Coupling experimental and computational fluid dynamics: Synopsis of approaches, issues and perspectives

Dominique Heitz

- To cite this version:

Dominique Heitz. Coupling experimental and computational fluid dynamics: Synopsis of approaches, issues and perspectives. 2nd Workshop on Data Assimilation and CFD Processing for PIV and Lagrangian Particle Tracking, Dec 2017, Delft, Netherlands. pp.34. hal-02607025

HAL Id: hal-02607025
 https://hal.inrae.fr/hal-02607025

Submitted on 5 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Coupling experimental and computational fluid dynamics: Synopsis of approaches, issues and perspectives

Dominique Heitz

Fluminance team, Irstea, IRMAR and Inria of Rennes, France ACTA team leader, Irstea, Rennes, France

2nd Workshop on Data Assimilation and CFD Processing Techniques December 14, 2017, Delft, Netherland

Confronting EFD and CFD is inherent of fluid mechanics approach

Experiments

- LDV as a reference
- HWA \rightarrow very good
- PIV \rightarrow good

DNS (Dairy et al.,2015)

Numerical simulations

- DNS as a reference \rightarrow numerical wind tunnel
- A priori parameter calibration
- A posteriori simulation validation

EFD and CFD limitations

Experiments

- HWA and LDV \rightarrow pointwise
- PIV \rightarrow large scale
- TomoPIV \rightarrow very large scale \Rightarrow sparse data

DNS (Dairy et al.,2015)

Numerical simulations

- Initial conditions
- Boundary conditions
- Turbulence model and parameters
\Rightarrow non "realistic" simulations

Coupling EFD and CFD with data assimilation

Objective

- Estimation of the unknown true state of interest $\mathbf{x}(t, x)$
- Recover as accurately as possible the state of the fluid flow using all available information

Question: how to do that ?

Data assimilation ingredients

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications

Data assimilation ingredients

Experiments

- Observation model

$$
\mathcal{Y}(t, x)=\mathbb{H}(\mathbf{x}(t, x))+\varepsilon(t, x)
$$

DNS (Dairy et al.,2015)

Numerical model

- Dynamical model

$$
\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=\mathbf{q}(t, x)
$$

- Prior knowledge model

$$
\mathbf{x}\left(t_{0}, x\right)=\mathbf{x}_{0}^{b}+\boldsymbol{\eta}(x)
$$

Data and dynamics dimensions

DNS (Dairy et al.,2015)

Data and model resolution: d vs m

- Geosciences $d \ll m$
- PIV $d \leq m$ or $d \ll m$
- Model resolution: ROM vs DNS
- Laboratory vs Industrial processes
- 2D vs 3D
- Reynolds

Data assimilation ingredients
Data assimilation: observation and dynamics models
TomoPIV (Irstea)

DNS (Dairy et al.,2015)

$$
\mathcal{Y}(t, x)=\mathbb{H}(\mathbf{x}(t, x))+\varepsilon(t, x)
$$

$$
\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=\mathbf{q}(t, x)
$$

- Pseudo observation \rightarrow velocity, vorticity, lagrangian acceleration, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$
- Observation \rightarrow images of particles, scalar (smoke, gaz, temperature), thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} can be nonlinear
- Eulerian or Lagrangian
- Eulerian: ROM, Vortex particle, Lattice Boltzman, RANS, LES, DNS
- Lagrangian: Smooth Particule Hydrodynamics (SPH)

Data assimilation ideal case
Papadakis \& Mémin (2008) - Heitz et al. (2010)

$\mathcal{Y}(t, x)=\mathbb{H}(\mathbf{x}(t, x))+\varepsilon(t, x)$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$

$\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0$
- DNS of 2D IHT at $R e=256$
- Resolution: 256×256

Da sion

Data assimilation ideal case

Papadakis \& Mémin (2008) - Heitz et al. (2010)

$\partial_{t} I(t, x)+\mathbf{x} \cdot \nabla I(t, x)=\varepsilon(t, x)$

$$
\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0
$$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$
- DNS of 2D IHT at $R e=256$
- Resolution: 256×256

Data assimilation ingredients

Data assimilation ideal case

Papadakis \& Mémin (2008) - Heitz et al. (2010)

$\hat{\mathbf{x}}(t, x)=\mathbf{x}(t, x)+\varepsilon(t, x)$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$

$\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0$
- DNS of 2D IHT at $R e=256$
- Resolution: 256×256

Data assimilation ideal case
Papadakis \& Mémin (2008) - Heitz et al. (2010)

$\mathcal{Y}(t, x)=\mathbb{H}(\mathbf{x}(t, x))+\varepsilon(t, x)$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$

$\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0$
- DNS of 2D IHT at $R e=256$
- Resolution: 256×256

Data assimilation ideal case
Papadakis \& Mémin (2008) - Heitz et al. (2010)

$$
\partial_{t} I(t, x)+\mathbf{x} \cdot \nabla I(t, x)=0
$$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$

$\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0$
- DNS of 2D IHT at $R e=256$
- Resolution: 256×256

Data assimilation ideal case
Papadakis \& Mémin (2008) - Heitz et al. (2010)

$$
\hat{\mathbf{x}}(t, x)=\mathbf{x}(t, x)+\varepsilon(t, x)
$$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$

$\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0$
- DNS of 2D IHT at $R e=256$
- Resolution: 256×256

Data assimilation ingredients

Data assimilation ideal case

Papadakis \& Mémin (2008) - Heitz et al. (2010)

$\partial_{t} I(t, x)+\mathbf{x} \cdot \nabla I(t, x)=\varepsilon(t, x)$

- Observation \rightarrow particle images, thus $\mathcal{Y}(t, x)=I(t, x)$ and \mathbb{H} linear
- Pseudo observation \rightarrow velocity, thus $\mathcal{Y}(t, x)=\hat{\mathbf{x}}(t, x)$ and $\mathbb{H}=\mathbb{I}$

$\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=0$
- DNS of 2D IHT at $R e=256$
- Resolution: 256×256

Data assimilation tools

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications

Data assimilation: the state estimation problem

Ingredients

- Observation model $\mathcal{Y}(t, x)=\mathbb{H}(\mathbf{x}(t, x))+\varepsilon(t, x)$
- Dynamical model $\partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x))=\mathbf{q}(t, x)$
- Prior knowledge model $\mathbf{x}\left(t_{0}, x\right)=\mathbf{x}_{0}^{b}+\boldsymbol{\eta}(x)$
\rightarrow Random nature of observation, dynamic and knowledge errors described in term of pdf

Bayesian formulation

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathcal{Y})=\frac{p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathcal{Y})} \\
& p(\mathbf{x} \mid \mathcal{Y}) \propto p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})
\end{aligned}
$$

posterior \propto likelihood \times prior
estimation \propto observations \times knowledge
Prior distribution:

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation tools

Data assimilation: the state estimation problem

Carassi et al. (2017)

Information: past
\rightarrow For the control?

Bayesian formulation

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathcal{Y})=\frac{p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathcal{Y})} \\
& p(\mathbf{x} \mid \mathcal{Y}) \propto p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})
\end{aligned}
$$

posterior \propto likelihood \times prior
estimation \propto observations \times knowledge
Prior distribution:

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation tools

Data assimilation: the state estimation problem

> Carassi et al. (2017)

Filtering

Information: past and present
\rightarrow Sequential processing providing discontinuous trajectories

Bayesian formulation

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathcal{Y})=\frac{p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathcal{Y})} \\
& p(\mathbf{x} \mid \mathcal{Y}) \propto p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})
\end{aligned}
$$

posterior \propto likelihood \times prior
estimation \propto observations \times knowledge
Prior distribution:

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation tools

Data assimilation: the state estimation problem

Carassi et al. (2017)

Information: past, present and future
\rightarrow Relevant for reconstruction or reanalysis and for model parameters estimation

Bayesian formulation

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathcal{Y})=\frac{p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathcal{Y})} \\
& p(\mathbf{x} \mid \mathcal{Y}) \propto p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})
\end{aligned}
$$

posterior \propto likelihood \times prior estimation \propto observations \times knowledge Prior distribution:

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation: the state estimation problem

Computational problem

- Huge dimension of data and models prevent use of fully Bayesian approach
- Difficulty to define and transport the pdfs

Bayesian formulation

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathcal{Y})=\frac{p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathcal{Y})} \\
& p(\mathbf{x} \mid \mathcal{Y}) \propto p(\mathcal{Y} \mid \mathbf{x}) p(\mathbf{x})
\end{aligned}
$$

posterior \propto likelihood \times prior
estimation \propto observations \times knowledge
Prior distribution:

- Prevents from over-fitting
- Introduce past information
- Good prior not straightforward
and second moments (i.e mean and covariance matrix)

Data assimilation: Kalman filter

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
\rightarrow Time dependent prior (mean, cov.)
\rightarrow Comput. cost. of K and P

Main algorithm

1. Forecast step

$$
\begin{aligned}
& \mathbf{x}_{k}^{\mathrm{f}}=\mathbf{M}_{k: k-1} \mathbf{x}_{k-1}^{\mathrm{a}} \\
& \mathbf{P}_{k}^{\mathrm{f}}=\mathbf{M}_{k: k-1} \mathbf{P}_{k-1}^{\mathrm{a}} \mathbf{M}_{k: k-1}^{\mathrm{T}}+\mathbf{Q}_{k} .
\end{aligned}
$$

2. Analysis step

$$
\begin{aligned}
& \mathbf{K}_{k}=\mathbf{P}_{k}^{\mathrm{f}} \mathbf{H}_{k}^{\mathrm{T}}\left(\mathbf{H}_{k} \mathbf{P}_{k}^{\mathrm{f}} \mathbf{H}_{k}^{\mathrm{T}}+\mathbf{R}_{k}\right)^{-1}, \\
& \mathbf{x}_{k}^{\mathrm{a}}=\mathbf{x}_{k}^{\mathrm{f}}+\mathbf{K}_{k}\left(\mathbf{y}_{k}-\mathbf{H}_{k} \mathbf{x}_{k}^{\mathrm{f}}\right), \\
& \mathbf{P}_{k}^{\mathrm{a}}=\left(\mathbf{I}_{k}-\mathbf{K}_{k} \mathbf{H}_{k}\right) \mathbf{P}_{k}^{\mathrm{f}} .
\end{aligned}
$$

Data assimilation: Kalman filter

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
\rightarrow Time dependent prior (mean, cov.)
\rightarrow Comput. cost. of K and P

Alternative approaches

- Extended Kalman Filter (EKF)
$\rightarrow H$ and M linearized
- Sub Optimal Filter (SOS)
\rightarrow Reduce comput. cost H

Data assimilation: Kalman filter

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
\rightarrow Time dependent prior (mean, cov.)
\rightarrow Comput. cost. of K and P

Alternative approaches

- Extended Kalman Filter (EKF)
$\rightarrow H$ and M linearized
- Sub Optimal Filter (SOS)
\rightarrow Reduce comput. cost H
- Ensemble Kalman Filter (EnKF)
\rightarrow Empirical estimation of P
$\rightarrow H$ and M non linear

Data assimilation: Kalman filter

From Boquet's lecture notes (2014-2015)

Properties

- Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
\rightarrow Time dependent prior (mean, cov.)
\rightarrow Comput. cost. of K and P

Alternative approaches

- Extended Kalman Filter (EKF)
$\rightarrow H$ and M linearized
- Sub Optimal Filter (SOS)
\rightarrow Reduce comput. cost H
- Particle Filter (PF)
$\rightarrow H$ and M non linear
\rightarrow Noises: non-Gaussian, biased, multimodal
\rightarrow Sampling issues due to high dimensions

ata assimilation tools

Data assimilation: Variationnal 4DVar

Properties

- Obs. and dynamics non-linear
- Noises Gaussian, unbiased, white-in-time

Energy function

$J\left(\mathrm{x}_{0}\right)=\frac{1}{2}\left\|\mathrm{x}_{0}-\mathrm{x}_{0}^{b}\right\|_{B}^{2}+\frac{1}{2} \int_{t_{0}}^{t_{f}}\|\mathbb{H}(\mathbf{x})-\mathcal{Y}\|_{R}^{2} d t$,
s.t. $\quad \partial_{\mathrm{t}} \mathrm{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x), u)=0$.

- Computing the gradient of $J\left(\mathrm{x}_{0}\right)$ is very expensive!
- Deduced by solving the backwards adjoint equation

$$
\begin{aligned}
& -\partial_{t} \lambda(t)+\left(\partial_{X} \mathbb{M}\right)^{*} \lambda(t)=\left(\partial_{X} \mathbb{H}\right)^{*} R^{-1}(Y(t)-H(X(t) \\
& \lambda\left(t_{f}\right)=0
\end{aligned}
$$

\rightarrow Time independent prior (B)
\rightarrow Derivation of the adjoint model

Data assimilation: 4DVar implementation

Data assimilation: Ensemble Variationnal EnVar

Properties

- Obs. and dynamics non-linear
- Noises Gaussian, unbiased, white-in-time
\rightarrow Sample based covariance (B)
\rightarrow Time dependent prior (B)
\rightarrow No derivation of the adjoint model

Energy function

$$
J\left(\mathbf{x}_{0}\right)=\frac{1}{2}\left\|\mathbf{x}_{0}-\mathbf{x}_{0}^{b}\right\|_{B}^{2}+\frac{1}{2} \int_{t_{0}}^{t_{f}}\|\mathbb{H}(\mathbf{x})-\mathcal{Y}\|_{R}^{2} d t
$$

s.t. $\quad \partial_{t} \mathbf{x}(t, x)+\mathbb{M}(\mathbf{x}(t, x), u)=0$.

- Change cost function in terms of weighting vector
- Propagation of $B^{\frac{1}{2}}$ projected into observation space
\rightarrow Based on optimization theory
\rightarrow Fast operational implementation
\rightarrow Uncertainty sample-based or from optimization procedure
\rightarrow Localization and inflation

Overview of significant achievements

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications

Data assimilation: data-driven vs model-driven

Different modelling

Data assimilation: data-driven vs model-driven

Non exhaustive state of the art

Chandramouli et al. $(2016,2017)$ Mons et al. $(2015,2016)$
Foures et al. (2014)
Gronskis et al. (2013)
Zuzuki et al. (2012)
Colburn et al. (2011)
Papadakis et al. (2008)
Scarano et al. (2012) Cuzol et al. (2007)

LKFT STB VIC+	Robinson (2015)	Chandramouli et al. $(2016,2017)$
	Mons et al. $(2015,2016)$	
VIC	Foures et al. (2014)	
STB	Gronskis et al. (2013)	Mémin (2014)
FTC-FTEE	Zuzuki et al. (2012)	
erian et al. (2013)	Colburn et al. (2011)	
Héas et al. (2012)	Papadakis et al. (2008)	
Scarano et al. (2012)	Cuzol et al. (2007)	Parnaudeau et al. (2008)

Heitz et al. (2008) D'Adamo et al. (2007)
Elsinga et al. (2006) Perret et al. (2006) Perret et al. (2006)
PIV Variationnal / Filtering
Druault et al. (2004)

Exp Fluid Dynamics

Data Assimilation

Data Assimilation

Comp. Fluid Dynamics

Overview of significant achievements

Data assimilation: data-driven vs model-driven

Variational vs Filtering approaches

Data assimilation: data-driven vs model-driven

3D vs 2D approaches
 FlowFit Yegavian (2017)Meldi Poux (2017)ddine (2017) Flow Fit Ye Robinson (2015)

Chandramouli et al. $(2016,2017)$ Mons et al. $(2015,2016)$
Foures et al. (2014)
Gronskis et al. (2013)
Zuzuki et al. (2012)
Colburn et al. (2011)
Derian et al. (2013)
Héas et al. (2012) Papadakis et al. (2008)
Scarano et al. (2012) Cuzol et al. (2007)
Parnaudeau et al. (2008)
Heitz et al. (2008) D'Adamo et al. (2007)
Elsinga et al. (2006) Perret et al. (2006)
Perret et al. (2006)
Variationnal / Filtering
DNS/LES/RANS
Druault et al. (2004)

Exp Fluid Dynamics

Data Assimilation

Comp. Fluid Dynamics

IRMAR

Data assimilation: data-driven vs model-driven

Overview of significant achievements

Data assimilation: data-driven vs model-driven

AIAA Journal
Vol. 42, No. 3, March 2004

Generation of Three-Dimensional Turbulent Inlet Conditions for Large-Eddy Simulation

P. Druault*
Université Pierre-et-Marie-Curie, 78210 Saint Cyr l'Ecole, France
S. Lardeau ${ }^{\dagger}$
Imperial College of Science, Technology, and Medicine, London, England SW7 2BY, United Kingdom
and

Université de Poitiers, 86962 Futuroscope Chasseneuil CEDEX, France

Overview of significant achievements

Data assimilation: data-driven vs model-driven

PHYSICS OF FLUIDS 20, 075107 (2008)

Turbulent inflow conditions for large-eddy simulation based on low-order empirical model

Laurent Perret, ${ }^{1, a)}$ Joël Delville, ${ }^{2}$ Rémi Manceau, ${ }^{2}$ and Jean-Paul Bonnet ${ }^{2}$
${ }^{1}$ Laboratoire de Mécanique des Fluides (LMF), UMR CNRS 6598, Ecole Centrale de Nantes,
1 rue de la Noë BP 92101, F-44321 Nantes Cedex 3, France
${ }^{2}$ Laboratoire d'Etudes Aérodynamiques (LEA), ENSMA, CNRS, CEAT, Université de Poitiers,
43, route de l'aérodrome, F-86036 Poitiers, France
(Received 30 October 2007; accepted 3 June 2008; published online 22 July 2008)

FIG. 1. DT-SPIV setup.

IRMAR

Overview of significant achievements

Data assimilation: data-driven vs model-driven

```
RESEARCH ARTICLE
```


Dynamic consistent correlation-variational approach for robust optical flow estimation

D. Heitz • P. Héas • E. Mémin • J. Carlier

$$
\begin{equation*}
J(\mathbf{u}, I)=J_{\mathrm{d}}(\mathbf{u}, I)+J_{\mathrm{r}}(\mathbf{u})+J_{\mathrm{p}}\left(\mathbf{u}, \mathbf{u}_{\mathrm{p}}\right)+J_{\mathrm{c}}\left(\mathbf{u}, \mathbf{u}_{\mathrm{c}}\right), \tag{12}
\end{equation*}
$$

where $J_{\mathrm{p}}(\cdot)$ is an energy function constraining displacements \mathbf{u} to be consistent with a physically sound prediction \mathbf{u}_{p} relying on Navier-Stokes equations. As proposed in Héas et al. (2007), we define this functional as a quadratic distance between the estimated field \mathbf{u} and the dense propagated field $\mathbf{u}_{\mathrm{p}}=\left(u_{\mathrm{p}}, v_{\mathrm{p}}\right)$:
$J_{\mathrm{p}}\left(\mathbf{u}, \mathbf{u}_{\mathrm{p}}\right)=\beta \int_{\Omega}\left\|\mathbf{u}_{\mathrm{p}}(\mathbf{s})-\mathbf{u}(\mathbf{s})\right\|^{2} \mathrm{ds}$,
where β denotes a weighting factor. This approach constitutes an alternative to the spatio-temporal smoother defined in Weickert and Schnörr (2001) and is to some extent similar to the temporal constraint introduced in Rhunau et al. (2007). It is important to distinguish this

Overview of significant achievements

Data assimilation: data-driven vs model-driven

RESEARCH ARTICLE

Dense velocity reconstruction from tomographic PTV with material derivatives

Jan F. G. Schneiders ${ }^{1} \cdot$ Fulvio Scarano 1

$J=J_{u}+\alpha^{2} J_{D u}$,
where α is a weighting coefficient (Sect. 2.3.3), J_{u} is given by Eq. (7) and $J_{D u}$ is given by Eq. (8),
$J_{u}=\sum_{p}\left\|\boldsymbol{u}_{h}\left(\boldsymbol{x}_{p}\right)-\boldsymbol{u}_{m}\left(\boldsymbol{x}_{p}\right)\right\|^{2}$,
$J_{D u}=\sum_{p}\left\|\frac{D \boldsymbol{u}_{h}}{D t}\left(\boldsymbol{x}_{p}\right)-\frac{D \boldsymbol{u}_{m}}{D t}\left(\boldsymbol{x}_{p}\right)\right\|^{2}$,
where \boldsymbol{u}_{h} and $D u_{h} / D t$ are calculated from Eqs. (1) and (2) and are evaluated at the particle locations, \boldsymbol{x}_{p}, by linear interpolation from the computational grid. The cost function penalizes the difference between the PTV measurements and the velocity and material derivative at a single measurement time-instant calculated from the optimization variables. The optimization problem does not include time-integration of the vorticity transport equation.

Some applications

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications

Wave in a rectangular flat bottom tank

Reconstruct unobserved state from depth camera
WEnKF approach from Combès et al. (2015)
EnVar approach from Yang et al. (2015)
Depth observations

Data assimilation

- Reconstruct unobserved surface velocity
- Error model

Wave in a rectangular flat bottom tank

Flow configuration

- $L x \times L y=250 \mathrm{~mm} \times 100 \mathrm{~mm}$
- Initial free surface height difference $h_{0}=1 \mathrm{~cm}$
- Observations every $10 \Delta t u_{0} / L_{x}$ leading to $S t_{\mathrm{obs}} \simeq 24$, that was rather high !

Simulation parameters

- $n_{x} \times n_{y}=222 \times 88$
- $\Delta t u_{0} / L_{x}=0.0042$

Assimilation parameters

- particle number $N=100$
- $\mathbf{X}_{0} \sim \mathcal{N}\left(\mathbf{x}_{\text {init }}, \mathbf{R}_{0}\right)$
- $\mathbf{W}_{t}^{f} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{t}\right)$
- $\mathbf{W}_{t}^{g} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{t}\right)$
- $\mathbf{R}_{0}\left(0.05 h_{0} ; 0.25 u_{0} ; r_{h}\right)$
- $\mathbf{R}_{t}\left(0.04 h_{0} ; 0.06 u_{0} ; r_{h}\right)$
- $\mathbf{Q}_{t}\left(0.013 h_{0}^{2}\right.$; diag.)
- localization $h_{\text {correl }}=0.6 h_{0}$
- $x_{\text {init }}=(0,0,0)$ Invéa IVMAR irstea

Suddenly expanding flume

Flow configurations

- $L=10 \mathrm{~cm}$
- Inflow velocity and elevation oscillatory in phase at 1 Hz with $H_{\text {in }}=1 \mathrm{~cm}$ and $V_{\text {in }}=0.22 \mathrm{~m} / \mathrm{s}$
- $F r=U_{\mathrm{in}} / \sqrt{g H_{\mathrm{in}}}=0.7$

Simulation parameters

- $n_{x} \times n_{y}=200 \times 200$
- $\Delta t u_{0} / L=0.006$

Assimilation parameters

- particle number $N=100$
- $\mathbf{X}_{0} \sim \mathcal{N}\left(\mathbf{x}_{\text {init }}, \mathbf{R}_{0}\right)$
- $\mathbf{W}_{t}^{f} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{t}\right)$
- $\mathbf{W}_{t}^{g} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{t}\right)$
- $\mathbf{R}_{0}\left(0.05 h_{0} ; 0.25 u_{0} ; r_{h}\right)$
- $\mathbf{R}_{t}\left(0.04 h_{0} ; 0.06 u_{0} ; r_{h}\right)$
- $\mathbf{Q}_{t}\left(0.013 h_{0}^{2}\right.$; diag.)
- localization $h_{\text {correl }}=0.6 h_{0}$
- $\mathbf{x}_{\text {init }}=(0,0,0)$ Iñóan

Some applications

Suddenly expanding flume

Non-uniform inlet velocity profile (with spatial complexity)

Suddenly expanding flume

Elevation error maps for singleObs and multiObs

Suddenly expanding flume

Velocity error maps for singleObs and multiObs

Some applications

Cylinder wakes at $R e=112$

Gronskis et al. $(2013,2015)$

Assimilation domain Ω_{A}, coarse grútzzía

Cylinder wakes at $R e=112$
Gap reconstruction

9.4

irstea

Cylinder wakes at $R e=112$

Influence of gap size

Method's accuracy was strongly related to the size of the gap.

Influence of obs. frequency

Error decreased with increasing observations frequency
$S t_{o b s}=f_{o b s} D / U$.

Cylinder wakes at $R e=112$

Pressure, Drag and Lift reconstruction via 4DVar

- Reconstruct unobserved pressure
- Lift and Drag via control volume

How to build the background?

Real orthogonal-plane SPIV observations at $R e=300$ and 4DVar (Robinson, 2015)

- Run a simulation from inlet observations

3D initial condition correction

Real orthogonal-plane SPIV observations at $R e=300$ and 4DVar (Robinson, 2015)

Some applications

LES coefficient 4DVar data assimilation

Chandramouli (2017, CFDforPIV)

	Re	$\mathrm{n}_{x} \times \mathrm{n}_{y} \times \mathrm{n}_{z}$	$\mathrm{I}_{x} / \mathrm{D} \times \mathrm{I}_{y} / \mathrm{D} \times \mathrm{I}_{z} / \mathrm{D}$	$\mathrm{U} \Delta t / \mathrm{D}$	Duration
FD	3900	$361 \times 361 \times 48$	$20 \times 20 \times 3.14$	0.003	$40100 \Delta t$
4DVAR	3900	$145 \times 145 \times 48$	$6 \times 6 \times 3.14$	0.003	$100 \Delta t$

IRMAR
irstea

LES coefficient 4DVar data assimilation
Chandramouli (2017, CFDforPIV)

Sumary

- Data assimilation is a powerful technique to combine observations and models
- Data driven vs model driven (d vs m)
- When the amount of available data is insufficient to fully describe the system one cannot rely on data-driven approaches \rightarrow model and regularization are paramount
- Data assimilation for prediction, filtering or smoothing
- History of use is the search for suitable approximation that, even sub-optimal, works with non-linear, non Gaussian and high dimensional settings

Outlooks

- Dynamics model (large scale, uncertainties)
- Control BC (inflow, outflow, ...) and model parameters
- From pseudo-observations to observations

