled at the HRU scale. Routing of the three runoff components is performed from HRU to HRU until reaching the river where a kinematic wave approximation is used

Figure 5: Dam and derivation module. (a) An interannual objective function is estimated from data and applied daily to the model, (b) Illustration for the Loire-Andeche derivation

Figure 6: Main irrigated crop at the “canton” scale randomly distributed on the HRUs. Irrigation (aspiration, drip, gravitation) is computed as the difference between water demand and available water with two parameters: objective % soil filling and network efficiency. Water is taken in the closest river reach

Figure 7: Nash criteria (a) before and (b) after model improvement. The number of stations with Nash >0.5 increases from 16% to 50%

Figure 8: Computed drinking water pressure index (demand/resource) for year 2009 for natural (lft) and influenced hydrology (right)

Climate and irrigation change scenario (Fig. 9)
• One climate change scenario (one GCM only)
• Change irrigation practices (from aspersion to drip)
• Compute a Water Stress Index (WSI=demand/resource)

Figure 9: Interannual monthly WSI computed for three typical “cantsons” with (a) climate change only (from top to bottom: ref, RPC 2.6, 4.5, 8.5) and (b) with climate change and change of irrigation from aspersation to drip irrigation

Figure 4: Zoom on an irrigation area in the Saône catchment

Climate change and no change in irrigation practice

Climate change and irrigation changed from aspersation to drip irrigation

4. INPUT DATA

Input data
• Input rainfall and reference ET0 computed from SAFRAN climate data base (Vidal et al., 2010)
 • crop coefficient for the main land uses
 • ASTER 30 m DTM aggregated to 200 m
 • Corine Land Cover 2006
 • Pedology: Soil European Data base 1/1000000
 • Geology at 1/250000 (BRGM)
 • Location and volume of the main dams
 • RVA 2010 data base for information on irrigated surfaces and crops + association of an irrigation type to each crop

Model set up and evaluation
• Model run at the daily time step for 1985-2012
• Parameter assigned according to available knowledge and literature
• No calibration, but an iterative improvement of the model to keep a physical meaning to parameters

5. MODEL RESULTS AND PROSPECTIVE SCENARI

Model evaluation in natural conditions
• The iterative strategy of model improvement leads to improved performance (Fig. 7)
• Distinction between plain and mountain
• Adjustment of soil water storage capacity, impervious fraction

Pressure on resources due to drinking water (Fig. 8)

• To face the growing urbanization and population increase in the Rhone catchment, the model simulates the impact of water uses on the water resources

6. CONCLUSIONS AND PERSPECTIVES

Main achievements
• A model set up at the scale of the whole Rhône catchment, and including the main water uses
• Feasibility for use in climate and practices changes sensitivity analyses demonstrated

Directions for improvements
• Formalization of the iterative model improvement based on hydrological signatures (on-going PhD)
• Get data at the right scale to better specified water withdrawals points
• Coupling with agent-based model for irrigation decision

Acknowledgements: This work was conducted with the support of Agence de l’Eau Rhone-Méditerranée-Corse, FEDER funds and CNR. Data were provided by Météo-France, EDF, Barque Hydro. The University of Jena helped in developing the model.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

References:

Krause, P., et al., 2009. Multiple investigations in a mesoscale catchment – hydrological modelling in the Geno catchment, Abis, Geosci, 8, 52-61

Krause, P., et al., 2009. Multiple investigations in a mesoscale catchment – hydrological modelling in the Geno catchment, Abis, Geosci, 8, 52-61

Krause, P., et al., 2009. Multiple investigations in a mesoscale catchment – hydrological modelling in the Geno catchment, Abis, Geosci, 8, 52-61

Krause, P., et al., 2009. Multiple investigations in a mesoscale catchment – hydrological modelling in the Geno catchment, Abis, Geosci, 8, 52-61

Krause, P., et al., 2009. Multiple investigations in a mesoscale catchment – hydrological modelling in the Geno catchment, Abis, Geosci, 8, 52-61

Krause, P., et al., 2009. Multiple investigations in a mesoscale catchment – hydrological modelling in the Geno catchment, Abis, Geosci, 8, 52-61

Krause, P., et al., 2009. Multiple investigations in a mesoscale catchment – hydrological modelling in the Geno catchment, Abis, Geosci, 8, 52-61

Krause, P., et al., 2009. Multiple investigations in a mesoscale catchment – hydrological modelling in the Geno catchment, Abis, Geosci, 8, 52-61

Krause, P., et al., 2009. Multiple investigations in a mesoscale catchment – hydrological modelling in the Geno catchment, Abis, Geosci, 8, 52-61

Krause, P., et al., 2009. Multiple investigations in a mesoscale catchment – hydrological modelling in the Geno catchment, Abis, Geosci, 8, 52-61