

Unexpected impact of N availability on the interaction between Quercus and Deschampsia cespitosa

Antoine Vernay, Philippe Malagoli, M. Fernandez, Thomas Perot, Thierry Ameglio, Philippe Balandier

▶ To cite this version:

Antoine Vernay, Philippe Malagoli, M. Fernandez, Thomas Perot, Thierry Ameglio, et al.. Unexpected impact of N availability on the interaction between Quercus and Deschampsia cespitosa. Functional Ecology and Environment Conference, Jul 2017, Toulouse, France. pp.1, 2017. hal-02606846

HAL Id: hal-02606846 https://hal.inrae.fr/hal-02606846

Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Unexpected impact of N availability on the interaction between Quercus petraea and Deschampsia cespitosa

VERNAY Antoine¹, MALAGOLI Philippe¹, FERNANDEZ Marine¹, PEROT Thomas², AMEGLIO Thierry¹, BALANDIER Philippe²

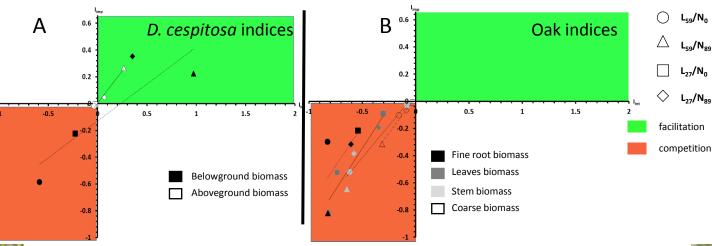
¹PIAF, INRA, Univ. Clermont-Auvergne, 63100 Clermont-Ferrand, France

² Irstea, Research Unit on Fo<mark>rest Ecosyste</mark>ms (EFNO), Domaine des Barres, F-45290 Nogent-sur-Vernisson, France

Introduction:

The influence of resource quantity on plant – plant interactions has not led to a consensus. This study aimed to understand how oak tree seedlings and tussock grass interaction evolve among different N×L availability combinations.

Objectives:


- Determine how were early oak / D. cespitosa responses affected by abiotic environment
- Assess importance and intensity of the interactions, either competition or facilitation
- Highlight plant strategy to face interactions with other species

Materials & Methods

Nitrogen (N): no N supply (N_0) or 89 kg.ha⁻¹ (N_{89}) Light (L): pot under light shelter (27%iPAR, L₂₇) or well lit (~59%iPAR, L₅₉) Competition (C): oak alone, with 3 D. cespitosa tufts in mixture or 3 D. cespitosa tufts alone

1 pot = N x L x C

¹⁵N supply 17d before harvesting. Oak and *D. cespitosa* organs were separated for allocation analyse.

<u>Fig. 1.</u> Relationship between importance (I_{imp}) and intensity (I_{int}) of interaction by *D. cespitosa* on oak (Fig 1A) and by oak on *D. cespitosa* (Fig 1B).

MENNAMERAL OF THE STATE OF THE

Fig 1A: In N_{89} treatment, positive I_{int} and $I_{imp} \rightarrow$ oak seedlings facilitated *D. cespitosa*. Fig 1B: I_{int} and $I_{imp} < 0$ for all oaks organ \rightarrow *D. cespitosa* competed with oak seedlings. Competition was the highest in L_{59} compared to L₂₇. N supply increased competition inside each L treatment.

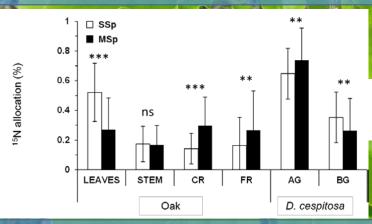


Fig 2: Relative allocation of ¹⁵N among leaves, stems, coarse (CR) and fine roots (FR) in oak seedlings and D. cespitosa (above ground biomass (AG) and below ground biomass (BG)) when sole- (SSp) or mixed-grown (MSp)

Results:

- More ¹⁵N allocated to oak storage organs, and particularly coarse roots, when mixed with *D. cespitosa* (Fig 2)
- D. cespitosa preferentially allocated ¹⁵N resource to aboveground organs (Fig 2)

Conclusion:

- When N-fertilised oak seedlings facilitate D. cespitosa growth. Oaks seedling would produce more exudates available for fast capture by D.cespitosa.
- In every cases interaction is negative (competition) for oak. Higher resource availability (L or N) increased competition.
- The two species display different strategies, capture strategy for grass and conservative strategy for oak.

Perspective:

- Integrate other resources as water or phosphorus.
- Assess a potential impact of allelopathic compounds
- Determine role of tree seedling reserve to face competition with grass.