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In this paper, the problem of dynamical effects of ground irregularity or stability of vehicles in off-road conditions is addressed thanks to a dynamic analysis of the vehicle. In particular, the choice of suitable real-time values for the stiffness and the damping of adjustable suspensions, in order to reduce dynamical effects, is investigated thanks to the analysis of a Laplace transfer function describing the mechanical behaviour of the vehicle. Moreover, a decoupled load transfer computation to identify the suspended masses on each suspension is used and a way to modify in real time suspension parameters by modifying the settling time value in order to drive over obstacles is proposed. This new point of view may permit to use effectively adjustable suspensions in off-road context. Previous approaches indeed only focus on the control of adjustable suspensions on road or by using an actuator in parallel of the suspension and are often dedicated to the driver comfort.

INTRODUCTION

In a mechanical system, in general and in a ground mobile robot in particular, the suspension is a link between unsprung masses (typically the wheel, the brake, the transmission, etc.) and suspended masses (the chassis and all its linked components, etc.). The suspension is a crucial device which permits to ensure a contact between wheels and the ground under any circumstances. By absorbing shocks due to the ground conditions, the suspension allows to increase the life time of other mechanical components and provides a best comfort to the passengers. Moreover, it has to ensure a correct dynamics, notably during turns, accelerations and brakings to restrict angular accelerations and vertical vibrations.

Today, three kinds of suspension are used. The most common suspension is the passive one. It is usually composed of a hydraulic damper in parallel with a spring. Many efforts have been done by car manufacturers by optimizing its parameters in order to make it work efficiently. This results in the design of suspension architectures such as Mac Pherson, double triangulation, multilink or also twist-beam rear suspension. However, due to intrinsic limitation and wear, the passive suspension has a frequency range in which oscillations can not be filtered. Moreover, the turning of passive shock absorbers is dedicated to a certain configuration (mass, etc.) in a specific environment (basically the road).

In the early eighties, the semi-active suspension appears in cars. These suspensions are usually hydropneumatic, or use electrorheological or magnetorheological fluids. Each suspension is controlled by an electronic device to modify the properties of the damper only and is in parallel with a spring in order to avoid passive suspension drawbacks and enhance vehicle comfort. Compared to the passive systems, these semi-active suspensions improve the response of the system over a wider frequency range. They are generally assembled on luxury cars, and permit to adjust dynamical behaviours with respect to the load or to an expected driving (sport, etc.). Several methods have been proposed to control semi-active suspensions such as open-loop method [START_REF] Marazzi | Semi-active control of civil structures: implementation aspects[END_REF]), sky-hook control [START_REF] Karnopp | Vibration control using semi-active force generators[END_REF] or ground hook control [START_REF] Valášek | Extended ground-hook-new concept of semi-active control of truck's suspension[END_REF] and [START_REF] Turnip | A quarter active suspension system based ground-hook controller[END_REF]). However, these methods do not investigate the control of the stiffness of a suspension. Other methods, called active methods, put in parallel a semi-active suspension and an active actuator permits to modify the strength of the suspension but requires more space and energy. These methods rely for instance on fuzzy control in [START_REF] Devdutt | Fuzzy logic control of a semi-active quarter car system[END_REF]), LQR-based one in [START_REF] Sam | LQR controller for active car suspension. In Proceedings[END_REF]) or decentralized variable structure one in [START_REF] Park | Decentralized variable structure control for active suspensions based on a fullcar model[END_REF]). These methods may be used to improve comfort on vehicle but especially on road and validated for some road models. However, these methods do not take into account obstacle crossing which is a recurring problem in off-road context and not on road.

In off-road context, such as in military or agricultural fields, it is difficult to anticipate the ground variations through a predictive model such as in the previous approaches. Moreover, it is compulsory to keep the vehicle integrity when passing over an obstacle. Several approaches to control semi-active suspensions coupled or not with an active actuator have been proposed such as in [START_REF] Sabaneh | A mixed control system for active suspension for off-road vehicles[END_REF]), [START_REF] Langlois | Implementing preview control on an off-road vehicle with active suspension[END_REF]) and [START_REF] Crolla | Active suspension control for an off-road vehicle[END_REF]).

More recently and mainly initiated by the linear electromagnetic Bose system, fully active suspensions appear. These suspensions have every benefit in terms of mechanics because their stiffness, damping and consequently ground clearance values are adjustable in real-time without using a parallel actuator. This system is then effective for the full range of frequencies as long as the response time of the system is short enough. However, these suspensions are still rare in automobile because of complexity, cost and energy consumption. Nevertheless these features are very interesting in off-road context and have to be investigated, notably the adjustment in real-time of the stiffness and the damping values.

In this paper, an approach to control a fully active suspension in off-road environment in real-time is proposed. It concatenates a decoupled computation of the load transfer of the suspended mass, algorithms for the determination of the stiffness and the damping values to ensure the stability of the suspended mass and equations to modify these properties to drive over obstacles without changing the ground clearance of the vehicle. This paper is decomposed as follows. First, the vehicle and the suspension models are recalled. The following details the proposed control algorithms. Finally, simulation trials show the efficiency of the proposed approach before conclusions and perspectives.

MODELING

Vehicle modeling

The aim of the proposed application is to allow a ground vehicle to be stable along a trajectory which may include turns and ground variations such as slopes as well as obstacles. In order to preserve a constant mass repartition on each wheel, it is relevant to use a model which takes into account the entire kinematics and dynamics. This model is usually called full car model and was previously introduced in [START_REF] Park | Decentralized variable structure control for active suspensions based on a fullcar model[END_REF].

In this paper, in order to simplify the notations, let us consider a quarter vehicle denoted by i. F L value for i means front left quarter vehicle, F R means front right one, RL means rear left one and RR means rear right one. Here, the vehicle considered is a four-wheel driven vehicle whose wheelbase is L and wheeltrack is E as shown in Fig. 1. It is decomposed into five parts: the chassis (suspended mass) and four wheel-axle assemblies (unsprung masses). This model has seven degrees of freedom. The chassis, whose mass is M v , assumed to be rigid, can move along the vertical axis z and rotate around the pitch Φ and roll Ψ axes. Its center of mass G is located between front and rear axles with L F and L R parameters and between left and right sides with E L and E R parameters. The vertical distances H describe the distance between the center of mass G and the attachment point of each suspension. Each unsprung mass M ns,i can move along the vertical axis z. Each wheel is linked with the chassis by an active suspension which properties are an adjustable stiffness k s,i and an adjustable damping c s,i . Each tire is considered deformable and acts as a passive suspension with a stiffness defined by k p,i and damping is negligible. The contact point between each tire and the ground is defined by a longitudinal angle ϕ i and a transversal angle ψ i , as shown in figures 2 and 3.

Quarter vehicle suspension system modeling

In this paper, the control of the stiffness and the damping of each suspension is proposed. According to the previously proposed full car model, a quarter vehicle model can be defined as shown in Fig. 2 and Fig. 3. This model isolates the suspended mass applied to the suspension M s,i (t) and its respective wheel-axle assembly whose mass is M ns,i . The locations of each part of the quarter vehicle model along the vertical axis are denoted z s,i for the suspended center of mass, z ns,i for the unsprung center of mass and z g,i for the tire/ground contact point.

The suspended mass is subjected to its own load P s,i and to the suspension restoring force F ns/s,i . According to the fundamental principle of the dynamics applied to the suspended mass along the vertical axis, the suspended mass vertical acceleration can be written as follows:

M s,i (t) zs,i = [-k s,i [z s,i -z ns,i ] -c s [ żs,i -żns,i ]] - M s,i (t) g (1)
Likewise, the wheel-axle assembly is subjected to its own load P ns,i , to the suspension restoring force F s/ns,i and to the tire restoring force F p/ns,i . According to the fundamental principle of the dynamics applied to this assembly along the vertical axis, the vertical acceleration can be written as follows:

M ns,i zns,i = [k s,i [z s,i -z ns,i ] + c s,i [ żs,i -żns,i ]] - [k p,i [z ns,i -z g,i ]] -M ns,i g (2) 
In order to simplify the previous equations, the following notations will be used in the next sections:

     ∆Z i = ∆S i + ∆T i ∆Z i = z s,i -z g,i ∆S i = z s,i -z ns,i ∆T i = z ns,i -z g,i (3) 
3. PROPOSED CONTROL ALGORITHMS

Load transfer computation

Before starting a dynamic study, it is compulsory to know the mass repartition on each wheel as described in section 2. The unsprung masses M ns,i are constant and can be measured on the vehicle. Even if the whole suspended mass is constant (which is not necessary the case in offroad applications), the suspended mass attached to a quarter vehicle i (M s,i (t)) is variable, depending on the load transfer. As a result, each M s,i (t) has to be evaluated with respect to load transfer. It depends on the vehicle parameters, the gravity g, pitch and roll angles Φ(t) and Ψ(t), longitudinal and lateral accelerations a x (t) and a y (t).

See Fig. 4 which depicts these parameters on the studied suspended mass. 2009). These algorithms permit either the computation or the estimation. In this paper, the load tranfer is computed thanks to equations ( 4), ( 5), ( 6), ( 7) based on the method proposed in [START_REF] Doumiati | Lateral load transfer and normal forces estimation for vehicle safety: experimental test[END_REF] and adapted for the vehicle mass M v .

Based on the fundamental principle of the dynamics applied to the mass M v along the longitudinal axis and then along the front and the rear lateral axes, load at each suspended point can be written as follows:

F s,F R (t) = F F (t) ay (t) H g E + cos(Ψ(t)) E L E -sin(Ψ(t)) H E (4) F s,F L (t) = F F (t) - ay (t) H g E + cos(Ψ(t)) E R E + sin(Ψ(t)) H E (5) F s,RR (t) = F R (t) ay (t) H g E + cos(Ψ(t)) E L E -sin(Ψ(t)) H E (6) F s,RL (t) = F R (t) - ay (t) H g E + cos(Ψ(t)) E R E + sin(Ψ(t)) H E (7) 
with:

F F (t) = Mv g cos(Φ(t)) L R L + g sin(Φ(t)) H L - ax(t) H L (8) F R (t) = Mv g cos(Φ(t)) L F L -g sin(Φ(t)) H L + ax(t) H L (9)
Finally, by using the projection of the mass linked to the force F s,i (t) on the vertical axis, real-time values (10) for M s,i (t) are obtained, and can be estimated on line thanks to the expression of each forces:

M s,i (t) = F s,i (t) cos (Φ(t)) cos (Ψ(t)) g (10) 
Assuming that accelerations, orientations and the suspended masses are known, then (10) permits to evaluate the mass repartition required in the following.

Stability preservation

In order to ensure a desired behaviour for suspended masses (cut-off frequency and overshoots), we propose the expressions ( 11) and ( 12), demonstrated in the sequel, for a variable stiffness and damping coefficient. Indeed, this choice for k s,i (t) and c s,i (t) for each suspension ensures the fastest convergence of z s,i towards a stable and constant value. This convergence is effective whatever the longitudinal or/and lateral accelerations and the pitch or/and roll angles thanks to the term A(t) which depends on the time and describes the mass variations on the quarter vehicle. The ground clearance depends on the peak time t p,i . The peak time value t p,i is constant and has to be wisely chosen to settle the initial suspension properties. Indeed, a low value stiffens the suspension whereas a high value relaxes it. Moreover, the convergence is effective so far as the peak time t p,i of the adjustable suspension is short enough compared to the period of the perturbations.

           k s,i (t) = π 2 A i (t) t p,i 2 (1 -ξ 2 ) c s,i (t) = 2 ξ π A i (t) t p,i 1 -ξ 2 (11) 
with:

A i (t) = 1 M s,i (t) + 1 M ns,i (12) 
and ξ, a parameter defining the damping ratio of the mechanical system, chosen as 0.7 to limit overshooting.

Proof. The objective is then to adjust coefficient properties in real-time depending on the dynamic behaviour of the vehicle with respect to a desired peak time t p,i .

For this, the aim is first to establish the transfer function between ∆Z i (t) and ∆T i (t). This function permits to describe the behaviour of the suspended mass submitting to ground perturbations transferred by the tire.

From equation (1), it can be written that:

∆ Zi = 1 M s,i (t) -k s,i ∆S i -c s,i ∆ Ṡi -g -zg,i (13) 
By using (3), ( 13) leads to:

∆ Zi + 1 M s,i (t) c s,i ∆ Żi + 1 M s,i (t) k s,i ∆Z i = 1 M s,i (t) c s,i ∆ Ṫi + 1 M s,i (t) k s,i ∆T i -g -zg,i (14) 
Then, injecting (2) into ( 14) leads to:

∆ Zi + A i (t) c s,i ∆ Żi + A i (t) k s,i ∆Z i = ∆ Ti + A i (t) c s,i ∆ Ṫi + (A i (t) k s,i + B i k p,i )∆T (15)
with A i (t) is defined in ( 12) and B as follows:

B i = 1 M ns,i (16) 
The Laplace transform of the differential and linear second order equation ( 15), with null initial conditions and considering that A i (t) is slowly variable compared to the suspension, is computed as:

∆Z i (s) (s 2 + (A i (s) c s,i ) s + (A i (s) k s,i )) = ∆T i (s) (s 2 + (A i (s) c s,i ) s + (A i (s) k s,i + B i k p,i )) (17)
Then, the transfer function H i (s) of the system can be written as follows in order to have the axle position ∆T i (s) as an input (disruption) and the position of the suspended mass ∆Z i (s) as the response of the system.

H i (s) = ∆Z i (s) ∆T i (s) = s 2 + (A i (s) c s,i ) s + (A i (s) k s,i + B i k p,i ) s 2 + (A i (s) c s,i ) s + (A i (s) k s,i ) (18) 
From the transfer function (18), it is now possible to write relations between A i , k s,i , c s,i , the undamped natural frequency of the system ω 0,i and the damping ratio ξ:

A i k s,i = ω 0,i 2 A i c s,i = 2 ξ ω 0,i (19) 
The damping ratio ξ is settled to 0.7 in order to impose the minimum settling time of the system to the disruption. In order to control the properties of the suspension, it has been chosen to tune the value of the peak time t p,i whose mathematical relation to ω 0,i is:

ω 0,i = π t p,i 1 -ξ 2 (20)
Finally, equations defined in ( 11) and ( 12) are obtained.

Obstacle crossing

The second objective of the active suspensions considered in this work is to act on damping and stiffness coefficients in order to maintain roll and pitch angles when crossing a high obstacle, as a bump or a hole. Considering as known the predictive height of such an obstacle h o,i (t) (depending on the time with respect to vehicle speed), the expressions ( 21) and ( 23), demonstrated in the sequel, permit to minimize the variation of the vehicle inclination. These equations are valid as long as the minimal and maximal ranges of the suspension are not reached. The term ∆t o,i 2 which is dependent on h o,i (t) allows the realtime adaptation of the peak time value depending on the obstacle height. Conditions on t p,i are exactly the same as in the previous subsection.

           k so,i (t) = π 2 A i (t) (t p,i 2 -∆t o,i (t) 2 ) (1 -ξ 2 ) c so,i (t) = 2 ξ π A i (t) t p,i 2 -∆t o,i (t) 2 1 -ξ 2 (21)
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with:

A i (t) = 1 M s,i (t) + 1 M ns,i ; ξ = 0.7 (22) and, ∆t o,i (t) 2 = - π 2 h o,i (t) M s,i (t) g A i (t) (1 -ξ 2 ) (23)
Proof. . The first one is on a flat ground with a k s,i (t) stiffness value, the second one on a h o,i (t)tall obstacle with a k so,i (t) stiffness value. At steady state, ∆ Ṡi = 0 and for an equal ground clearance z s,i (t) of the suspended mass, the following relations are obtained:

M s,i (t) g = -k s,i (t) ∆S i (t) M s,i (t) g = -k so,i (t) (∆S i (t) -h o,i (t)) (24) 
Eliminating ∆S i (t) in ( 24) leads to the following relation:

k so,i (t) = M s,i (t) g k s,i (t) M s,i (t) g + k s,i (t) h o,i (t) (25) 
By using the generic equation for the stiffness (11) demonstrated in the previous subsection and by adding an offset ∆t o,i (t) 2 to the square of the peak time value t p,i which control the behaviour of the suspension, the equation of k so,i (t) can be written as in (21).

From ( 25) and ( 21), ∆t o,i (t) 2 can be deduced such as in (23). Equation for c so,i is adapted as well by changing the term t p,i by t p,i 2 -∆t o,i (t) 2 which permits to take into account positive and negative values for ∆t o,i (t) 2 .

Finally, equations defined in ( 21) and ( 23) are obtained.

SIMULATION RESULTS

Making use of the proposed strategy, control algorithms have been tested on a MATLAB/ADAMS co-simulator with the simulated vehicle depicted in Fig. 6. This vehicle is four-wheel driven and has a front steering axle and has the same kinematic structure as the model in section 2. Its features are described in Table 7. For the following trials, the peak times t p,i of each suspension have been set to 0.1 seconds according to the active suspension settling times which are in the order of 50 ms for the most reactive one (electrorheological or magnetorheological fluid technologies). Results are illustrated through simulations because the prototype is not assembled yet. Nevertheless, these simulations are realistic with respect to technologies met in current industries.

The first two seconds of each trial have been cut because of simulator initialization that has no scientific interest.

Flat ground and slope driving

The objective of this trial is the verification of the proposed control strategy for active suspension regarding to realtime vehicle acceleration and ground variations. For this, we have imposed the trajectory depicted in Fig. 8 to the vehicle.

Fig. 8. Trajectory on flat ground and on slope

The vehicle is first submitted to a longitudinal acceleration on flat ground () in order to reach the speed of 3 m/s -1 (). Then the vehicle turns on flat ground (), then moves uphill () and downhill () a slope while turning and again turns on flat ground (). Finally the vehicle moves along a straight way on flat ground ().

The results for the adjustment of k s,i (t) and c s,i (t) are depicted in Fig. 9 and 10. The transversal acceleration of the suspended mass is depicted in Fig. 11.

These diagrams show indeed that the k s,i (t) and c s,i (t) values logically evolve with the same trend as the load transfers. Indeed, during the longitudinal acceleration phase (), front axle is offloaded and rear axle is overloaded. Then, suspensions parameters are adjusted in this way because front suspensions are relaxed and rear suspensions are stiffened. This is also transposable during the turning phase such as during the up/down phase ( and ) where left and right suspensions are relaxed or stiffened in realtime with respect to the lateral acceleration and the pitch and roll angles. This conclusion is consistent with (4), ( 5), ( 6), ( 7) and ( 11) because a load increase leads to a k s,i and c s,i increase and conversely. Fig. 11 also shows that the suspended mass is submitted to very low transversal accelerations (lower than 0.5 g at steady state and than 0.5 g at transitional regime). This checks the convergence value (to zero) and speed of the proposed algorithms.

Obstacle crossing

The aim of this trial is the verification of the second part of the algorithm (section 3.3) and moreover compare this second part with the first one (section 3.2) when the vehicle crosses an obstacle. For this, we apply k s,i (t) and c s,i (t) functions (11) to the front axle suspensions to balance the load transfer only. k so,i (t) and c so,i (t) functions ( 21) are applied to the rear axle to balance the load transfer and keep a constant ground clearance when crossing an obstacle. During this trial, the vehicle moves along a straight way (), crosses first the obstacle with the front axle () and then with the rear one (). The predictive ground model is known with a ±2 cm accuracy in order to simulate a sensor behaviour such as a laser.

Fig. 12. Obstacle crossing scenario

The results for the adjustment of k so,i (t) and c so,i (t) are depicted in Fig. 13 and 14. The pitch angle of the suspended mass is depicted in Fig. 15. These diagrams show indeed that the k so,i (t) and c so,i (t) values are consistent and evolve with the same trend as the load transfers and the height of the obstacle. Indeed, when the front axle crosses the obstacle (), only the load transfer is taken into account to modify in real-time the suspension values. Then, a major pitch angle peak can be noticed. On the contrary, when the rear axle crosses the obstacle (), the suspension is relaxed in order to keep as far as possible a constant ground clearance. Thanks to Fig. 15, we can notice a pitch angle perturbation (linked to the ground clearance perturbation) which is up to 5-6 times less powerful with k so,i (t) and c so,i (t) functions.

CONCLUSION

This paper proposes a control strategy for a vehicle equipped with suspensions adjustables in real-time to be stable in off-road context. Because of harsh conditions and ground variations, passive and semi-active suspensions are not appropriate in this context. Thanks to the emergence of active suspensions, it is now possible to design vehicles that integrate them in order to evolve on difficult ground. However, in this context, previous control algorithms for adjustable suspensions cannot be used to satisfy the stability needs. Here, a new approach based on the suspended load and the peak time variations is proposed. It allows to control in real-time the stiffness and the damping of an adjustable suspension in harsh context in order to guarantee the stability of the suspended mass. By using a decoupled load transfer computation, it is first possible to obtain the suspended mass on each suspension in realtime. Then these masses and the knowledge of the height of obstacles allow to adjust the stiffness and the damping values of the suspensions in real-time. The convergence of the ground clearance of the suspended mass is available as long as the ranges of the suspensions are not reached.

As shown in the simulation section and mathematically proved, this approach is appropriate whatever the linear and angular accelerations of the vehicle and also when the vehicle is crossing an obstacle. Future work is focused on integrating tire crushing to this new approach to further increase the stability of the suspended mass.
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