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Abstract 13 

Residents living near agricultural fields may be exposed to pesticides drifting from the fields 14 

after application to different field crops. To address this currently missing exposure pathway in life 15 

cycle assessment (LCA), we developed a modelling framework for quantifying exposure of 16 

bystanders to pesticide spray drift from agricultural fields. Our framework consists of three parts 17 

addressing: (1) loss of pesticides from an agricultural field via spray drift; (2) environmental fate of 18 

pesticide in air outside of the treated field; and (3) exposure of bystanders to pesticides via 19 

inhalation. A comparison with measured data in a case study on pesticides applied to potato fields 20 

shows that our model gives good predictions of pesticide air concentrations. We compared our 21 

bystander exposure estimates with pathways currently included in LCA, namely aggregated 22 

inhalation and ingestion exposure mediated via the environment for the general population, and 23 

general population exposure via ingestion of pesticide residues in consumed food crops. The results 24 

show that exposure of bystanders is limited relative to total population exposure from ingestion of 25 

pesticide residues in crops, but that the exposure magnitude of individual bystanders can be 26 

substantially larger than the exposure of populations not living in the proximity to agricultural 27 

fields. Our framework for assessing bystander exposure to pesticide applications closes a relevant 28 

gap in the exposure assessment included in LCA for agricultural pesticides. This inclusion aids 29 

decision-making based on LCA as previously restricted knowledge about exposure of bystanders 30 

can now be taken into account.  31 

 32 

 33 
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1. Introduction 36 

 37 
Residents living within short distance of agricultural fields may be exposed to spray drift 38 

emissions from pesticides designed to target field pests and weeds, during and after applications 39 

(Matthews and Hamey, 2003). Methods for estimating spray drift and potentially related exposure 40 

of residential bystanders have been proposed based on either empirical measurements (Ganzelmeier 41 

et al., 1995; Holterman and van de Zande, 2003; Kasiotis et al., 2014; Rautmann et al., 2001; 42 

Salyani and Cromwell, 1992; van de Zande et al., 2010) or mechanistic models (Arya, 2003; Craig, 43 

2004; Kennedy et al., 2012; Lebeau et al., 2011; Miller and Hadfield, 1989; Reiss and Griffin, 2006; 44 

Teske et al., 1993, 2002). A detailed overview of identified spray drift models is provided in 45 

Section S-5 of the Supplementary material. These models are usually applied to support 46 

environmental risk assessment (ERA), while estimating pesticide exposure associated with spray 47 

drift fractions for bystanders living near agricultural fields is currently not included when 48 

comparing agricultural practices in a life cycle assessment (LCA) context (Rosenbaum et al., 2015). 49 

This is mainly due to the fact that while most of the existing modeling approaches are suitable for 50 

quantifying drift-related deposition profiles, their specific environmental and boundary conditions 51 

and underlying assumptions are usually not appropriate for assessing residential bystander exposure 52 

in an LCA context. LCA requires considering the number of residential bystanders in a defined area 53 

that are exposed to the integrated drift-related pesticide emission amount reaching that area from a 54 

pesticide application to the total agricultural field. Such a modeling approach, however, is currently 55 

not available for LCA. Hence, the potential contribution of exposure associated with spray drift 56 

fractions to overall population exposure and related impacts on human health relative to other 57 

exposure pathways including exposure to crop residues (Fantke et al., 2012a; Fantke and Jolliet, 58 

2016) is currently unknown. This may lead to uninformed decisions and in some cases shift burden 59 

from population far-field or crop residue exposure to exposure of bystanders. 60 
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To address this issue, we aim in the present study to develop and apply a framework for 61 

quantifying exposure of bystanders to pesticide spray drift fractions from agricultural fields for 62 

integration in life cycle impact assessment (LCIA), and focus on the following specific objectives: 63 

(1) to propose a modeling framework for estimating bystander inhalation exposure to agricultural 64 

pesticides from spray drift, (2) to evaluate the model in terms of uncertainty using Monte Carlo 65 

simulation and in terms of comparing modeled air concentrations with field measurements in a case 66 

study of pesticides applied to potato fields, and (3) to compare the magnitude of estimated 67 

bystander exposure with overall population exposure to environmental far-field emissions (via 68 

fractions lost to the environment during and after pesticide application) and population exposure to 69 

residues in food crops. The results of this study close a known gap in exposure modelling in LCIA 70 

toxicity characterization by providing a quantitative estimate of inhalation exposure of bystanders to 71 

agricultural pesticides. 72 

 73 

2. Materials and Methods 74 

2.1. Model framework 75 

We propose a model to estimate inhalation exposure of bystanders living in the vicinity of 76 

agricultural fields to the integrated air-borne pesticide spray fraction drifting beyond the field 77 

boundaries during and after application for inclusion as complementary exposure pathway in LCIA 78 

human toxicity characterization. A conceptual overview of the model setup is presented in Figure 1. 79 

In the following, we provide an overall description of the modeling framework, while further details 80 

of the approach and underlying model equations can be found in Section S-1 of the Supplementary 81 

material. 82 
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 83 

Figure 1 Conceptual overview of the approach to model pesticide spray drift from a field, and the 84 

model boundaries, where subsequent exposure to the integrated spray drift fraction over the 85 

considered residential bystander area is included. Off-field spray drift is inversely correlated with 86 

the distance between the sprayed field row and the field edge. 87 

 88 

The residential bystander exposure model consists of three main parts: (1) the loss of 89 

pesticide from the agricultural field via spray drift after application; (2) environmental fate of the 90 

pesticides in air outside of the treated field; and (3) exposure of the bystander population to the 91 

pesticide spray drift fraction. Spray drift loss and environmental fate processes are considered by 92 

the fate factor, FF ]d kgper  [kg 1
appliedairin 

 , while human exposure is represented by the exposure 93 

factor, XF ]kgper  d [kg airin 
1

inhaled
 , integrated over the boundaries of the considered bystander 94 

residence area. The human intake fraction iF ]kg [kg 1
appliedinhaled
  is a representative metric to 95 

express the mass of pesticide inhaled by the entire bystander population per unit of mass applied 96 

pesticide and can be calculated as the product of fate and exposure, i.e. FF×XF. The iF can then be 97 

multiplied with a human toxicity-related effect factor, EF ]kg cases [disease 1
inhaled
  that relates 98 

human inhalation intake to disease risk (Crettaz et al., 2002; Jolliet et al., 2006) to finally arrive at a 99 
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characterization factor, CF ]kg cases [disease 1
applied
 , expressing the potential impacts on human 100 

health of bystanders from agricultural pesticide applications: 101 

EFiFEFXFFFCF                     Eq. 1 102 

The residential bystander model estimates the exposure of residential and non-residential bystanders 103 

from initial spray drift. Exposure associated with continuous processes, such as volatilization and 104 

subsequent inhalation or deposition onto field crops and subsequent ingestion of crop residues, are 105 

not considered in the presented model, as the contribution of these pathways to overall population 106 

exposure is already considered by existing LCIA models, such as USEtox (Rosenbaum et al., 2008) 107 

and dynamiCROP (Fantke et al., 2011a, 2011b). 108 

 109 

2.1.1  Environmental fate of pesticides applied to fields 110 

The fate of the pesticides as expressed by the FF was estimated according to: 111 




i i

i i

m

m

m

m

,applied

,airin 

applied

airin FF


                   Eq. 2 112 

where im ,airin  ][kg airin  is the time-integrated mass in air associated with spray row i, and im ,applied  113 

]d [kg 1
applied

  is the mass applied per day to spray row i. The mass found in air is essentially a 114 

function of two components (see Supplementary material, Eq. S6) in line with recommendations 115 

based on a broad agreement regarding the modeling of the delineation of pesticide environmental 116 

distribution processes between life cycle inventory (LCI) and LCIA (Rosenbaum et al., 2015). The 117 

first component is considered in the LCI phase estimating the fraction of the pesticide applied to the 118 

field that is lost via spray drift, while the second component is considered in the LCIA phase 119 

estimating the fate of pesticides in air outside of the treated field. 120 

Losses of pesticides from agricultural fields have been extensively assessed, where focus has 121 

primarily been on the deposition of the pesticides (Ganzelmeier et al., 1995; Holterman and van de 122 

Zande, 2003; Teske et al., 2002). Based on these studies, we calculated spray drift as a fraction of 123 
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the applied pesticide mass separately for each nozzle row i according to available drift deposition 124 

curves by e.g. Holterman and van de Zande (2003), which estimate the deposited fraction as a 125 

function of distance from the application site. At sufficiently large distance from the place of 126 

application, the entire fraction drifted from the field was assumed deposited. The deposition curves 127 

do not include the spray drift fraction that remains airborne, thus, slightly underestimating the total 128 

losses from the field. Nevertheless, this method was regarded as a good proxy for the total loss via 129 

spray drift. Based on this assumption, we estimated the applied pesticide fraction lost via wind drift 130 

using an emission quantification model building on PestLCI 2.0 (Dijkman et al., 2012), which we 131 

adapted to account for integrated emission mass beyond agricultural fields, buffer zones and drift 132 

curves applicable for potato cultivation: 133 

   







  2,22,11,21,1

2

2

1

1
drift, 100

1 







iiii zzzz
i eeeefr               Eq. 3 134 

where ]kg kg[ 1
applieddriftdrift,


ifr is the fraction of pesticide lost from the field via spray drift and 135 

reaching the exposed area per mass applied in nozzle row } ..., ,1{ ni , iz ,1  [m] is the distance of 136 

spray row i to the field edge, iz ,2  [m] is the distance of spray row i to field edge plus 10,000 m after 137 

which all spray drift is assumed to be deposited, and 2121  , , ,   are regression coefficients, 138 

which primarily depend on crop type, nozzle type and application technique (Holterman and van de 139 

Zande, 2003). The implemented drift deposition curves are based on spray drift of pesticides in 140 

aqueous formulations, for which our model is valid. Implementation of other spray drift curves (e.g. 141 

from Ganzelmeier et al., 1995; Kasiotis et al., 2014; Rautmann et al., 2001) is possible by adapting 142 

the integrated function in Eq. 3 to be based on the equation specific to any new spray drift curve. 143 

Drift curves for similar crops and similar application techniques were found to vary substantially 144 

between studies. For instance, the total drift-related loss of pesticide from a single spray row 145 

expressed as % of applied mass to potato crops using conventional ground boom sprayers was 146 

found to range from 15% to 73% depending on the spray drift curves used (see Supplementary 147 
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material, Table S10). This variation is likely a result of differences in spray technologies used in the 148 

underlying spray drift studies, in environmental conditions during measurements, and in 149 

measurement setups and technologies.  150 

For pesticide emissions beyond agricultural fields from each nozzle row i, the mass fraction 151 

of pesticides in the air was estimated as a function of distance based on a Gaussian plume 152 

dispersion model including terms for advection, horizontal and vertical dispersion processes 153 

yielding a time-integrated estimate of the average air mass fraction in the exposed bystander area as 154 

a function of distance: 155 

      dispersion verticaldispersion horizontal advection

                                                                                                                                  156 




























 








 













2

app

2

app

2

2

1

reflect
2

1

size
2

1

ds
disp, 2

11
z

u
v

z

u
v

y

xhxhy

zy
i efrefre

uc
fr 


 Eq. 4 157 

where ]kg kg[ 1
driftdisperseddisp,


ifr  is the mass fraction of spray drift lost from the field from 158 

application in row i and dispersed in downwind direction at distance x within the exposed area,159 

]d [s 1
ds

c  is a conversion factor of seconds per day to correct for the unit of inputs to the plume 160 

model, x  [m] is the downwind distance between field edge and point distance in the exposed 161 

bystander area, y  [m] is the transversal distance away from the center of the plume, u  ]s [m 1  is the 162 

average wind velocity, y  and z  [m] are horizontal and vertical dispersion coefficients of the 163 

spray cloud, respectively (US Environmental Protection Agency, 1993), apph  [m] is the height of 164 

spray application which is application technique and crop specific. A default apph of 0.5 m above 165 

crop canopy for potatoes was used based on Holterman and van de Zande (2003).v  ]s [m 1  is the 166 

settling velocity of spray droplets, sizefr  ]kg kg[ 1
totalsize-drop
  is the mass fraction of the total source 167 

strength in the selected drop-size category, and reflectfr  ]kg kg[ 1
dispersedreflected
  is the mass fraction 168 

that is reflected (re-emitted) at deposition surfaces. We use a constant prevailing wind direction 169 

under the assumption that an average agricultural field is equally surrounded by residential 170 
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bystander areas in all directions. Thereby, the population-level exposure from a change in wind 171 

direction would be the same, which is what we are after in a LCA context where the specific 172 

location of a treated field is usually unknown. Further details of the emission and fate calculation 173 

are given in Eqs. S1-S10 of the Supplementary material. 174 

 175 

2.1.2  Residential bystander population exposure 176 

Human exposure via inhalation of residential bystanders living in any pre-defined, exposed 177 

area outside a treated agricultural field can be described by an exposure factor: 178 

exposure
air

popIR
XF c

V

n



                    Eq. 5 179 

where XF  ]kgper  d [kg airin 
1

inhaled
  is the bystander inhalation exposure factor within the exposed 180 

area, IR  ]d capita m[ 113
inhaled

  is the average individual human inhalation rate, popn  [capita] is the 181 

number of bystanders living in the exposed area, ][m 3
airairV  is the volume of air in the exposed area, 182 

and exposurec  is a factor correcting for the fact that bystanders during the spray drift period spend 183 

part of the time outdoors and part of the time indoors, both within the exposed area (US 184 

Environmental Protection Agency, 2011). 185 

 Defining the size of the exposed area is essential for modeling exposure of bystanders as it 186 

influences the exposed bystander population and related air volume. The width of the exposed area 187 

was considered equal to the width of the treated agricultural field (wfield; m). The field width was 188 

based on an estimation of typical European field sizes, which were between 8 to 20 hectares with 189 

lengths between 600 and 700 m (European Commision - Joint Research Centre, 2012). This gives a 190 

typical field width between 150 and 330 m, from which we defined a default field width of 300 m 191 

for the present study. The length of the exposed bystander area outside the field (l; m) was defined 192 

by three archetype distances (i.e. 8 m, 50 m and 100 m downwind) within which the exposed 193 

residents are assumed to be located. The three distances used were based on distances typically 194 
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evaluated also in risk assessment (Garreyn et al., 2003; Kruijne et al., 2011; Martin et al., 2008) and 195 

allow for evaluating exposure within different area sizes. 196 

 As the XF is directly proportional to the exposed population size, the number of inhabitants 197 

living in the area exposed to pesticide spray drift is an important parameter. The population size in 198 

the exposed area was calculated as: 199 

lwn  fieldpoppop                       Eq. 6 200 

Where ρpop is the population density in the exposed bystander area ]m [capita 2
exposed
 . Specific data on 201 

population density near agricultural fields were not available and would likely also show large 202 

spatial variability. Therefore, the population density as used in USEtox for the continental scale (i.e. 203 

111 capita per km2 for an average, generic continent (Rosenbaum et al., 2011)) was used as a 204 

default value. The sensitivity of the model to this parameter was tested as part of the sensitivity and 205 

uncertainty analysis. Further details of the exposure factor calculation and underlying terms are 206 

given in Eqs. S11-S13 of the Supplementary material, and information on how we corrected for 207 

differences between outdoor and indoor air concentrations are provided in Section S-3 of the 208 

Supplementary material. 209 

 210 

2.2. Model evaluation 211 

2.2.1  Model sensitivity and uncertainty analysis 212 

A Monte Carlo simulation was conducted to determine the probability distribution and 213 

variability of the model results and to evaluate the robustness of the model results toward changes 214 

in model inputs. Input parameters for the residential bystander model were assigned a probability 215 

distribution and probability parameters (see Supplementary materials, Table S8), and the Monte 216 

Carlo simulation was run for 10,000 iterations to estimate the probability distribution of the intake 217 

fraction, iF, for the residential bystander population at four distance intervals, namely 0 to 100 m, 0 218 

to 8 m, 8 to 50 m, and 50 to 100 m from the edge of the treated agricultural field. 219 
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Based on the Monte Carlo simulation, the squared geometric standard deviation (GSD2) of 220 

model output was estimated as: 221 

ile-%5.2

ile-%5.97
GSD2                      Eq. 7 222 

The GSD2 describes the variance of the iF uncertainty range across a 95% confidence interval 223 

assuming an ideal lognormal distribution (Fantke et al., 2012b), which is plausible for many 224 

parameters involved in calculating environmental processes (Limpert et al., 2001; Ott, 1990). 225 

 To demonstrate how to compare uncertainty estimates of spray drift related characterization 226 

factors, CFs, for residential bystanders to general population related CFs for impacts on human 227 

health obtained with USEtox for far-field environmental exposure pathways, iF and related GSD2 228 

values were coupled with effect factors found in the USEtox organic substances database 229 

(http://usetox.org) with data for both carcinogenic and non-carcinogenic effects. The uncertainty of 230 

the iF was estimated from uncertainty propagation using Taylor series expansion (MacLeod et al., 231 

2002) coupled with the uncertainty of the EFs based on Huijbregts et al. (2005) to give the overall 232 

GSD2 of CFs for bystander exposure in the 0 to 100 m bystander exposure area. Further details on 233 

the Monte Carlo simulation are provided in Section S-4 of the Supplementary material. 234 

 235 

2.2.2  Evaluation against measured data 236 

Regardless whether model output is or is not sensitive toward changes in model inputs, the 237 

accuracy of the model in terms of predicting the “true” value may still be low due to the potential 238 

influence of data variability and the relatively small number of model inputs (Huijbregts, 1998). 239 

Hence, we also evaluated our bystander exposure model’s predictive ability by comparing predicted 240 

average air concentrations (which are the basis for the subsequent inhalation exposure of 241 

bystanders) with measured air concentrations based on the relative difference between predicted and 242 

measured air concentrations: 243 
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 
measured

measuredpredicted
measuredpredicted , difference Relative

C

CC
CC


               Eq. 8 244 

where ]m [µg 3
predicted

C  is the average air concentration over the full considered exposure range of 245 

0 to 100 m distance from the treated potato field edge estimated with the residential bystander 246 

model, and ]m [µg 3
measured

C  is the measured air concentration averaged over 100 m from the field 247 

edge within 24 hours after pesticide application based on reported data from a treated potato field in 248 

Prince Edward Island, Canada (Garron et al., 2012, 2009). We adapted the measured data to reflect 249 

air concentrations that are integrated over distance and time to enable comparison with results from 250 

our residential bystander model. Our comparison of model results with measured data was restricted 251 

to a very limited set of scenarios, where actual information on field size, application method and 252 

meteorological conditions was reported as required input to the residential bystander model. This is 253 

in line with recommended data reporting requirements using experimental data inputs to facilitate 254 

the parameterization and evaluation of estimation models (Fantke et al., 2016). 255 

 256 

2.2.3  Evaluation against other exposure pathways 257 

We finally compared our iF estimates for bystanders between 0 and 100 m from the treated 258 

field edge with iFs for other exposure pathways including aggregated inhalation and ingestion 259 

exposure mediated via the environment for the general population estimated with the USEtox model 260 

(Rosenbaum et al., 2011, 2008), and general population exposure via ingestion of pesticide residues 261 

in consumed food crops estimated with the dynamiCROP model (Fantke et al., 2011a, 2011b).  262 

The comparison is based on estimating iFs from USEtox and dynamiCROP and normalizing 263 

USEtox iFs to exposure per kg applied to allow comparison of iFs estimated with the residential 264 

bystander model and dynamiCROP. Thereby, the pesticide mass in the USEtox air compartment 265 

was linked to the mass applied by introducing a generic fraction of the applied mass (spray drift 266 

plus volatilization) lost to the air compartment. For pesticide spray applications to potatoes, this 267 
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fraction was estimated to be 4.85% with an additional 10% loss to account for initial volatilization 268 

of pesticides (Fantke and Jolliet, 2016). For dynamiCROP, the exposed population was estimated 269 

from the total harvested annual potato yield of 1.6 2m kg   (Juraske et al., 2011) multiplied with the 270 

considered field area from Table 1 and divided by the annual amount of potatoes consumed per 271 

capita of 32 1capita kg   (FAO, 2013). The comparison was done for carbofuran (insecticide), 272 

chlorothalonil (fungicide). 273 

 274 

3. Results 275 

3.1. Bystander exposure and comparison with measured data 276 

Figure 2 shows estimated average air concentrations integrated over all spray rows within 277 

residential bystander areas over different distance ranges from the edge of a treated agricultural 278 

field. It is apparent that concentrations are substantially higher close to the field edge and that 279 

concentrations decrease rapidly after about 10 m from the field. The difference in average air 280 

concentrations between the 0 (agricultural field edge) to 8 m bystander range and the 50 to 100 m 281 

bystander range is about four orders of magnitude. Indeed, the average air concentration between 0 282 

and 100 m was found to be dominated by the concentration within the initial 0 to 8 m range. 283 

  284 

Figure 2 Gradient in outdoor air concentration integrated over all spray rows from 0 to 100 m range 285 

as a result of 1 kg of pesticide, with chlorothalonil as active ingredient, applied to a generic 286 

agricultural field using a conventional boom sprayer. The figure also shows the average outdoor air 287 
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concentration integrated over all spray rows within four distinct ranges over distances from the 288 

treated agricultural field edge covering potentially exposed bystander areas. 289 

 290 

Table 1 shows estimated iFs based on parameters reported together with air concentration 291 

measurements (Garron et al., 2012, 2009). Across application scenarios of different pesticides and 292 

different bystander exposure distance ranges, iFs differ by less than one order of magnitude within 293 

the 0 to 8 m and 0 to 100 m, distance ranges (where the latter range is dominated by the 0 to 8 m 294 

range), while the difference in iFs between scenarios was substantially larger with about four orders 295 

of magnitude within the 8 to 50 m and 50 to 100 m distance ranges. Table 1 also shows how model 296 

predictions for pesticide air concentrations match with reported field measurements. The relative 297 

difference between the predicted (i.e. modeled) average air concentration between 0 and 100 m 298 

exposed bystander range and the reported average air concentration between 0 and 100 m measured 299 

over the first 24 hours after pesticide application to potato fields ranges between 0.07 and 1.47. We 300 

observe a notable difference between measured and predicted air concentrations. However, the 301 

difference is considered acceptable for providing a realistic indication of the time and space 302 

integrated air concentration. This is also true when taking into account the inherent variability in 303 

measured spray drift concentrations and the general uncertainty related to describing air 304 

concentrations as a function of wind speed, temperature, relative humidity, etc. (see Supplementary 305 

material, Section S2). Therefore, the modeling approach is considered of suitable accuracy for 306 

providing a representative estimate of pesticide concentration in air from spray drift as a result of 307 

pesticide application to potato fields. 308 

 309 

Table 1 Predicted bystander population intake fractions (iF) for different pesticide 310 

application scenarios and different exposure distance ranges from the treated agricultural field, 311 

predicted (Cpredicted) and measured (Cmeasured) air concentrations between 0 and 100 m and their 312 

relative difference, and main model inputs, namely wind speed (u), relative humidity (rh), air 313 
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temperature (Tair), mass of pesticide applied (mapp), treated field area (Afield), field length along the 314 

prevailing wind direction (Lfield), application duration (tapp), and population density (ρpop). All 315 

scenarios represent a separate field trial test, where pesticides have been applied and measured at 316 

different distances from the field edge and at different times over the course of one day. 317 

Scenario Model inputs iF [kginhaled kg-1applied] 
Cpredicted 

[μg m-3] 
Cmeasured(3) 

[μg m-3] 
Relative 

difference 

# Pesticide u 
[m s-1] 

rh 
[%] 

Tair 
[°C] 

mapp 
[kg] 

Afield 
[ha] 

Lfield 
[m] 

tapp 
[hr] 

ρpop 

[capita 
 m-2] 

0 to 8 m 8 to 50 m 
50 to 100 

m 
0 to 100 m 

0 to 
100 m 

0 to 100 
m 

 

1(1) Chlorothalonil 3.5 79 18.4 12.1 10.1 336 1.2 1.11×10-4 5.9×10-10 7.6×10-11 2.7×10-12 6.1×10-10 0.22 0.11 1.05 

2(1) Chlorothalonil 2.1 69 19.9 12.1 10.1 333 0.6 1.11×10-4 8.6×10-10 6.5×10-12 8.8×10-14 7.9×10-10 0.29 0.34 0.14 

3(1) Chlorothalonil 1.6 78 20.9 4.8 4 133 0.4 1.11×10-4 2.5×10-9 1.6×10-13 7.3×10-16 2.3×10-9 0.33 0.36 0.07 

4(1) Chlorothalonil 2.1 73 26.3 4.8 4.0 133 0.4 1.11×10-4 1.9×10-9 1.3×10-11 1.6×10-13 1.8×10-9 0.26 0.57 0.55 

5(2) Carbofuran 3.0 83 16.3 6.4 12.1 270 0.6 1.11×10-4 1.1×10-9 4.9×10-11 1.2×10-12 1.0×10-9 0.13 0.08 0.61 

6(2) Methamidophos 2.7 68 15.6 8.7 8.1 403 0.5 1.11×10-4 3.4×10-10 1.5×10-11 3.5×10-13 3.3×10-10 0.13 0.66 0.80 

7(2) Mancozeb 4.0 94 18.6 21.8 12.1 403 0.6 1.11×10-4 3.2×10-10 6.3×10-11 2.7×10-12 3.5×10-10 0.23 0.09 1.47 

1Data from Garron et al. (2012); 2Data from Garron et al. (2009); 3Experimental data were averaged from 0 to 24 hr and 318 

from 0 to 100 m to get results that were comparable with outputs from the residential bystander model. 319 

 320 

3.2. Model sensitivity and uncertainty results 321 

Based on the Monte Carlo simulation, Figure 3 shows the variability of bystander population 322 

iF (i.e. intake fraction of all bystanders considered within the exposed area next to the treated 323 

agricultural field) and individual bystander iFperson (i.e. intake fraction of a single bystander person 324 

determined by dividing the exposure factor by the number of bystanders living in the considered 325 

exposed area; see Eq. 5). The variability in iF values for the 0 to 100 m and 0 to 8 m distance ranges 326 

is very similar, because iF for the 0 to 100 m range is again dominated by iF for the 0 to 8 m range. 327 

The 95% confidence interval is about one order of magnitude for both total bystander iF and 328 

individual bystander iFperson in the 0 to 100 m and 0 to 8 m distance ranges, which indicates 329 

relatively little variability. The parameters contributing most to variability are wind speed, 330 

application duration and individual inhalation rate for iFperson, while these parameters together with 331 

bystander population density are dominating for total bystander iF. For the 8 to 50 m and 50 to 100 332 

m distance ranges, the 95% confidence interval spans over three orders of magnitude and the 333 

parameters contributing most to variability were wind speed, relative humidity and application 334 
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duration for iFperson, while these parameters together with population density are dominating for 335 

total bystander iF. Details of the sensitivity of modeled air concentrations as output of the fate 336 

model toward the aforementioned input parameters are provided in Section S-4 of the 337 

Supplementary material. In general, little difference in variability was found at the exposure results 338 

level between iF and iFperson
, which is primarily due to the relatively low population density within 339 

the exposed bystander area, where e.g. the total population living within the total 0 to 100 m 340 

distance range is on average only 3.37 persons. Hence, the varying population within the bystander 341 

area does not differ much from the iFperson
 where only a single bystander is considered. 342 

 343 

  344 

Figure 3 Box plots showing intake fraction ranges across Monte Carlo simulations for four 345 

bystander exposure distance ranges from the field edge, highlighting the difference in exposure at 346 

different distances to the treated field and also evaluating exposure per capita compared to exposure 347 

of the entire considered bystander population. 348 

 349 

Overall, our bystander exposure model does not appear highly sensitive to changes in model 350 

inputs as the GSD2 for iF[0-100m] was 4.27 and the corresponding lower and upper 95% confidence 351 
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interval limits are respectively 1.3 ×10-10 and 2.4×10-9 kg inhaled by the bystander population per 352 

kg applied pesticide. This means that between 0.13 and 24 ppb (parts per billion) of applied 353 

pesticides are inhaled by bystanders with 95% certainty in our scenarios. After coupling the 354 

uncertainty of the bystander intake fraction in the range 0 to 100 m, iF[0-100m], with the uncertainty of 355 

the effect factor, EF, linking exposure to disease risk, the GSD2 of the corresponding 356 

characterization factors, CF[0-100m], were 78.7 and 192.4 for non-carcinogenic and carcinogenic 357 

health effects, respectively. Based on this scenario, the GSD2 for CF[0-100m] lies within the 358 

uncertainty for other CFs for impacts on human health ranging from 77 to 2189 depending on the 359 

emission compartment and exposure pathway considered (Rosenbaum et al., 2008). However, the 360 

highest contribution to the uncertainty of our bystander exposure related CFs is not associated with 361 

our estimated intake fractions, but with the extrapolated human effect factor, especially for the 362 

widely varying non-cancer effects, which is consistent with other studies (Fantke et al., 2012a; 363 

Huijbregts et al., 2005; Rosenbaum et al., 2008). 364 

 365 

3.3. Comparison of different exposure pathways 366 

Figure 4 shows the results of the comparison between iF[0-100m] for bystanders and the iFs 367 

predicted by USEtox for environmentally mediated general population exposure aggregating 368 

inhalation and ingestion, and by dynamiCROP for general population ingestion exposure to residues 369 

in harvested food crops. The differences in iFs between bystander exposure, environmentally 370 

mediated population exposure and population exposure to crop residues (Figure 4) show that crop 371 

residue ingestion and environmentally mediated exposure dominates total exposure from pesticides 372 

applied to agricultural fields, while bystander exposure only contributes by about 0.1% to the total 373 

iF (sum over all exposed populations and exposures associated with the same application scenario).  374 
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  375 

Figure 4 Intake fractions for total exposed population (all considered bystanders for bystander 376 

exposure, all exposed consumers for crop residue exposure, and total population for 377 

environmentally mediated exposure) per kg of pesticide applied to agricultural fields. 378 

 379 

The question is, however, whether this kind of direct comparison between iF representing 380 

different population sizes is meaningful. Indeed, bystander exposure was found to dominate 381 

together with exposure via ingestion of crop residues aggregated per capita (i.e. individual) intake 382 

fractions, while environmentally mediated general population exposure was found to have almost 383 

no contribution to aggregated individual intake fractions (Figure 5).  384 

 385 
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  386 

Figure 5 Individual (i.e. per capita) intake fractions per kg of pesticide applied to agricultural fields. 387 

 388 

4. Discussion 389 

4.1. Model framework and performance 390 

The developed residential bystander model allows for predicting intake fractions for 391 

different exposure ranges as a function of the distance from the field of application. Related 392 

characterization factors can be estimated by multiplication of these bystander exposure results with 393 

effect factors for the assessed pesticides. It is, per default, recommended for LCA practitioners to 394 

apply results for the 0 to 100 m distance to the field edge range, because this range includes the full 395 

residential bystander population potentially exposed to pesticide spray drift fractions and, thereby, 396 

gives the most comprehensive indication of related bystander exposure. However, the fact that 397 

exposure of bystanders decreases substantially after about 8 m distance from the considered field 398 

edge underlines the benefit of spray buffer zones around agricultural fields which can substantially 399 

reduce exposure of bystanders to spray drift (de Snoo and de Wit, 1998). Such a difference in 400 

agricultural practice is of interest from an LCA perspective, particularly in the agrifood sector, and 401 

our model allows this to be captured in LCA results. 402 
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The model was only compared to measurements for ground field crops (potatoes). The 403 

model predictions were generally in good agreement with field measurements for pesticide air 404 

concentrations, especially in relation to natural variability of pesticide application and spray drift 405 

together with general uncertainty in measurements of spray drift. This shows that our bystander 406 

exposure model provides a realistic indication for the exposure of bystanders to pesticides during 407 

and after application to agricultural fields. However, further testing of the model against 408 

measurements for other application such as in orchards or vineyards is required to increase the 409 

validity and applicability of the model. The comparison of our bystander exposure estimates with 410 

estimates of exposure from crop residues and environmentally mediated emissions shows that 411 

bystander exposure does contribute to overall pesticide population intake, but that population intake 412 

is generally not dominated by spray drift related exposure of bystanders, which is mainly due to the 413 

small fraction of the general population that is considered to be residential bystanders living in the 414 

close vicinity to agricultural fields. 415 

Dividing the fate calculation part of the bystander model framework into an emission 416 

fraction quantification component and an environmental fate quantification component as part of 417 

the impact assessment is practical as it allows for using individual parts of the model for more 418 

specific assessments, e.g. for impact assessment in modelling exposure to humans from pesticide 419 

spray drift and for inventory modelling in estimating loss of pesticide from agricultural fields. As 420 

for human exposure, the model currently includes inhalation-related pathways, while dermal 421 

exposure from deposition of spray drift on bystanders is not included due to lack of relevant data 422 

regarding deposition area, dermal uptake and related human effects information. 423 

Moreover, for evaluating agricultural product systems in a life cycle perspective, the 424 

inclusion of an inventory part (i.e. pesticide loss from fields after application) coupled with an 425 

LCIA model that includes the fate of the spray drift outside the field is an advantage, because 426 

information about specific pesticide losses from the field (e.g. spray drift, run-off, volatilization) are 427 

often unknown while information about the mass of pesticide applied to the field are usually well 428 
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known (Rosenbaum et al., 2015). Hence, our bystander exposure model provides a consistent 429 

framework linking known inventory data (mass applied) via emissions to environmental fate and 430 

exposure for bystander populations. For application and use in LCA studies, iFs estimated using the 431 

residential bystander model can be coupled with pesticide-specific EFs (as shown in Eq. 1) to 432 

estimate pesticide-specific CFs for off-field spray drift from agricultural pesticide application. CFs 433 

thereby represent potential human toxicity impacts per kg pesticide applied to the field. This aligns 434 

well with recommendations that life cycle inventories should report the mass applied of each active 435 

ingredient (Rosenbaum et al., 2015) in order to consistently cover all pathways relevant for 436 

pesticides. Moreover, iFs for off-field spray drift can be integrated into existing LCIA toxicity 437 

characterization models, but would have to be extended to cover many more existing pesticides. For 438 

instance, our pathway can be included in USEtox by adapting the intake fraction matrix. Such 439 

integration would then facilitate a consistent and more comprehensive assessment of human 440 

exposure to toxic substances in practice.  441 

 442 

4.2. Application by LCA practitioners 443 

Our bystander exposure calculations are generally based on generic input data for cases 444 

where specific information on the application scenario is lacking, but can be modified to quantify 445 

site- and application method-specific characterization results in cases where the LCA practitioner 446 

has detailed knowledge about underlying environmental conditions and pesticide application. It was 447 

found that the most influential parameters are bystander population density, wind speed, application 448 

duration and individual inhalation rate. Statistics on average wind speed and application duration 449 

are available or can be measured on site, while inhalation rate is traditionally well studied with 450 

sound measurements of human inhalation rates, e.g. from the US Environmental Protection Agency 451 

(2011). To ensure a robust quantification of bystander exposure, specific data on the population 452 

density or the number of bystanders in the exposed area should be retrieved. These data will 453 

essentially be specific to each area (or field). 454 
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The model currently includes spray drift curves for ground spraying of, e.g. potatoes, 455 

cereals, and for spraying of fruit trees (see Supplementary material, Table S3) and can quantify 456 

spray drift associated with these crops. Other application methods, such as aerial application and 457 

hand-operated sprayers, are currently not included due to a lack of information regarding the 458 

associated losses from spray drift. It is recommended for assessments of specific cases to obtain 459 

spray drift curves that are as representative as possible to their case in order to get the most precise 460 

results. This is, for instance, the case for assessments of specific crops and application techniques, 461 

but also for assessments under different environmental and climatic conditions, which may affect 462 

spray drift, e.g. as described in Kasiotis et al. (2014). 463 

 464 

4.3. Individual exposure compared to population exposure 465 

The results showed that per capita exposure was higher for bystanders compared to per 466 

capita exposure for pathways associated with environmentally mediated emissions or crop residues 467 

(Figure 5), highlighting the significance of the population size considered to be exposed. 468 

Essentially, this means that the sub-population qualifying as bystanders may be exposed by more 469 

than twice the pesticide dose than the general population receives on average, depending on the 470 

pesticide. In LCIA practice, however, this will currently not be captured since exposures are only 471 

calculated on the total population level, so that we observe a “dilution” of those higher exposures as 472 

shown in Figure 4. So far, toxicity LCIA models only consider exposure pathways affecting the 473 

entire population (i.e. inhalation and ingestion of chemicals via food, including pesticide residues, 474 

and general environmental exposure). As soon as a particular sub-population, e.g. bystanders or 475 

workers, with a potentially much higher exposure than the general population is included in the 476 

assessment, the impacts (or exposures) cannot simply be summed up anymore, because that will 477 

render the higher impacts on the sub-population (few people with high exposure/effects) invisible 478 

compared to the impacts on the general population (billions of people with very low 479 

exposure/effects) and will also not capture potentially relevant differences in the dose-response for 480 
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low versus high exposure levels. This illustrates a known limitation to LCIA in not highlighting the 481 

most exposed or vulnerable populations but instead focusing on highlighting (and comparing) total 482 

population-level exposure. 483 

This accentuates the need for harmonizing the assessment of different population sizes in 484 

LCA as only reporting aggregated population-level intake fractions will fail to reveal the large 485 

variability in the actual exposure of different populations. The lack of focus on exposure of specific 486 

population groups might lead to unfavorable decision-making, because exposure exceeding 487 

tolerable doses for specific populations may be overlooked if diluted in population-level exposure 488 

results. This dilemma does not only occur for exposure to spray drift but for all types of exposure 489 

that are predominantly targeting specific population groups (e.g. specific occupational or consumer 490 

exposure settings). Hence, further research is required to allow for an adequate consideration of 491 

sub-populations with higher exposures, which will also open the door to integration of occupational 492 

and consumer exposure into the LCIA toxicity characterization. 493 

 494 

5. Conclusions 495 

We presented a framework for assessing residential bystander exposure to pesticide 496 

applications to agricultural fields which closes a gap in the exposure assessment included in LCA 497 

studies where agricultural pesticides play a role. The inclusion of bystander exposure aids decision-498 

making based on LCA because previously unavailable insights about exposure of bystanders can 499 

now be taken into account in LCA. The model showed a reasonable predictive capability in 500 

comparison with field crops (potatoes). Our model currently provides a proof-of-concept that spray 501 

drift can be included in LCIA, and the model can be used by LCA practitioners to address exposure 502 

to initial pesticide spray drift. However, the model will have to be further adapted and validated 503 

against data for additional crop types and other application techniques, such as aerial and hand-504 

operated spraying, should be included. 505 
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It was found that exposure of bystanders is limited relative to total exposure of populations 506 

from ingestion of pesticide residues in crops, but that the magnitude taken in by bystanders can be 507 

substantially larger than the intake of populations not living in the proximity to agricultural fields. 508 

Hence, more focus on the most exposed populations as part of LCA could be beneficial to provide a 509 

more comprehensive basis for decision-making where not only total population exposure, but also 510 

exposure of differentiated population groups is taken into account.  511 

Our bystander exposure model is available free of charge upon request from the authors. 512 
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