∂ t I (t, x) + x • ∇I (t, x) = ε(t, x)
Evv /U 2 o k [px -1 ] Y(t, x) = H(x(t, x)) + ε(t, x) Observation → particle images, thus Y(t, x) = I (t, x
Y(t, x) = H(x(t, x)) + ε(t, x) Dynamical model ∂ t x(t, x) + M(x(t, x)) = q(t, x)
Computing the gradient of J(x 0 ) is very expensive! Deduced by solving the backwards adjoint equation

  Data assimilation: observation and dynamics models TomoPIV (Irstea) Y(t, x) = H(x(t, x)) + ε(t, x) Pseudo observation → velocity, vorticity, lagrangian acceleration, thus Y(t, x) = x(t, x) and H = I Observation → images of particles, scalar (smoke, gaz, temperature), thus Y(t, x) = I (t, x) and H can be nonlinear Eulerian or Lagrangian DNS (Dairy et al.,2015) ∂ t x(t, x) + M(x(t, x)) = q(t, x) Eulerian: ROM, Vortex particle, Lattice Boltzman, RANS, LES, DNS Lagrangian: Smooth Particule Hydrodynamics (SPH) Data assimilation ideal case Papadakis & Mémin (2008) -Heitz et al. , x) = H(x(t, x)) + ε(t, x) Observation → particle images, thus Y(t, x) = I (t, x) and H linear Pseudo observation → velocity, thus Y(t, x) = x(t, x) and H = I ∂ t x(t, x) + M(x(t, x)) = 0 DNS of 2D IHT at Re = 256 Resolution : 256 × 256 Data assimilation ideal case Papadakis & Mémin (2008) -Heitz et al. (2010)

∂

  t x(t, x) + M(x(t, x)) = 0 DNS of 2D IHT at Re = 256 Resolution : 256 × 256 Data assimilation ideal case Papadakis & Mémin (2008) -Heitz et al.

∂∂

  ) and H linear Pseudo observation → velocity, thus Y(t, x) = x(t, x) and H = I ∂ t x(t, x) + M(x(t, x)) = 0 DNS of 2D IHT at Re = 256 Resolution : 256 × 256 Data assimilation ideal case Papadakis & Mémin (2008) -Heitz et al. t I (t, x) + x • ∇I (t, x) = 0 Observation → particle images, thus Y(t, x) = I (t, x) and H linear Pseudo observation → velocity, thus Y(t, x) = x(t, x) and H = I ∂ t x(t, x) + M(x(t, x)) = 0 DNS of 2D IHT at Re = 256 Resolution : 256 × 256 Data assimilation ideal case Papadakis & Mémin (2008) -Heitz et al. (2010) , x) = x(t, x) + ε(t, x) Observation → particle images, thus Y(t, x) = I (t, x) and H linear Pseudo observation → velocity, thus Y(t, x) = x(t, x) and H = I ∂ t x(t, x) + M(x(t, x)) = 0 DNS of 2D IHT at Re = 256 Resolution : 256 × 256 Data assimilation ideal case Papadakis & Mémin (2008) -Heitz et al. (2010) t I (t, x) + x • ∇I (t, x) = ε(t, x) Observation → particle images, thus Y(t, x) = I (t, x) and H linear Pseudo observation → velocity, thus Y(t, x) = x(t, x) and H = I ∂ t x(t, x) + M(x(t, x)) = 0 DNS of 2D IHT at Re =

→→

  Prior knowledge model x(t 0 , x) = x b 0 + η(x) → Random nature of observation, dynamic and knowledge errors described in term of pdf Time dependent prior (mean, cov.) → Comput. cost. of K and P Time dependent prior (mean, cov.) → Comput. cost. of K and P Alternative approaches Extended Kalman Filter (EKF) → H and M linearized Sub Optimal Filter (SOS) → Reduce comput. cost H Data assimilation tools Data assimilation: Kalman filter Properties Obs. and dynamics linear Noises Gaussian, unbiased, white-in-time → Time dependent prior (mean, cov.) → Comput. cost. of K and P Alternative approaches Extended Kalman Filter (EKF) → H and M linearized Sub Optimal Filter (SOS) → Reduce comput. cost H Ensemble Kalman Filter (EnKF) → Empirical estimation of P → H and M non linear Data assimilation: Variationnal 4DVar Properties Obs. and dynamics non-linear Noises Gaussian, unbiased, white-in-time → Time independent prior (B) → Derivation of the adjoint model ) -Y 2 R dt, s.t. ∂t x(t, x) + M(x(t, x), u) = 0.

  

  

  

  

  

  

  

  

  

  

Papadakis & Mémin (2008) -Heitz et al. (2010)

Data assimilation: Kalman filter From Boquet's lecture notes (2014)(2015) Data assimilation: 4DVar implementation Data assimilation tools

Energy function

Change cost function in terms of weighting vector Propagation of B