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Confronting EFD and CFD is inherent of fluid mechanics
approach

TomoPIV (Irstea)

Experiments

I LDV as a reference

I HWA → very good

I PIV → good

DNS (Dairy et al.,2015)

Numerical simulations

I DNS as a reference → numerical
wind tunnel

I A priori parameter calibration

I A posteriori simulation validation



EFD and CFD limitations

TomoPIV (Irstea)

Experiments

I HWA and LDV → pointwise

I PIV → large scale

I TomoPIV → very large scale

⇒ sparse data

DNS (Dairy et al.,2015)

Numerical simulations

I Initial conditions

I Boundary conditions

I Turbulence model and parameters

⇒ non ”realistic” simulations



Coupling EFD and CFD with data assimilation

TomoPIV (Irstea)
DNS (Dairy et al.,2015)

Objective

I Estimation of the unknown true state of interest x(t, x)

I Recover as accurately as possible the state of the fluid flow using all
available information

Question: how to do that ?
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Data assimilation ingredients

Data assimilation ingredients

TomoPIV (Irstea)

Experiments

I Observation model

Y(t, x) = H(x(t, x)) + ε(t, x)

DNS (Dairy et al.,2015)

Numerical model

I Dynamical model

∂tx(t, x) + M(x(t, x)) = q(t, x)

I Prior knowledge model

x(t0, x) = xb0 + η(x)



Data assimilation ingredients

Data and dynamics dimensions

TomoPIV (Irstea)
DNS (Dairy et al.,2015)

Data and model resolution: d vs m

I Geosciences d << m

I PIV d ≤ m or d << m

I Model resolution: ROM vs DNS
I Laboratory vs Industrial processes
I 2D vs 3D
I Reynolds



Data assimilation ingredients

Data assimilation: observation and dynamics models

TomoPIV (Irstea)

Y(t, x) = H(x(t, x)) + ε(t, x)

I Pseudo observation → velocity,
vorticity, lagrangian acceleration,
thus Y(t, x) = x̂(t, x) and H = I

I Observation → images of particles,
scalar (smoke, gaz, temperature),
thus Y(t, x) = I (t, x) and H can
be nonlinear

I Eulerian or Lagrangian

DNS (Dairy et al.,2015)

∂tx(t, x) + M(x(t, x)) = q(t, x)

I Eulerian: ROM, Vortex particle,
Lattice Boltzman, RANS, LES,
DNS

I Lagrangian: Smooth Particule
Hydrodynamics (SPH)



Data assimilation ingredients

Data assimilation ideal case
Papadakis & Mémin (2008) - Heitz et al. (2010)
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Y(t, x) = H(x(t, x)) + ε(t, x)

I Observation → particle images,
thus Y(t, x) = I (t, x) and H linear

I Pseudo observation → velocity,
thus Y(t, x) = x̂(t, x) and H = I

∂tx(t, x) + M(x(t, x)) = 0

I DNS of 2D IHT at Re = 256

I Resolution : 256× 256
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Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

∂t I (t, x) + x · ∇I (t, x) = ε(t, x)

I Observation → particle images,
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I Pseudo observation → velocity,
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Data assimilation ingredients

Data assimilation ideal case
Papadakis & Mémin (2008) - Heitz et al. (2010)
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Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

0.01 0.1

0.01 0.1

∂t I (t, x) + x · ∇I (t, x) = ε(t, x)

I Observation → particle images,
thus Y(t, x) = I (t, x) and H linear

I Pseudo observation → velocity,
thus Y(t, x) = x̂(t, x) and H = I

∂tx(t, x) + M(x(t, x)) = 0

I DNS of 2D IHT at Re = 256

I Resolution : 256× 256



Data assimilation tools

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications



Data assimilation tools

Data assimilation: the state estimation problem

Ingredients

I Observation model

Y(t, x) = H(x(t, x)) + ε(t, x)

I Dynamical model

∂tx(t, x) + M(x(t, x)) = q(t, x)

I Prior knowledge model

x(t0, x) = xb0 + η(x)

→ Random nature of observation,
dynamic and knowledge errors
described in term of pdf

Bayesian formulation

p(x|Y) =
p(Y |x)p(x)

p(Y)

p(x|Y) ∝ p(Y |x)p(x)

posterior ∝ likelihood × prior

estimation ∝ observations × knowledge

Prior distribution:

I Prevents from over-fitting

I Introduce past information

I Good prior not straightforward



Data assimilation tools

Data assimilation: the state estimation problem

Carassi et al. (2017)

Information: past

→ For the control?

Bayesian formulation

p(x|Y) =
p(Y |x)p(x)

p(Y)

p(x|Y) ∝ p(Y |x)p(x)

posterior ∝ likelihood × prior

estimation ∝ observations × knowledge

Prior distribution:

I Prevents from over-fitting

I Introduce past information

I Good prior not straightforward



Data assimilation tools

Data assimilation: the state estimation problem

Carassi et al. (2017)

Information: past and present

→ Sequential processing providing
discontinuous trajectories

Bayesian formulation

p(x|Y) =
p(Y |x)p(x)

p(Y)

p(x|Y) ∝ p(Y |x)p(x)

posterior ∝ likelihood × prior

estimation ∝ observations × knowledge

Prior distribution:

I Prevents from over-fitting

I Introduce past information

I Good prior not straightforward



Data assimilation tools

Data assimilation: the state estimation problem

Carassi et al. (2017)

Information: past, present and future

→ Relevant for reconstruction or
reanalysis and for model parameters

estimation

Bayesian formulation

p(x|Y) =
p(Y |x)p(x)

p(Y)

p(x|Y) ∝ p(Y |x)p(x)

posterior ∝ likelihood × prior

estimation ∝ observations × knowledge

Prior distribution:

I Prevents from over-fitting

I Introduce past information

I Good prior not straightforward



Data assimilation tools

Data assimilation: the state estimation problem

Computational problem

I Huge dimension of data and
models prevent use of fully
Bayesian approach

I Difficulty to define and transport
the pdfs

Solution to overcome this issue

I Uncertainties of observations,
model and prior are assumed
Gaussian

I Pdfs completely described by first
and second moments (i.e mean
and covariance matrix)

Bayesian formulation

p(x|Y) =
p(Y |x)p(x)

p(Y)

p(x|Y) ∝ p(Y |x)p(x)

posterior ∝ likelihood × prior

estimation ∝ observations × knowledge

Prior distribution:

I Prevents from over-fitting

I Introduce past information

I Good prior not straightforward



Data assimilation tools

Data assimilation: Kalman filter

Properties

I Obs. and dynamics linear

I Noises Gaussian, unbiased,
white-in-time

→ Time dependent prior (mean, cov.)

→ Comput. cost. of K and P

Main algorithm

1. Forecast step

2. Analysis step



Data assimilation tools

Data assimilation: Kalman filter

Properties

I Obs. and dynamics linear

I Noises Gaussian, unbiased,
white-in-time

→ Time dependent prior (mean, cov.)

→ Comput. cost. of K and P

Alternative approaches

I Extended Kalman Filter (EKF)

→ H and M linearized

I Sub Optimal Filter (SOS)

→ Reduce comput. cost H



Data assimilation tools

Data assimilation: Kalman filter

Properties

I Obs. and dynamics linear

I Noises Gaussian, unbiased,
white-in-time

→ Time dependent prior (mean, cov.)

→ Comput. cost. of K and P

Alternative approaches

I Extended Kalman Filter (EKF)

→ H and M linearized

I Sub Optimal Filter (SOS)

→ Reduce comput. cost H

I Ensemble Kalman Filter (EnKF)

→ Empirical estimation of P
→ H and M non linear



Data assimilation tools

Data assimilation: Kalman filter

From Boquet’s lecture notes (2014-2015)

Properties

I Obs. and dynamics linear

I Noises Gaussian, unbiased,
white-in-time

→ Time dependent prior (mean, cov.)

→ Comput. cost. of K and P

Alternative approaches

I Extended Kalman Filter (EKF)

→ H and M linearized

I Sub Optimal Filter (SOS)

→ Reduce comput. cost H

I Particle Filter (PF)

→ H and M non linear
→ Noises: non-Gaussian, biased,

multimodal
→ Sampling issues due to high

dimensions



Data assimilation tools

Data assimilation: Variationnal 4DVar

Properties

I Obs. and dynamics non-linear

I Noises Gaussian, unbiased,
white-in-time

→ Time independent prior (B)

→ Derivation of the adjoint model

Energy function

J(x0) =
1
2
‖x0 − xb0‖2

B +
1

2

∫ tf

t0

‖H(x)−Y‖2
Rdt,

s.t. ∂tx(t, x) +M(x(t, x), u) = 0.

I Computing the gradient of J(x0) is
very expensive!

I Deduced by solving the backwards
adjoint equation



Data assimilation tools

Data assimilation: 4DVar implementation



Data assimilation tools

Data assimilation: Ensemble Variationnal EnVar

Properties

I Obs. and dynamics non-linear

I Noises Gaussian, unbiased,
white-in-time

→ Sample based covariance (B)

→ Time dependent prior (B)

→ No derivation of the adjoint
model

Energy function

J(x0) =
1
2
‖x0 − xb0‖2

B +
1

2

∫ tf

t0

‖H(x)−Y‖2
Rdt,

s.t. ∂tx(t, x) +M(x(t, x), u) = 0.

I Change cost function in terms of
weighting vector

I Propagation of B
1
2 projected into

observation space

→ Based on optimization theory

→ Fast operational implementation

→ Uncertainty sample-based or from
optimization procedure

→ Localization and inflation
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Overview of significant achievements

Data assimilation: data-driven vs model-driven

Different modelling



Overview of significant achievements

Data assimilation: data-driven vs model-driven

Non exhaustive state of the art



Overview of significant achievements

Data assimilation: data-driven vs model-driven

Variational vs Filtering approaches



Overview of significant achievements

Data assimilation: data-driven vs model-driven

3D vs 2D approaches



Overview of significant achievements

Data assimilation: data-driven vs model-driven

Focus
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Data assimilation: data-driven vs model-driven
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Data assimilation: data-driven vs model-driven
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Data assimilation: data-driven vs model-driven
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Data assimilation: data-driven vs model-driven
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Some applications

Wave in a rectangular flat bottom tank

Reconstruct unobserved state from depth camera

WEnKF approach from Combès et al. (2015)
EnVar approach from Yang et al. (2015)

Depth observations

Data assimilation

I Reconstruct unobserved surface velocity

I Error model



Some applications

Wave in a rectangular flat bottom tank

Flow configuration

I Lx × Ly = 250 mm× 100 mm

I Initial free surface height
difference h0 = 1 cm

I Observations every 10∆t u0/Lx
leading to Stobs ' 24, that was
rather high !

Simulation parameters

I nx × ny = 222× 88

I ∆t u0/Lx = 0.0042

Assimilation parameters

I particle number N = 100

I X0 ∼ N (xinit,R0)

I Wf
t ∼ N (0,Rt)

I Wg
t ∼ N (0,Qt)

I R0 (0.05 h0; 0.25 u0; rh)

I Rt (0.04 h0; 0.06 u0; rh)

I Qt (0.013 h
2
0; diag .)

I localization hcorrel = 0.6h0

I xinit = (0, 0, 0)



Some applications

Suddenly expanding flume

L

L

2L

L

L

2L

Flow configurations

I L = 10 cm

I Inflow velocity and elevation
oscillatory in phase at 1 Hz with
Hin = 1 cm and Vin = 0.22 m/s

I Fr = Uin/
√
g Hin = 0.7

Simulation parameters

I nx × ny = 200× 200

I ∆t u0/L = 0.006

Assimilation parameters

I particle number N = 100

I X0 ∼ N (xinit,R0)

I Wf
t ∼ N (0,Rt)

I Wg
t ∼ N (0,Qt)

I R0 (0.05 h0; 0.25 u0; rh)

I Rt (0.04 h0; 0.06 u0; rh)

I Qt (0.013 h
2
0; diag .)

I localization hcorrel = 0.6h0

I xinit = (0, 0, 0)



Some applications

Suddenly expanding flume

Non-uniform inlet velocity profile (with spatial complexity)
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Some applications

Suddenly expanding flume

Elevation error maps for singleObs and multiObs
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Some applications

Suddenly expanding flume

Velocity error maps for singleObs and multiObs
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Some applications

Cylinder wakes at Re=112

Gronskis et al. (2013, 2015)

x0 xin
DNS grid

Gap region ΩG

PIV grid, dxobs = 3dx

Control domain ΩC , fine grid

Assimilation domain ΩA, coarse grid

Weighted average to give ω in ΩA



Some applications

Cylinder wakes at Re=112

Initial condition
uobsx (x, t0) uobsy (x, t0)

Initial condition in ΩG (IC)

1. Uniform stagnant flow

2. Velocity interpolation

Inflow condition
uk=0
x (xin, t) uk=0

y (xin, t)

I From PIV sequence with
Taylor’s hypothesis



Some applications

Cylinder wakes at Re=112

Gap reconstruction

tU/D 0 3 6.2 9.4
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Some applications

Cylinder wakes at Re=112

Influence of gap size

IC=1, fobsD/U=6.2
Method’s accuracy was strongly
related to the size of the gap.

Influence of obs. frequency

Lx/D=4, IC=1
Error decreased with increasing
observations frequency
Stobs = fobs D/U.



Some applications

Cylinder wakes at Re=112

Pressure, Drag and Lift reconstruction via 4DVar

U
V

P
re

s.

I Reconstruct unobserved pressure

I Lift and Drag via control volume



Some applications

How to build the background ?

Real orthogonal-plane SPIV observations at Re = 300 and
4DVar (Robinson, 2015)

I Run a simulation from inlet observations



Some applications

3D initial condition correction
Real orthogonal-plane SPIV observations at Re = 300 and
4DVar (Robinson, 2015)



Some applications

LES coefficient 4DVar data assimilation

Chandramouli (2017, CFDforPIV)



Some applications

LES coefficient 4DVar data assimilation

Chandramouli (2017, CFDforPIV)



Some applications

Sumary

I Data assimilation is a powerful technique to combine
observations and models

I Data driven vs model driven (d vs m)

I When the amount of available data is insufficient to fully
describe the system one cannot rely on data-driven approaches
→ model and regularization are paramount

I Data assimilation for prediction, filtering or smoothing

I History of use is the search for suitable approximation that,
even sub-optimal, works with non-linear, non Gaussian and
high dimensional settings

Outlooks

I Dynamics model (large scale, uncertainties)

I Control BC (inflow, outflow, ...) and model parameters

I From pseudo-observations to observations
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