
HAL Id: hal-02607309
https://hal.inrae.fr/hal-02607309

Submitted on 10 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A three-dimensional micromechanically based model
Hao Xiong, François Nicot, Zhen-Yu Yin

To cite this version:
Hao Xiong, François Nicot, Zhen-Yu Yin. A three-dimensional micromechanically based model. Inter-
national Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41 (17), pp.1669-1686.
�10.1002/nag.2692�. �hal-02607309�

https://hal.inrae.fr/hal-02607309
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A three-dimensional micromechanically based model

H. Xiong1,*,†, F.Nicot1 and Z. Y. Yin2,3

1Université Grenoble Alpes, IRSTEA, Geomechanics Group, ETNA, Grenoble, France
2LUNAM University, Ecole Centrale de Nantes, UMR CNRS GeM, Nantes, France

3Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education; Department of Geotechnical

Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China

Granular materials react with complicated mechanical responses when subjected to external loading paths.
This leads to sophisticated constitutive formulations requiring large numbers of parameters. A powerful
and straightforward way consists in developing micro-mechanical models embedding both micro-scale and
meso-scale. This paper proposes a 3D micro-mechanical model taking into account an intermediate scale
(meso-scale) that makes it possible to describe a variety of constitutive features in a natural way. The com-
parison between experimental tests and numerical simulations reveals the predictive capability of this model.
Particularly, several simulations are carried out with different confining pressures and initial void ratios,
based on the fact that the critical state is quantitatively described without requiring any critical state formula-
tions and parameter. The model mechanism is also analyzed from a microscopic view, wherein the evolution
of some key microscopic parameters is investigated.

granular materials; multiscale approach; microstructure; mesoscopic scale; micromechanics; critical state

1. INTRODUCTION

Granular materials are significant constituents involved in many industrial processes and geophys-

ical phenomena. However, no fundamental statistical theory is currently available to describe their

properties. The behavior of one single grain is easily understood, but the properties of a granu-

lar collection are much more complex. As such, considerable attempts have been made over last

few decades to understand the behavior of granular materials, especially in soil mechanics. For the

macroscopic aspect, several focal topics are wildly discussed such as strain localization [1], insta-

bility occurrence [2], and the existence of a bifurcation domain within the plastic limit surface, in

which a variety of failure modes can be encountered [3–6]. These macroscopic features not only

need to be observed but also need to be understood. Thus, increasing researches on the micro-scale

are conducted to explain the physical background, including the particle breakage [7], the anisotropy

[8, 9], the liquefaction [10, 11], the failure occurrence [2, 12], the force chain buckling [13], and the

meso-structure evolution [14].

A variety of phenomenological models have been developed to describe complicated phenomena

in soil mechanics. These models constantly involve enriched and complex mathematical equations

introducing a great number of parameters to describe different observed phenomena. Some typi-

cal phenomenological models are reviewed here such as elastoplastic theories [15–19], endochronic

models [20], hypoplastic theories [21], and incrementally nonlinear models [22, 23]. On the other
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side, an increasing sight can be found in microscopic modeling and multiscale approaches on

both numerical and experimental sides, with the development of microscopy technology and X-ray

tomography [24]. It is an alternative way to consider that the variety of constitutive properties stem

essentially from the granular character [25–27]. A series of micro-mechanical models have been

proposed by considering the average behavior of all contacts along each contact direction [28, 29],

or considering a meso-structure oriented along all the directions of the physical space [30].

In this paper, the micro-directional model [28] and the H-directional model [30] in 2D conditions

are firstly reviewed. Based on the homogenization scheme of the H-directional model, a 3D exten-

sion of the H-directional model is developed. To examine the novel model capability, calibration is

performed using drained triaxial experimental results from Ticino sand. Once calibrated, the per-

formance of this 3D-H model is then analyzed in prediction. Afterwards, the model responses on

confining stress-dependent and void ratio-dependent stress–strain relationships are examined, based

on which the critical state seems naturally captured. Finally, the model mechanism is also inspected

from a microscopic point of view. The evolution of micro variables is analyzed at different strain

states along a drained triaxial loading path.

2. A BRIEF REVIEW OF THE TWO-DIMENSIONAL MICRO-DIRECTIONAL MODELS

These 2D models that consist of the micro-directional model [28] and the H micro-directional

model [30] were initially developed to describe the mechanical behavior of snow [31]. The micro-

directional model was then generalized to any type of granular assembly, with a particular emphasis

on frictional granular materials [28].

Building the constitutive relations of granular materials with a multiscale approach requires the

stress and strain tensors to be related on the micro-scale. Basically, a granular assembly with applied

loads to boundary grains will evolve with the change of boundary conditions. The evolution of grains

follows Newton’s law, with repulsive forces between grains that are not nil when contact exists

between grains. The boundary grains firstly move according to the mechanical imbalance. Thus,

these displacements progressively disturb the internal balance according to Newton’s second law and

the granular assembly rearranges. As a consequence, the mechanical response of a granular assem-

bly results from dynamical mechanisms governing the motion of each particle constrained by the

existence of adjoining particles. This is exactly the leading principal of discrete element models [32].

However, a high degree of freedom in the resulting nonlinear differential equation system implies

that it is merely impossible to obtain the analytical solution of the problem.

To simplify the differential equation system, some assumptions are introduced. In the micro-

directional model, all grains of the granular assembly are considered to be spherical. The specimen is

described as a distribution of contacts oriented along each direction of the physical space. All contact

Figure 1. General homogenization scheme of the micro-directional model [26].
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directions are independent of each other. Thus, the constitutive relation of the micro-directional

model can be decomposed in three steps as shown in the general homogenization scheme (Figure 1),

(1) Kinematic localization: ıui

�
En
�

D 2rgı"ijnj where ıui is the incremental relative displace-

ment with respect to the contact direction En, rg denotes the mean radius of the spherical grains,

ı"ij is the incremental macrostrain tensor.

(2) Contact law: The local behavior is selected according to the granular material in hand. For

granular soils, an elasto-perfect plastic model can be implemented, relating the local normal

force F c
n to the local normal relative displacement uc

n as well as the local tangential force F c
t

to the local tangential relative displacement uc
t . Besides, this contact law includes a Mohr–

Coulomb criterion and can be expressed under the following incremental formalism, which

introduces a normal elastic stiffness kn and a tangential elastic stiffness kt , both constant, and

a local friction angle 'g .
8
<
:
ıF c

n D knıu
c
n

ı EF c
t D min

° EF c
t C ktı Euc

t

 ; tan'g

�
F c

n C ıF c
n

�±
�

EF c
t Ckt ı Euc

t EF c
t Ckt ı Euc

t


� EF c

t
(1)

(3) Stress averaging: The stress tensor for a representative elementary volume (REV) packing is

homogenized based on the Love’s formula [33–35]

�ij D
1

V

NcX

cD1

F c
i l

c
j (2)

where Elc is the branch vector joining the centers of particles in contact on contact c, EF c is the

contact force, and the sum is extended to all the Nc contacts occurring in the REV of volume V.

As an extension of the micro-directional model, the H-micro-directional model was developed

to describe the constitutive relation of granular materials by taking into account the local geometri-

cal interaction between grains [30]. The main limitation of the micro-directional model is that the

deformation on the contact level corresponds to the strain on the macroscopic (specimen) scale. (the

so-called affine approximation)

To overcome this limitation, a hexagon pattern (meso-scale) takes the place of the single contact

to be the directional element constituting the material fabric on the meso-scale. The hexagon, as

shown in Figure 2, consists of six particles with identical radius. A fundamental assumption of the

hexagon pattern should be declared, that the hexagon is fully symmetric with respect to axis En and Et .
The quasi-static equilibrium of the hexagon can be reached under the symmetric external forces.

Thus, only the mechanical balance of two grains, denoted by grain 1 and 2, is needed to be solved.

Figure 2. The hexagonal element of the H-directional model. [Colour figure can be viewed at
wileyonlinelibrary.com]
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The opening angle ˛ embedded in the hexagon pattern is a significant parameter, highly relating the

deformation and the void ratio of the hexagon. Different with the micro-directional model, particle

rearrangement can be expressed by updating the opening angle in each hexagon, which evolves

during the loading path.

3. THREE-DIMENSIONAL-H MODEL

The H-directional model is still limited within a 2D context. In order to extend the application range

of the H-directional model, especially to implement it in 3D finite element method (FEM) codes,

several questions are encountered, such as how to extend this striking 2D-H-directional model to

3D conditions. More generally, how to extend a 2D multiscale constitutive model to 3D conditions

in a feasible and straightforward way? In this section, an innovative approach that is able to extend

the 2D-H-directional model to 3D conditions is presented.

3.1. Kinematic localization

In 3D conditions, a global coordinate system
�
Ex1; Ex2; Ex3

�
is required, where Ex1; Ex2; Ex3 axes stand

for the principal stress directions on the macro-scale. The 3D-H model similarly follows the three

steps shown in Figure 1, going from the incremental macroscopic strain tensor ı NN" to the incremen-

tal macroscopic stress tensor ı NN� by transforming the micro-scale and meso-scale information. No

rotation of the principal axis of both stress and strain tensors is supposed to take place, so that ı NN"
and ı NN� express as

ı NN" D

2
4
ı"11 0 0

0 ı"22 0

0 0 ı"33

3
5 ı NN� D

2
4
ı�11 0 0

0 ı�22 0

0 0 ı�33

3
5 (3)

The granular assembly is described as a distribution of meso-structures oriented along each direc-

tion of the physical space. As shown in Figure 3, each meso-structure with respect to a given local

frame
�
En; Et ; Ew

�
, which can be described by Euler angles � , ' and  . Thus, a distribution function

! .�; ';  / that indicates the density of meso-structures associated with the frame
�
En; Et ; Ew

�
is intro-

duced. This function expresses the directional distribution of the meso-structures to describe texture

arrangement of the granular assembly. In this paper, only the isotropic distribution is discussed.

The coordinate transformation from global frame to local frame can be implemented by employ-

ing the rotation matrix NNP , which is computed as the composition product of elementary rotation

Figure 3. Global and local coordinate systems. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 4. The meso-structure of 3D-H model. [Colour figure can be viewed at wileyonlinelibrary.com]

matrices along axis Ex1 , Ex0
2, and En, respectively:

NNP D

2
4
1 0 0

0 cos � sin 

0 sin cos 

3
5

2
4

cos' 0 � sin'

0 1 0

sin' 0 cos'

3
5

2
4
1 0 0

0 cos � � sin �

0 sin � cos �

3
5 (4)

which gives

NNP D

2
4

cos' � sin � sin' � cos � sin'

� sin' sin cos � cos � sin � cos' sin � sin � cos � cos � cos' sin 

sin' cos cos � sin C sin � cos' cos � sin � sin C cos � cos cos'

3
5 (5)

Besides, the meso-structure introduced in the following section (Figure 4) is a significant con-

nection between macro-scale and meso-scale. The branch vector relies the centers of particles

in contact: EL D Œl1; l2; l3�
T , wherein l1, l2, l3 represent the lengths along directions En, Et , Ew,

respectively. Thus, the kinematic localization gives

ı EL D NNPı NN" NNP�1 EL (6)

where ı EL D

2
4
ıl1
ıl2
ıl3

3
5

3.2. Meso-structure behavior

The meso-structure is composed of 10 spherical grains with the identical radius rg (Figure 4). This

meso-structure is selected because it includes a grain cluster, large enough to contain four force

chains, and enabling grain rearrangement. It can be described analytically, and solved by hand,

which is a great advantage. The grain centers respectively belong to two mutually perpendicular

planes. Meanwhile, the centers of grains make up two mutually perpendicular hexagon patterns.

Thus, the meso-structure can be decomposed into two independent hexagon patterns: Hexagon A

and Hexagon B (shown in Figures 5 and 6). To inherit the features from the H-directional model,

this meso-structure is able to lead complicated kinematic mechanisms, including local dilatant and

contractant behaviors. To simplify the derivation, it is assumed that each meso-structure is subjected

to an external symmetric load. Consequently, only two contacts between grains 1 to 2 and grains 2

to 3, respectively denoted by contact 1 and contact 2, are considered in Hexagon A, while two con-

tacts between grains 1 to 7 and grains 7 to 8, denoted by contact 3 and contact 4, are considered in

Hexagon B. T1 is tangential component and N1 is normal component of the contact force of contact

1. The contact force applied by grain 3 to grain 2 only involves a normal component N2; the tan-

gential component is nil because of the symmetry. The relative incremental displacement between

5



Figure 5. Mechanical description of hexagon pattern A. (a) Branch vector, (b) external forces, and (c) force
balance for grains 1 and 2. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 6. Mechanical description of hexagon pattern B. [Colour figure can be viewed at
wileyonlinelibrary.com]

grains 2 and 3 is composed of a normal component ıu1
n and a tangential component ıu1

t . Like-

wise, the relative incremental displacement of contact 2 is composed of a single normal component.

Employing the notations given in Figure 5(a), it follows that

ıu1
n D ıd1

ıu1
t D d1ı˛1

ıu2
n D ıd2

(7)

The geometrical compatibility yields

l1 D d2 C 2d1 cos˛1

l2 D 2d1 sin˛1

(8)

Force balance of grain 1 along direction En and of grain 2 along direction Ew and En and moment

balance of grain 2 reads

F a
1 D N1 cos˛1 C T1 sin˛1 (9a)

F2 D N1 sin˛1 � T1 cos˛1 (9b)
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N2 D N1 cos˛1 C T1 sin˛1 CG2 (9c)

G2 D T2 (9d)

It should be noted that no rolling is assumed to affect particles (Equation (9d)). This assumption

is undoubtedly questionable for spherical-shaped grains, where particle rolling acts as an important

ingredient of the deformational processes [36]. However, it seems to be reasonable for real granular

soil materials where actual grains are angular with multiple facets [37, 38].

The inter-particle contact law expressed in Equation (1) is employed. After simplifying (see detail

in Appendix A), Equation (1) can be rewritten as follows:

ıNi D �knıdi

ıTi D Biı˛j � Aiıdi C Ci

i D 1; 2; 3; 4 (10)

For the purpose of simplification, term Ci is negligible. It differs from zero only during a tran-

sition from elastic regime to plastic regime. Except this situation, it is zero. For very small strain

increments, as considered throughout this paper, term Ci can therefore be neglected.

To obtain the incremental evolution of the external forces, ıd1, ıd2, and ı˛1 have to be

expressed as a function of the meso strain. Three equations are therefore required. Compatibilities

(Equation (8)) provide two relations. The third one is the balance equation of grain 2 along direc-

tion En (Equation (9c)). Taking the inter-particle contact law (Equation (10)) into account leads to the

following algebraic system expressing the incremental changes in ıd1, ıd2, and ı˛1 with respect to

the incremental changes in ıd1 and ıd2:

2
4

2 cos˛1 1 �2d1 sin˛1

2 sin˛1 0 2d1 cos˛1

cos˛1 C A1

kn
.sin˛1 C 1/ �1 F2�B1.sin ˛1C1/

kn

3
5

2
4
ıd1

ıd2

ı˛1

3
5 D

2
4
ıl1
ıl2
0

3
5 (11)

where A1; B1 are given in Appendix A.

Differentiating Equations (9a), (9b) and combining with Equation (10) gives

ıF a
1 D �kn cos˛1ıu

1
n C kt sin˛1ıu

1
t � F2ı˛1

ıF2 D �kt cos˛1ıu
1
t � kn sin˛1ıu

1
n C F a

1 ı˛1

(12)

Thus, combining Equations (7), (11), and (12), the incremental constitutive relation for Hexagon

A can be expressed as follows:

1

jDja

�
Ka

11 K
a
12

Ka
21 K

a
22

� �
ıl1
ıl2

�
D

�
ıF a

1

ıF2

�
(13)

Similarly, the incremental constitutive relation for Hexagon B reads:

1

jDjb

�
Kb

11 K
b
12

Kb
21 K

b
22

� �
ıl1
ıl3

�
D

�
ıF b

1

ıF3

�
(14)

Finally, superimposing Hexagon A and Hexagon B, the total incremental force along direction

En is ıF1 D ıF a
1 C ıF b

1 . The incremental constitutive relation of the 3D meso-structure can be

obtained as follows: (see detail in Appendix B )

NNKıEl D ı EF (15)

with NNK D

2
664

1
jDj

a
Ka

11 C 1

jDjb
Kb

11
1

jDja
Ka

12
1

jDjb
Kb

12

1
jDja

Ka
21

1
jDja

Ka
22 0

1

jDjb
Kb

21 0 1

jDjb
Kb

22

3
775
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3.3. Stress averaging

Averaging the mesostress taking place within all the meso-structures in the specimen of volume V
can be performed as follows:

NN� D
1

V

•
!.�; ';  / NNP�1 NNQ�.En; Et ; Ew/ NNP sin'd'd�d (16)

where NN� is the macro-stress tensor operating on the specimen scale. For an isotropic specimen, the

distribution function !.�; ';  / is constant and � 2 Œ0; 2�/; ' 2 Œ0; ��;  2 Œ0; 2�/ (�; ';  are the

Euler angles depicted in Figure 3). The mesostress NNQ�.En; Et ; Ew/ with respect to the local frame can be

computed using the Love–Weber’s formula [33–35, 39]:

e�11.En; Et ; Ew/ D 4N1d1cos2˛1 C 4T1d1 cos˛1 sin˛1 C 2N2d2

C 4N3d3cos2˛2 C 4T3d3 cos˛2 sin˛2 C 2N4d4

e�22.En; Et ; Ew/ D 4N1d1sin2˛1 � 4T1d1 cos˛1 sin˛1

e�33.En; Et ; Ew/ D 4N3d3sin2˛2 � 4T3d3 cos˛2 sin˛2

e� ij .En; Et ; Ew/ D 0 when i ¤ j

(17)

It should be mentioned that a classical approximation is introduced when averaging the stress: the

applied point of each external force is shifted from the grain boundary to the grain center, making

it possible to introduce the branch vectors, and to retrieve the usual Love–Weber formula (see [40]

for details).

The principal components of meso-stress tensor are calculated by the internal forces and the

geometric terms of the meso-structure. Besides, off-diagonal components can be simply consid-

ered as nil, because the meso-structure with respect to (En; Et ; Ew) always offsets the one with respect

to (�En;�Et ;� Ew) in off-diagonal components when integrated. This point is also validated from a

numerical point of view.

3.4. Opening angle and void ratio

For a virgin specimen, the initial opening angle is denoted ˛0. Then, ˛1 D ˛2 D ˛0. The initial

void ratio e0.En; Et ; Ew/ of each meso-structure belonging to local frame .En; Et ; Ew/ can be estimated by

using the initial opening angle ˛0. The volume of the dodecahedron that is made up of the branch

vectors of meso-structure can be expressed as follows:

Vd12 D 32r3
gsin2˛0

�
1

3
cos˛0 C

1

2

�
(18)

Figure 7. Evolution of initial void ratio as a function of initial opening angle. [Colour figure can be viewed
at wileyonlinelibrary.com]
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where rg is grain radius; ˛0 is the initial opening angle of the meso-structure considered.

The volume of the solid Vs12 in the dodecahedron includes 10 parts. It is easy to calculate the

entire volume of the solid, because the volume of the five parts on top side equal the volume of a

whole grain. Thus, the entire volume of the solid parts can be calculated as follows:

Vs D
8

3
�r3

g (19)

Combining Equations (18) and (19), the initial void ratio expression is given by

e0 D
Vd12 � Vs

Vs

DD �
4

�
cos3˛0 �

6

�
cos2˛0 C

4

�
cos˛0 C

6

�
� 1 (20)

The evolution of e0 with respect to angle ˛0 (Equation (20)) is plotted in Figure 7; the initial

opening angle ˛0 is limited because of initial configuration of the meso-structure without overlap-

ping between grains. The minimum value ˛0 D 45ı corresponds to the condition that the grain 2

is just in contact with grains 7 and 10. The maximum value can reach 90ı when the grains 1 and 4

are touching. In order to estimate the initial opening angle from the initial void ratio, Equation (20)

is required to become a bijective function. Thus, the domain of ˛0 is limited from 45ı to 74:9ı cor-

responding to the initial void ratio e0 from 0.4 to 1.09. Consequently, ˛0 can be estimated from e0,

which is obtained from laboratory test. With the help of this key micro parameter ˛0, the geomet-

ric fabric of the meso-structure is determined. However, it should be noted that the maximum and

minimum values of e0 are not the maximum and minimum void ratios of the specimen considered.

4. PERFORMANCES OF THE THREE-DIMENSIONAL-H MODEL

In this section, the performance of the 3D-H model is examined. First, parameters are calibrated by

comparing the numerical response of the model with experimental data. Second, one of the most

appropriate set of parameters is adopted to carry out prediction tests at different confining pressures.

Then, some numerical simulations are conducted along different loading paths. As discussed in the

previous section, the proposed model introduces four parameters: kn, kt , 'g (material parameters),

and e0, wherein the initial void ratio e0 corresponding to opening angle ˛0 can be estimated from

Equation (20).

4.1. Parameter calibration and model prediction

The calibration of the present model can be performed from the comparison between numerical

and experimental results. The experiment was carried out along the conventional drained triaxial

loading path with mono-disperse sand (d50 D 0:6mm) called Ticino sand, well characterized from

a geotechnical point of view and adopted in many studies [41].

Conventional triaxial compression test at 200 kPa of confining pressure is adopted to calibrate the

model parameters by considering two responses: (1) the stress–strain response; (2) the volumetric

Figure 8. Calibration phase of the model at 200 kPa of confining pressure.
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Table I. Parameters selected in calibration and prediction phases.

kn(N/m) kt (N/m) e0 'g (ı) Initial isotropic stress p0(kPa)

1:90 � 106 1:14 � 106 0.53 25 100, 200, 300 and 400

Figure 9. Prediction capability of the model at 100 and 300 kPa of confining pressures. (a) Deviatoric stress
versus axial strain and (b) volumetric strain versus axial strain.

response. Figure 8 shows the numerical result in comparison with the experimental result, where the

experimental curves are well reproduced using the set of parameters reported in Table I.

Figure 9 shows the model predictions of deviatoric stress and volumetric strain plotted against

axial strain at different confining pressures. The calibrated parameters reported in Table I are

employed. Evidently, the model predictions agree fairly well with the experimental curves in terms

of both the stress–strain relation and volumetric responses. As shown in Figure 9(a), the numeri-

cal curve rises lower than the experimental curve at 300 kPa of confining pressure while higher at

100 kPa. Figure 9(b) plots the volumetric strain "v versus axial strain "a. The experimental curves

are accurately reproduced especially when "a < 4%, but experience more dilatancy for larger axial

strains.

In general, the calibration and prediction evidence satisfying results. The present model captures

well the experimental curves with only four parameters. A key geometrical parameter ˛0 evolves

independently during loading paths, which will be further discussed subsequently.

4.2. Triaxial loading paths

Conventional triaxial compression tests at different confining pressures are selected to show how

the proposed model simulates the behavior observed for sands. For demonstration purpose, the

simulations at 100, 200, and 400 kPa confining pressures are compared in Figure 10 from "a D 0%

to "a D 25%. The parameters reported in Table I are adopted.

Figure 10(a) shows that the deviatoric stress q reaches a peak at a small strain about "a D 5%

and undergoes a subsequent softening regime until critical state. As shown in Figure 10(b), the

deviatoric stress q triple increases as the mean stress p during the triaxial loading path. The vol-

umetric strain responses at different confining pressures are displayed in Figure 10(c), where a

dilatancy can be observed before the critical state, except a sensible contractancy captured at the

beginning. Figure 10(d) plots the void ratio e versus the mean stress p in logarithms form. The

curves are increasing until the critical state line. The evolution of the void ratio can be observed

in Figure 10(e) where the volumetric strains "v firstly decrease and then increase until a plateau is

reached. Figure 10(f) gives the deviatoric ratios q=p plotted against the axial strain "a. The peak of

deviatoric stress ratio increases as the initial confining pressure decreases. All the curves converge

toward more or less the same value, close to 1.25. In 3D conditions, the deviatoric ratio is related to

10



Figure 10. Effect of different initial confining pressures on model responses along an axisymmetric drained
triaxial loading path. (a) Deviatoric stress versus axial strain, (b) deviatoric stress versus mean stress, (c)
volumetric strain versus axial strain, (d) void ratio versus mean stress, (e) void ratio versus axial strain and

(f) deviatoric ratio versus axial strain.

the mobilized macroscopic friction angle, as

q

p
D

6 sin'c

3 � sin'c

(21)

which gives 'c � 31:15ı when q=p D 1:25

Besides, additional three CTC tests are carried out at a same initial confining pressure, namely,

200 kPa, but different initial void ratios e0 D 0:43, e0 D 0:53, e0 D 0:63. As shown in Figure 11(a),

the deviatoric stress q reaches different peaks because of the effect of different initial void ratios.

The peak of the curve corresponding to e0 D 0:53 (the densest specimen) rises higher than the curve

corresponding to e0 D 0:63 (the loosest specimen). In Figure 11b, the void ratio slightly decreases

at the beginning and then increases until the critical void ratio at the end, where a convergence

tendency can be observed. Conversely, the loosest specimen reaches a higher critical void ratio than

11



Figure 11. Effect of different initial void ratios on the model response along an axisymmetric drained triaxial
loading path.

the densest one. As shown in Figure 11(c), the volumetric strain curves decrease before "a D 2%

and increase until critical state. The densest specimen response is more dilatant than that of the

loosest one. Figure 11 plots the axial strains versus the deviatoric ratios, which shows that the largest

initial void ratio brings out the lowest peak in deviatoric ratio q=p, corresponding to the highest

macroscopic friction angle 'c . It is very challenging for a stress–strain model to reproduce the

critical state, when no specific assumptions are introduced. However, by the proposed model it is

observed that the critical state is not perfectly obtained, but is reached approximately.

It is noticed that the hardening and softening behavior, including the qualitatively described crit-

ical state, can be better illustrated from a micro-mechanical point of view. The 3D distributions of

micro variables including micro stresses ( Q� ), contact information, and opening angles (˛1.2/) involve

three Euler angles (�; ', and  ; Figure 3). For the purpose of simplification, these 3D micro vari-

ables can be integrated either over '; or over �;  . Considering the drained triaxial loading path,

the former is selected. The angular distributions of micro variables at different strain states, with

200 kPa confining stress are illustrated along angle � in Figure 12. In each sub-figure, three polar

figures are shown: the integrated micro stress
’
! Q�nd�d ,

’
! Q�td�d , and

’
! Q�wd�d (left

column); the percentage of plastic or buckling meso-structures (center column); the mean normal-

ized opening angle (˛1=˛0; ˛2=˛0) (right column). It should be mentioned that the buckling area in

the center column denotes the percentage of total number of meso-structures in a certain value of � .

As a meso-structure is buckling, Q� and ˛1.2/ are set to zero. The contact buckling is a significant fea-

ture of the present model, which enables it to simulate the persisting loss of contacts corresponding

to the so-called force-chains buckling.

Initially, all of the meso-structures are created as isotropic distribution with same initial open-

ing angle ˛0 D 41:56ı. Figure 12(a) corresponds to the end of the isotropic compression phase,

where the micro stresses and opening angle are isotropic distributed. Each meso-structure evolves

independently, giving rise to different local relative displacements in terms of the kinematic local-

12



ization (Figure 6). During the isotropic compression phase, no buckling and plastic meso-structure

can be observed, which indicates that the specimen still behaves in an elastic regime. As shown

in Figure 12(b),
’
! Q�nd�d plays a major role along the axial compression direction (' D 0 or

180ı), which shows an anisotropic micro stress state. The meso-structures oriented within a central

cone (angle ˇ, the circumferential angle of the buckling cone) become buckling, because the meso-

structures in this cone dilate too much in order to keep the constant confining stress. Meanwhile,

more than 20% of meso-structures reach plastic regime in the rest of the area. Afterwards, Figure 12

(c, d, e, and f) shows the evolution of micro variables during the triaxial loading path. In the left

column, micro stress increases in the non-buckling area as ˇ also increases in the center column.

Figure 12.
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Figure 12. Angular distributions of micro variables along � at different strain states, with 200 kPa of the con-
fining stress: the integrated micro stress

’
! Q�nd�d ,

’
! Q�td�d , and

’
! Q�wd�d (N) (left column);

the percentage of plastic or buckling meso-structures (center column); the mean normalized of the opening
angles (˛1=˛0; ˛2=˛0) (right column). [Colour figure can be viewed at wileyonlinelibrary.com]

Thus, the macro stress–strain response can be better illustrated from these micro state variables. If

the micro stress increasing plays a major role, the macro-stress raises. Otherwise, if the buckling

regime plays a major role, the macro-stress decreases. Moreover, the increasing and decreasing ten-

dencies of the macro-stress can be reached a balance corresponding to the macro-stress plateau.

Both buckling and plastic regimes of the present model cannot be reversed, which directs the soft-

ening behavior observed on the macro-scale. Additionally, slight growth of opening angle ˛2 and

˛3 can be observed in the right column. It is a key geometrical parameter, which has a tremendous

influence on the micro forces of the meso-structure. This geometrical parameter also reveals the

rearrangement of the specimen. The relative position between particles is obtained not only from the

single contact relation, but also from the geometrical configuration described by this key parameter.
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5. CONCLUSIONS AND PERSPECTIVES

Based on the homogenization scheme used in the micro-directional model and the H-directional

model, the latter is extended to 3D conditions by replacing the 2D hexagonal pattern with a 3D meso-

structure. For this purpose, a decomposition and superposition approach is introduced to analyze the

local behavior of the meso-structure. The 3D-H model only introduces four parameters, wherein kn,

kt , and 'g stem from the elastic-perfect plastic inter-particle contact law. The other one (the opening

angle ˛0) is a key microscopic geometrical parameter that can be estimated from the initial void

ratio. It is noteworthy that the granular assembly rearrangement can be reflected by the evolution of

the opening angle ˛0.

By comparing with experimental results on Ticino sands, the calibration of the model is car-

ried out and the predictive capabilities are examined along drained triaxial compression loading

paths. The results obtained are both qualitatively and quantitatively satisfying. The hardening and

softening regimes are well reproduced in the stress–strain response. Meanwhile, the dilatant and

contractant regimes are also described well with the volumetric strain curve. By adopting the cal-

ibrated parameters, two sets of numerical tests are run, including different confining stresses and

initial void ratios. One of the most significant findings emerging from this study is that the critical

state can be approximately described from void ratio evolution without involving any critical state

line (CSL) formulations and parameters. The model mechanism is also analyzed from a microscopic

point of view. The angular distributions of micro variables are plotted at different strain states under

the drained triaxial loading path.

Further research could also be conducted to investigate the three following aspects:

(1) The response of the model with respect to both the strength and the volumetric behavior closely

depend on the geometrical pattern used. In particular, it is thought that enriching this pattern, to

include more important particle rearrangement, should give rise to a more markedly observed

critical state property.

(2) Addressing the erosion and suffusion issues through a multiscale approach, as some additional

particles can penetrate inside the meso-structure or can be removed (because of any external

loading, as a fluid flow for example). The mechanical equilibrium of meso-structure need to be

reconsidered. Thus, the erosion and suffusion phenomena could be simulated by considering

the micro properties of adding or removing some additional particles on the micro-scale.

(3) Solving boundary value problems, once the 3D-H model is implemented in an FEM code.

Each Gauss integration point in the FEM mesh represents a REV of 3D-H model. The FEM is

considered to solve the boundary value problem on the macro-scale, while the 3D-H model is

used to capture and describe effectively the constitutive behavior on the micro-scale.

APPENDIX A: CONTACT LAW

This elastic-perfect plastic model includes a Mohr–Coulomb criterion and can be expressed under

the following incremental formalism by employing the notations depicted in Figures 5 and 6:

´
ıNi D knıu

i
n

ıTi D min
®Ti C ktıu

i
t

 ; tan'g

�
Ni C knıu

i
n

�¯
�

Ti Ckt ıui
t

kTi Ckt ıui
tk

� Ti
(A1)

where i D 1; 2; 3; 4 denotes the identifier of contact number.

According to Equation (7), Equation (A1) can be rewritten as follows:

8
<
:
ıNi D �knıdi

ıTi D ktdiı˛j elastic regime

ıTi D tan'g .Ni � knıdi / �i � Ti plastic regime

(A2)

where �i is the sign of Ti C ktdiı˛j ; j D 1 when i D 1; 2; j D 2 when i D 3; 4; plastic regime is

reached when k ktdiı˛j C Ti k> tan'g .Ni � knıdi /, otherwise it is in elastic regime.
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To facilitate the derivation, I
p
i and I e

i are introduced as indicator functions of the contact state,

expressed as follows:

I
p
i D

²
1 in plastic regime

0 in elastic regime
I I e

i D 1 � Ip
i (A3)

Thus, the constitutive relations can be expressed as follows:
²
ıNi D �knıdi

ıTi D Biı˛j � Aiıdi C Ci
(A4)

where

8
<
:
Ai D I

p
i kn�i tan'g

Bi D I e
i ktdi

Ci D I
p
i .�i tan'gNi � Ti /

APPENDIX B: STIFFNESS MATRIX ON THE MESO-SCALE

For Hexagon A, combining Equations (7) and (12) gives

²
ıF a

1 D �kn cos˛1ıd1 C .kt sin˛1d1 � F2/ ı˛1

ıF2 D �kn sin˛1ıd1 C
�
F a

1 � kt cos˛1d1

�
ı˛1

(B1)

Based on Equations (11), ıd1 and ı˛1 can be expressed as follows:
8
<
:
ıd1 D 1

jDja

�
2d1 cos˛1ıl1 C B1

kn
sin˛1ıl2 C B1

kn
ıl2 � F2

kn
ıl2 C 2d1 sin˛1ıl2

�

ı˛1 D 1
jDja

�
�2 sin˛1ıl1 C A1

kn
sin˛1ıl2 C A1

kn
ıl2 C 3 cos˛1ıl2

� (B2)

where jDja D 2
kn

�
.B1 sin˛1 C A1d1 cos˛1/.sin˛1 C 1/ � F2 sin˛1 C knd1 cos2 ˛1 C 2knd1

�

Then, Equation (B2) is substituted into Equation (B1):

1

jDja

�
Ka

11 K
a
12

Ka
21 K

a
22

� �
ıl1
ıl2

�
D

�
ıF a

1

ıF2

�
(B3)

where
8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂:

Ka
11 D 2

�
F2 sin˛1 � knd1cos2˛1 � ktd1sin2˛1

�

Ka
12 D .ktd1 sin˛1 � F2/

�
A1

kn
sin˛1 C A1

kn
C 3 cos˛1

�

� cos˛1 .B1 sin˛1 C B1 � F2 C 2knd1 sin˛1/

Ka
21 D 2 .kt � kn/ d1 sin˛1 cos˛1 � 2F a

1 sin˛1

Ka
22 D

�
F a

1 � ktd1 cos˛1

� �
A1

kn
sin˛1 C A1

kn
C 3 cos˛1

�

� sin˛1 .B1 sin˛1 C B1 � F2 C 2knd1 sin˛1/

(B4)

Similarly, for Hexagon B,

1

jDjb

�
Kb

11 K
b
12

Kb
21 K

b
22

� �
ıl1
ıl3

�
D

�
ıF b

1

ıF3

�
(B5)

where
8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂:

Kb
11 D 2

�
F3 sin˛2 � knd3cos2˛2 � ktd3sin2˛2

�

Kb
12 D .ktd3 sin˛2 � F3/

�
A3

kn
sin˛2 C A3

kn
C 3 cos˛2

�

� cos˛2 .B3 sin˛2 C B3 � F3 C 2knd3 sin˛2/

Kb
21 D 2 .kt � kn/ d3 sin˛2 cos˛2 � 2F b

1 sin˛2

Kb
22 D

�
F b

1 � ktd3 cos˛2

� �
A3

kn
sin˛2 C A3

kn
C 3 cos˛2

�

� sin˛2 .B3 sin˛2 C B3 � F3 C 2knd3 sin˛2/

(B6)
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with jDjb D 2
kn

�
.B3 sin˛2 C A3d3 cos˛2/.sin˛2 C 1/ � F3 sin˛2 C knd3 cos2 ˛2 C 2knd3

�

Finally, Equation (15) is recovered, with
8
ˆ̂<
ˆ̂:

ıF1 D
�

1
jDja

Ka
11 C 1

jDjb
Kb

11

�
ıl1 C 1

jDja
Ka

12ıl2 C 1

jDjb
Kb

12ıl3

ıF2 D 1
jDja

�
Ka

21ıl1 CKa
22ıl2

�

ıF3 D 1

jDjb

�
Kb

21ıl1 CKb
22ıl3

� (B7)
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