

Coupling experimental and computational fluid dynamics: Synopsis of approaches, issues and perspectives

Dominique Heitz

To cite this version:

Dominique Heitz. Coupling experimental and computational fluid dynamics: Synopsis of approaches, issues and perspectives. 2nd Workshop on Data Assimilation and CFD Processing for PIV and Lagrangian Particle Tracking, Dec 2017, Delft, Netherlands. pp.34. hal-02607025

HAL Id: hal-02607025 <https://hal.inrae.fr/hal-02607025v1>

Submitted on 5 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Coupling experimental and computational fluid dynamics: Synopsis of approaches, issues and perspectives

Dominique Heitz

Fluminance team, Irstea, IRMAR and Inria of Rennes, France ACTA team leader, Irstea, Rennes, France

[2nd Workshop on Data Assimilation and CFD Processing Techniques](http://cfdforpiv.dlr.de/) December 14, 2017, Delft, Netherland

Confronting EFD and CFD is inherent of fluid mechanics approach

Experiments

- \blacktriangleright I DV as a reference
- \blacktriangleright HWA \rightarrow very good
- \blacktriangleright PIV \rightarrow good

DNS (Dairy et al.,2015)

Numerical simulations

- \triangleright DNS as a reference \rightarrow numerical wind tunnel
- \triangleright A priori parameter calibration
- \triangleright A posteriori simulation validation

EFD and CFD limitations

Experiments

- \blacktriangleright HWA and LDV \rightarrow pointwise
- \blacktriangleright PIV \rightarrow large scale
- \triangleright TomoPIV \rightarrow very large scale

⇒ sparse data

DNS (Dairy et al.,2015)

Numerical simulations

- \blacktriangleright Initial conditions
- \blacktriangleright Boundary conditions
- \blacktriangleright Turbulence model and parameters
	- \Rightarrow non "realistic" simulations

Coupling EFD and CFD with data assimilation

DNS (Dairy et al.,2015)

Objective

- Estimation of the unknown true state of interest $x(t, x)$
- \triangleright Recover as accurately as possible the state of the fluid flow using all available information

Question: how to do that ?

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications

Data assimilation ingredients

Experiments

D Observation model $\mathcal{Y}(t, x) = \mathbb{H}(\mathbf{x}(t, x)) + \varepsilon(t, x)$ DNS (Dairy et al.,2015)

Numerical model

- \blacktriangleright Dynamical model ∂_t **x**(t, x) + M(**x**(t, x)) = **q**(t, x)
- \blacktriangleright Prior knowledge model $\mathsf{x}(t_0,x) = \mathsf{x}_0^b + \eta(x)$

Data and dynamics dimensions

DNS (Dairy et al.,2015)

Data and model resolution: d vs m

- Geosciences $d \ll m$
- ▶ PIV $d \leq m$ or $d \lt m$
	- \triangleright Model resolution: ROM vs DNS
	- \blacktriangleright Laboratory vs Industrial processes
	- \triangleright 2D vs 3D
	- \blacktriangleright Reynolds

Data assimilation: observation and dynamics models

TomoPIV (Irstea)

 $\mathcal{Y}(t, x) = \mathbb{H}(\mathbf{x}(t, x)) + \varepsilon(t, x)$

- ▶ Pseudo observation \rightarrow velocity, vorticity, lagrangian acceleration, thus $\mathbf{\mathcal{Y}}(t,x) = \hat{\mathbf{x}}(t,x)$ and $\mathbb{H} = \mathbb{I}$
- \triangleright Observation \rightarrow images of particles, scalar (smoke, gaz, temperature), thus $\mathcal{Y}(t, x) = I(t, x)$ and \mathbb{H} can be nonlinear
- Eulerian or Lagrangian

DNS (Dairy et al.,2015)

 ∂_t x(t, x) + M(x(t, x)) = q(t, x)

- \blacktriangleright Eulerian: ROM, Vortex particle, Lattice Boltzman, RANS, LES, DNS
- ▶ Lagrangian: Smooth Particule Hydrodynamics (SPH)

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\mathbf{\mathcal{Y}}(t,x) = \mathbb{H}(\mathbf{x}(t,x)) + \varepsilon(t,x)$

- \triangleright Observation \rightarrow particle images, thus $\mathbf{\mathcal{Y}}(t, x) = I(t, x)$ and \mathbb{H} linear
- $▶$ Pseudo observation $→$ velocity, thus $\mathbf{\mathcal{Y}}(t,x) = \hat{\mathbf{x}}(t,x)$ and $\mathbb{H} = \mathbb{I}$

- DNS of 2D IHT at $Re = 256$
- Resolution : 256 \times 256

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\partial_t I(t,x) + \mathbf{x} \cdot \nabla I(t,x) = \boldsymbol{\varepsilon}(t,x)$

- \triangleright Observation \rightarrow particle images, thus $\mathcal{Y}(t, x) = I(t, x)$ and H linear
- $▶$ Pseudo observation $→$ velocity, thus $\mathbf{\mathcal{Y}}(t,x) = \hat{\mathbf{x}}(t,x)$ and $\mathbb{H} = \mathbb{I}$

- DNS of 2D IHT at $Re = 256$
- Resolution : 256 \times 256

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\hat{\mathbf{x}}(t, x) = \mathbf{x}(t, x) + \varepsilon(t, x)$

- \triangleright Observation \rightarrow particle images, thus $\mathbf{\mathcal{Y}}(t,x) = I(t,x)$ and $\mathbb H$ linear
- \triangleright Pseudo observation \rightarrow velocity, thus $\mathbf{\mathcal{Y}}(t,x) = \hat{\mathbf{x}}(t,x)$ and $\mathbb{H} = \mathbb{I}$

- DNS of 2D IHT at $Re = 256$
- Resolution : 256×256

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\mathbf{\mathcal{Y}}(t,x) = \mathbb{H}(\mathbf{x}(t,x)) + \varepsilon(t,x)$

- \triangleright Observation \rightarrow particle images, thus $\mathbf{\mathcal{Y}}(t, x) = I(t, x)$ and \mathbb{H} linear
- $▶$ Pseudo observation $→$ velocity, thus $\mathbf{\mathcal{Y}}(t,x) = \hat{\mathbf{x}}(t,x)$ and $\mathbb{H} = \mathbb{I}$

- DNS of 2D IHT at $Re = 256$
- Resolution : 256 \times 256

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\partial_t I(t,x) + \mathbf{x} \cdot \nabla I(t,x) = 0$

- \triangleright Observation \rightarrow particle images, thus $\mathbf{\mathcal{Y}}(t, x) = I(t, x)$ and H linear
- $▶$ Pseudo observation $→$ velocity, thus $\mathbf{\mathcal{Y}}(t,x) = \hat{\mathbf{x}}(t,x)$ and $\mathbb{H} = \mathbb{I}$

- \triangleright DNS of 2D IHT at $Re = 256$
- Resolution : 256×256

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\hat{\mathbf{x}}(t,x) = \mathbf{x}(t,x) + \varepsilon(t,x)$

- \triangleright Observation \rightarrow particle images, thus $\mathbf{\mathcal{Y}}(t,x) = I(t,x)$ and H linear
- \triangleright Pseudo observation \rightarrow velocity, thus $\mathbf{\mathcal{Y}}(t,x) = \hat{\mathbf{x}}(t,x)$ and $\mathbb{H} = \mathbb{I}$

- \triangleright DNS of 2D IHT at $Re = 256$
- Resolution : 256×256

Data assimilation ideal case

Papadakis & Mémin (2008) - Heitz et al. (2010)

 $\partial_t I(t,x) + \mathbf{x}\cdot \nabla I(t,x) = \boldsymbol{\varepsilon}(t,x)$

- \triangleright Observation \rightarrow particle images, thus $\mathcal{Y}(t, x) = I(t, x)$ and H linear
- ▶ Pseudo observation \rightarrow velocity, thus $\mathbf{\mathcal{Y}}(t,x) = \hat{\mathbf{x}}(t,x)$ and $\mathbb{H} = \mathbb{I}$

- DNS of 2D IHT at $Re = 256$
- Resolution : 256×256

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications

Data assimilation: the state estimation problem

Ingredients

- \triangleright Observation model $\mathcal{Y}(t, x) = \mathbb{H}(\mathbf{x}(t, x)) + \varepsilon(t, x)$
- \triangleright Dynamical model ∂_t x(t, x) + M(x(t, x)) = q(t, x)
- **Prior knowledge model** $\mathsf{x}(t_0,x) = \mathsf{x}_0^b + \eta(x)$
- \rightarrow Random nature of observation. dynamic and knowledge errors described in term of pdf

Bayesian formulation

$$
p(\mathbf{x}|\mathcal{Y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}
$$

$$
p(\mathbf{x}|\mathbf{Y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})
$$

posterior \propto likelihood \times prior

estimation \propto observations \times knowledge Prior distribution:

- \blacktriangleright Prevents from over-fitting
- \blacktriangleright Introduce past information
- \triangleright Good prior not straightforward

Data assimilation: the state estimation problem

Bayesian formulation

$$
p(\mathbf{x}|\mathcal{Y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}
$$

$$
p(\mathbf{x}|\mathbf{Y}) \propto p(\mathbf{Y}|\mathbf{x})p(\mathbf{x})
$$

posterior \propto likelihood \times prior estimation \propto observations \times knowledge Prior distribution:

- \blacktriangleright Prevents from over-fitting
- \blacktriangleright Introduce past information
- Good prior not straightforward

Data assimilation: the state estimation problem

Information: past and present \rightarrow Sequential processing providing

discontinuous trajectories

Bayesian formulation

$$
p(\mathbf{x}|\mathcal{Y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}
$$

$$
p(\mathbf{x}|\mathbf{Y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})
$$

posterior \propto likelihood \times prior

estimation \propto observations \times knowledge Prior distribution:

- \blacktriangleright Prevents from over-fitting
- \blacktriangleright Introduce past information
- Good prior not straightforward

Data assimilation: the state estimation problem

Information: past, present and future

 \rightarrow Relevant for reconstruction or reanalysis and for model parameters estimation

Bayesian formulation

$$
p(\mathbf{x}|\mathcal{Y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}
$$

$$
p(\mathbf{x}|\mathcal{Y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})
$$

posterior \propto likelihood \times prior

estimation \propto observations \times knowledge Prior distribution:

- \blacktriangleright Prevents from over-fitting
- Introduce past information
- Good prior not straightforward

Data assimilation: the state estimation problem

Computational problem

- \blacktriangleright Huge dimension of data and models prevent use of fully Bayesian approach
- \triangleright Difficulty to define and transport the pdfs

Solution to overcome this issue

- \blacktriangleright Uncertainties of observations. model and prior are assumed Gaussian
- \blacktriangleright Pdfs completely described by first and second moments (i.e mean and covariance matrix)

Bayesian formulation

$$
p(\mathbf{x}|\mathcal{Y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}
$$

$$
p(\mathbf{x}|\mathbf{Y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})
$$

posterior \propto likelihood \times prior

estimation \propto observations \times knowledge

Prior distribution:

- \blacktriangleright Prevents from over-fitting
- \blacktriangleright Introduce past information
- \blacktriangleright Good prior not straightforward

Data assimilation: Kalman filter

Properties

- Obs. and dynamics linear
- ^I Noises Gaussian, unbiased, white-in-time
- \rightarrow Time dependent prior (mean, cov.)
- Comput. cost. of K and P

Main algorithm

- 1. Forecast step $\mathbf{x}_{k}^{\text{f}} = \mathbf{M}_{k \cdot k - 1} \mathbf{x}_{k-1}^{\text{a}}$
	- $\mathbf{P}_{k}^{\mathrm{f}} = \mathbf{M}_{k \cdot k 1} \mathbf{P}_{k-1}^{\mathrm{a}} \mathbf{M}_{k \cdot k 1}^{\mathrm{T}} + \mathbf{Q}_{k}.$
- 2. Analysis step $\mathbf{K}_k = \mathbf{P}_k^{\mathrm{f}} \mathbf{H}_k^{\mathrm{T}} (\mathbf{H}_k \mathbf{P}_k^{\mathrm{f}} \mathbf{H}_k^{\mathrm{T}} + \mathbf{R}_k)^{-1}.$ $\mathbf{x}_{k}^{\text{a}} = \mathbf{x}_{k}^{\text{f}} + \mathbf{K}_{k}(\mathbf{y}_{k} - \mathbf{H}_{k}\mathbf{x}_{k}^{\text{f}}),$ $\mathbf{P}_{k}^{\mathrm{a}} = (\mathbf{I}_{k} - \mathbf{K}_{k} \mathbf{H}_{k}) \mathbf{P}_{k}^{\mathrm{f}}.$

Data assimilation: Kalman filter

Properties

- \triangleright Obs. and dynamics linear
- ^I Noises Gaussian, unbiased, white-in-time
- \rightarrow Time dependent prior (mean, cov.)
- \rightarrow Comput. cost. of K and P

Alternative approaches

- Extended Kalman Filter (EKF)
	- \rightarrow H and M linearized
- ► Sub Optimal Filter (SOS)
	- \rightarrow Reduce comput. cost H

Data assimilation: Kalman filter

Properties

- \triangleright Obs. and dynamics linear
- Noises Gaussian, unbiased, white-in-time
- \rightarrow Time dependent prior (mean, cov.)
- Comput. cost. of K and P

Alternative approaches

- \blacktriangleright Extended Kalman Filter (EKF)
	- \rightarrow H and M linearized
- ▶ Sub Optimal Filter (SOS)
	- \rightarrow Reduce comput. cost H
- \blacktriangleright Ensemble Kalman Filter (EnKF)
	- \rightarrow Empirical estimation of P
	- \rightarrow H and M non linear

Data assimilation: Kalman filter

From Boquet's lecture notes (2014-2015)

Properties

- \triangleright Obs. and dynamics linear
- ^I Noises Gaussian, unbiased, white-in-time
- \rightarrow Time dependent prior (mean, cov.)
- Comput. cost. of K and P

Alternative approaches

- \blacktriangleright Extended Kalman Filter (EKF)
	- \rightarrow H and M linearized
- ▶ Sub Optimal Filter (SOS)
	- \rightarrow Reduce comput. cost H
- \blacktriangleright Particle Filter (PF)
	- \rightarrow H and M non linear
	- \rightarrow Noises: non-Gaussian, biased, multimodal
	- \rightarrow Sampling issues due to high dimensions

Data assimilation: Variationnal 4DVar

Properties

- Obs. and dynamics non-linear
- ^I Noises Gaussian, unbiased, white-in-time
- \rightarrow Time independent prior (B)
- \rightarrow Derivation of the adjoint model

Energy function $J({\bf x}_0)=\frac{1}{2}\|{\bf x}_0-{\bf x}_0^b\|_B^2+\frac{1}{2}$ 2 \int_0^t t_0 $\|\mathbb{H}(\mathsf{x})-\boldsymbol{\mathcal{Y}}\|_R^2 dt,$ s.t. $\partial_t \mathbf{x}(t, x) + \mathbb{M}(\mathbf{x}(\mathbf{x}, t), u) = 0.$

- **In Computing the gradient of** $J(\mathbf{x}_0)$ **is** very expensive!
- Deduced by solving the backwards adjoint equation

 $-\partial_t \lambda(t) + (\partial_X M)^* \lambda(t) = (\partial_X M)^* R^{-1}(\Upsilon(t) - H(X(t)))$ $\lambda(t_f)=0$

Data assimilation: 4DVar implementation

Data assimilation: Ensemble Variationnal EnVar

Properties

- \triangleright Obs. and dynamics non-linear
- Noises Gaussian, unbiased, white-in-time
- \rightarrow Sample based covariance (B)
- \rightarrow Time dependent prior (B)
- \rightarrow No derivation of the adjoint model

Energy function

- $J({\bf x}_0)=\frac{1}{2}\|{\bf x}_0-{\bf x}_0^b\|_B^2+\frac{1}{2}$ 2 \int_0^t t0 $\|\mathbb{H}(\mathsf{x})-\boldsymbol{\mathcal{Y}}\|_R^2 dt,$ s.t. ∂_t **x**(t, x) + M(**x**(t, x), u) = 0.
	- \triangleright Change cost function in terms of weighting vector
	- \blacktriangleright Propagation of $B^{\frac{1}{2}}$ projected into observation space
	- \rightarrow Based on optimization theory
	- \rightarrow Fast operational implementation
	- \rightarrow Uncertainty sample-based or from optimization procedure

EXAMPLE

桐 レステレステレーテ

 \rightarrow Localization and inflation

 $4.17 \times$

Outline

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications

Data assimilation: data-driven vs model-driven

ATAA JOURNAL Vol. 42, No. 3, March 2004

Generation of Three-Dimensional Turbulent Inlet Conditions for Large-Eddy Simulation

P. Druault*

Université Pierre-et-Marie-Curie, 78210 Saint Cyr l'Ecole, France S. Lardeau Imperial College of Science, Technology, and Medicine, London, England SW7 2BY, United Kingdom

and

J.-P. Bonnet.[‡] F. Coiffet.[§] J. Delville.[¶] E. Lamballais.^{**} J. F. Largeau.[§] and L. Perret[§] Université de Poitiers, 86962 Futuroscope Chasseneuil CEDEX, France

A method for generating realistic (i.e., reproducing in space and time the large-scale coherence of the flows)

Data assimilation: data-driven vs model-driven

PHYSICS OF FLUDS 20 075107 (2008)

7)

Turbulent inflow conditions for large-eddy simulation based on low-order empirical model

Laurent Perret.^{1,a)} Joël Delville.² Rémi Manceau.² and Jean-Paul Bonnet² ¹Laboratoire de Mécanique des Fluides (LMF), UMR CNRS 6598, Ecole Centrale de Nantes. 1 rue de la Noë BP 92101, F-44321 Nantes Cedex 3, France ²Laboratoire d'Etudes Aérodynamiques (LEA), ENSMA, CNRS, CEAT, Université de Poitiers, 43, route de l'aérodrome, F-86036 Poitiers, France

(Received 30 October 2007; accepted 3 June 2008; published online 22 July 2008)

Data assimilation: data-driven vs model-driven

Exp Fluids (2008) 45:595-608 DOI 10.1007/s00348-008-0567-4

RESEARCH ARTICLE

Dynamic consistent correlation-variational approach for robust optical flow estimation

D. Heitz · P. Héas · E. Mémin · J. Carlier

$$
J(\mathbf{u},I) = J_d(\mathbf{u},I) + J_r(\mathbf{u}) + J_p(\mathbf{u},\mathbf{u}_p) + J_c(\mathbf{u},\mathbf{u}_c),
$$
 (12)

where $J_p(\cdot)$ is an energy function constraining displacements **u** to be consistent with a physically sound prediction \mathbf{u}_p relying on Navier-Stokes equations. As proposed in Héas et al. (2007), we define this functional as a quadratic distance between the estimated field u and the dense propagated field $\mathbf{u}_p = (u_p, v_p)$:

$$
J_{\mathbf{p}}(\mathbf{u}, \mathbf{u}_{\mathbf{p}}) = \beta \int_{\Omega} \parallel \mathbf{u}_{\mathbf{p}}(\mathbf{s}) - \mathbf{u}(\mathbf{s}) \parallel^{2} \mathrm{d}\mathbf{s}, \qquad (13)
$$

where β denotes a weighting factor. This approach constitutes an alternative to the spatio-temporal smoother defined in Weickert and Schnörr (2001) and is to some extent similar to the temporal constraint introduced in Rhunau et al. (2007). It is important to distinguish this

Data assimilation: data-driven vs model-driven

Exp Fluids (2016) 57:139 DOI 10.1007/s00348-016-2225-6

RESEARCH ARTICLE

Dense velocity reconstruction from tomographic PTV with material derivatives

Jan F. G. Schneiders¹ · Fulvio Scarano¹

$$
J = J_u + \alpha^2 J_{Du},\tag{6}
$$

where α is a weighting coefficient (Sect. 2.3.3), J_u is given by Eq. (7) and J_{Du} is given by Eq. (8),

$$
J_{\boldsymbol{u}} = \sum_{p} \left\| \boldsymbol{u}_h(\boldsymbol{x}_p) - \boldsymbol{u}_m(\boldsymbol{x}_p) \right\|^2, \tag{7}
$$

$$
J_{Du} = \sum_{p} \left\| \frac{D u_h}{D t} (x_p) - \frac{D u_m}{D t} (x_p) \right\|^2, \tag{8}
$$

where u_h and Du_h/Dt are calculated from Eqs. (1) and (2) and are evaluated at the particle locations, x_n , by linear interpolation from the computational grid. The cost function penalizes the difference between the PTV measurements and the velocity and material derivative at a single measurement time-instant calculated from the optimization variables. The optimization problem does not include time-integration of the vorticity transport equation.

and a strong to the con-

Data assimilation ingredients

Data assimilation tools

Overview of significant achievements

Some applications

Wave in a rectangular flat bottom tank

Reconstruct unobserved state from depth camera WEnKF approach from Combès et al. (2015) EnVar approach from Yang et al. (2015)

Depth observations

- \blacktriangleright Reconstruct unobserved surface velocity
- Error model

Some applications

Wave in a rectangular flat bottom tank

Flow configuration

- \blacktriangleright Lx \times Ly = 250 mm \times 100 mm
- \blacktriangleright Initial free surface height difference $h_0 = 1$ cm
- ► Observations every $10\Delta t u_0/L_x$ leading to $St_{\text{obs}} \simeq 24$, that was rather high !

Simulation parameters

- \blacktriangleright $n_x \times n_y = 222 \times 88$
- $\Delta t u_0/L_{\rm x} = 0.0042$

Assimilation parameters

- particle number $N = 100$
- ► $X_0 \sim \mathcal{N}(x_{\text{init}}, R_0)$
- $\blacktriangleright \mathsf{W}_t^f \sim \mathcal{N}(\mathbf{0},\mathsf{R}_t)$
- $\blacktriangleright \mathsf{W}^{\text{g}}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_t)$
- R₀ (0.05 h₀; 0.25 u_0 ; r_h)
- \blacktriangleright R_t (0.04 h₀; 0.06 u₀; r_h)
- \mathbf{Q}_t (0.013 h_0^2 ; diag.)
- \blacktriangleright localization $h_{\text{correl}} = 0.6h_0$
- \blacktriangleright $\mathbf{x}_{\text{init}} = (0, \theta, 0)$ **IRMAR**

Suddenly expanding flume

Flow configurations

- $L = 10$ cm
- \blacktriangleright Inflow velocity and elevation oscillatory in phase at 1 Hz with $H_{\text{in}} = 1$ cm and $V_{\text{in}} = 0.22$ m/s

$$
\blacktriangleright
$$
 Fr = U_{in}/ $\sqrt{g\,H_{\rm in}} = 0.7$

Simulation parameters

- \blacktriangleright $n_x \times n_y = 200 \times 200$
- $\Delta t u_0/L = 0.006$

Assimilation parameters

- particle number $N = 100$
- ► $X_0 \sim \mathcal{N}(x_{\text{init}}, R_0)$
- $\blacktriangleright \mathsf{W}_t^f \sim \mathcal{N}(\mathbf{0},\mathsf{R}_t)$
- $\blacktriangleright \mathsf{W}^{\text{g}}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_t)$
- R₀ (0.05 h₀; 0.25 u_0 ; r_h)
- \blacktriangleright R_t (0.04 h₀; 0.06 u₀; r_h)
- \mathbf{Q}_t (0.013 h_0^2 ; diag.)
- \blacktriangleright localization $h_{\text{correl}} = 0.6h_0$
- \blacktriangleright $\mathbf{x}_{\text{init}} = (0, \theta, 0)$ **IRMAR**

アーマン 無い アニマンエイ

Suddenly expanding flume

Non-uniform inlet velocity profile (with spatial complexity)

Suddenly expanding flume

Elevation error maps for singleObs and multiObs

Suddenly expanding flume

Velocity error maps for singleObs and multiObs

Cylinder wakes at $Re=112$ Gronskis et al. (2013, 2015)

Cylinder wakes at $Re=112$

- 1. Uniform stagnant flow
- 2. Velocity interpolation

 \blacktriangleright From PIV sequence with Taylor's hypothesis

Cylinder wakes at $Re=112$

Gap reconstruction

- 11

アー・プライン エインエイ

Cylinder wakes at $Re=112$

Influence of gap size

Method's accuracy was strongly related to the size of the gap.

Influence of obs. frequency

 $St_{obs} = f_{obs} D/U$.

Cylinder wakes at $Re=112$

Pressure, Drag and Lift reconstruction via 4DVar

- \blacktriangleright Reconstruct unobserved pressure
- \blacktriangleright Lift and Drag via control volume

How to build the background ?

Real orthogonal-plane SPIV observations at $Re = 300$ and 4DVar (Robinson, 2015)

 \triangleright Run a simulation from inlet observations

3D initial condition correction Real orthogonal-plane SPIV observations at $Re = 300$ and 4DVar (Robinson, 2015)

LES coefficient 4DVar data assimilation

Chandramouli (2017, CFDforPIV)

 $n_x \times n_y \times n_z$ $l_x/D \times l_y/D \times l_z/D$ $U\Delta t/D$ Re Duration

LES coefficient 4DVar data assimilation

Chandramouli (2017, CFDforPIV) \overline{z} $\overline{}$ ÷ Ξ, T T T $\overline{}$ $\overline{1}$ $\overline{1}$ \overline{z} $\overline{1}$ $0 \t 1 \t 2 \t 3 \t 4 \t 5 \t 6$ $2 - 3 - 4 - 5$ $\overline{\ }$ $1 \t 2$ $4 - 5$ $\overline{1}$ $\overline{}$ 456 \overline{z} \overline{a} $\overline{}$ 0 1 $\,$ $\,$ $\,$ \overline{a} \overline{a} $\overline{}$ \overline{a} $\overline{1}$ \overline{z} \overline{a} 5 ste

Service Service

INIVIAN

 \sim $-$

Sumary

- \triangleright Data assimilation is a powerful technique to combine observations and models
- \triangleright Data driven vs model driven (d vs m)
- \triangleright When the amount of available data is insufficient to fully describe the system one cannot rely on data-driven approaches \rightarrow model and regularization are paramount
- \triangleright Data assimilation for prediction, filtering or smoothing
- \blacktriangleright History of use is the search for suitable approximation that, even sub-optimal, works with non-linear, non Gaussian and high dimensional settings

Outlooks

- ▶ Dynamics model (large scale, uncertainties)
- \triangleright Control BC (inflow, outflow, ...) and model parameters
- \blacktriangleright From pseudo-observations to observations

