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Abstract 

The availability of combine yield monitors since the early 1990’s means that long time-series (10+ years) of yield 

data are now available in many arable production systems. Despite this, yield data and maps are still under-

exploited and under-valued by professionals in the agricultural sector. These historical data need to be better 

considered and analyzed because they are the only audited means by which growers and practitioners can assess 

the spatio-temporal yield response within a field. When done, time-series of yield maps are mostly processed by 

classification-based algorithms to generate spatial and temporal yield stability maps or to provide yield or 

management classes. This work details an alternate segmentation-based methodology to first generate and then 

characterize contiguous within-field yield zones from historical yield data. It operates on the yield data rather than 

interpolated yield maps. A seeded region growing algorithm is proposed that enables both the specification of 

seeds and zone segmentation in a multivariate (multi-temporal yield) attribute space. Novel metrics to assess the 

yield zoning are proposed that are derived from textural image analysis. The zoning algorithm and metrics were 

applied to two fields with long time-series (6+ years) of yield data in combinable crops. The two case studies 

showed that the proposed zone-based approach was effective in delimitating relevant within-field yield zones. The 

generated zones had differing temporal yield responses between neighbouring zones that were of agronomic 

significant and interest to the production systems. As this is a first attempt to apply a segmentation algorithm to 

yield data, areas for future development applications are also proposed. 

Keywords: co-occurrence matrices, historical yield data, temporal stability, segmentation, within-field yield 

zones 

 

1. Introduction 

Yield monitors mounted on combine harvesters have been available since the early 1990’s. However, 

yield data still have difficulties in being a decisive component of the decision-making process in precision 

agriculture studies. At the origin of this lack of interest, multiple flaws have been reported by the scientific 

community. First of all, it is acknowledged that the yield temporal variability is more than often stronger than the 

yield spatial variability, which can hinder analyses over short and long-time periods (Blackmore et al., 2003; 

Bramley and Hamilton, 2004; Eghball and Power, 1995; Lamb et al., 1997). This temporal variability is essentially 

due to non-stable factors such as climate patterns or the type of crops being grown each year (Basso et al., 2012). 

Multiple authors have stated that the number of yield data available to conduct yield temporal analyses was critical 

(Bakhsh et al., 2000; Kitchen et al., 2005) and some have even tried to propose a minimum number of years 

necessary to obtain reliable results (Ping and Dobermann, 2005). Secondly, it is clear that the spatial yield pattern 

results from an interaction of management, climate and soil conditions within a cropping season, which means that 

it is not possible to derive variable-rate application maps directly for a year n by solely relying on yield data in 

year n-1. On top of that, yield data often come with a large number of defective observations resulting from the 

pass of the combine harvester inside the fields. Some of these errors are widely reported in the literature, e.g. flow 

delay, filling and emptying times, abrupt speed changes or unknown cutting width when entering the crops (Arslan 

and Colvin, 2002; Sudduth and Drummond, 2007). These errors, if not accounted for, can influence agronomical 

decisions over the fields (Griffin et al., 2008). 

However, from a precision agriculture standpoint, these high-resolution data are a very valuable source 

of information that would be aberrant not to consider (Florin et al., 2009). Yield spatial patterns are a valuable 

piece of information to better characterize the sources of spatial variability across the fields. Growers are interested 

to know about the mean yield spatial and temporal patterns over their fields so they can make informed and reliable 
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management decisions.  It has been shown that, despite a strong temporal variability, it was often possible to detect 

consistent yield spatial patterns across years (Kitchen et al., 2005; Taylor et al., 2007). Be aware that some patterns 

were found consistent even under different crops being grown and varying climate conditions. Furthermore, yield 

spatial patterns can deliver relevant information with respect to soil characteristics within the field or can help 

depict the influence of other external factors such as management practices and weather conditions (Diker et al., 

2004). For instance, Taylor et al. (2007) showed that, in specific portions of their field study, crop rotation 

management in previous years originated variations in yield spatial patterns. Other authors have found that high-

yielding areas in dry years could, at the same time, be low-yielding areas in wet years which could give critical 

information with respect to within-field soil characteristics (Colvin et al., 1997; Sudduth et al., 1997; Taylor et al., 

2007). Another strong advantage of these yield datasets is their accessibility. Indeed, in most cases, harvest has to 

be made which means that those data can be collected each year once growers have invested in yield monitors.  

 The delineation of management zones or management units has been a subject of interest in precision 

agriculture because it provides growers with a simple representation of their field. Such zones are defined as 

spatially contiguous areas over which specific management decisions are to be considered. More than often, 

management zones are found fragmented in space. This originates from a confusion between the concepts of 

management classes and management zones (Pedroso et al., 2010). In fact, management classes gather all the 

management zones over which a specific management decision is to be considered. Authors mostly use 

classification-based techniques, mostly k-means and its fuzzy variant, the fuzzy c-means algorithm (Li et al., 2007; 

Moral et al., 2010) to delineate these management units. Some others have also proposed some post-processing 

methods to overcome the fragmentation issue (Ping and Dobermann, 2003). However, as non-spatial algorithms, 

classification-based methods do not seem to be the most relevant approaches to delineate spatially contiguous 

areas. One solution could be to make use of object-oriented methodologies from the image processing domain 

which aim at delineating objects inside an image (Leroux et al., 2017; Pedroso et al., 2010; Roudier et al., 2008).  

 Despite the availability of yield data, spatio-temporal yield pattern analysis is not widely done, and when 

done, is typically applied in an ad-hoc or qualitative manner. The industry is missing effective and easily 

implemented approaches for spatio-temporal yield pattern analysis The major contribution of this work is to 

propose a new methodology to analyze historical yield data so that growers and agronomic advisors can better 

understand the spatio-temporal yield variability in their fields. It must be clear that that the objective of this study 

is only here to look at yield data analysis, not as is typically done with management units derived from a mix of 

crop and environmental variables. In the first instance, the method utilizes a novel multi-dimensional segmentation 

algorithm that can be applied directly to yield data to define within-field yield zones. The method is therefore not 

dependent on map production or co-location of information from disparate years. To assess the magnitude and the 

temporal stability of the yield response within the yield zones, novel metrics adapted from co-occurrence matrix 

and image textural analyses are then introduced. The algorithm and metrics are derived and then applied to two 

case studies from arable production systems in France and the UK. The applicability of this novel approach is then 

discussed including the ability to deliver the processing within a simplified framework that is applicable to non-

scientific end-users.  Finally, the questions and concerns requiring further work are discussed in the last section.  

  

2. Material and methods 

2.1 Study sites 

The study was conducted on a 20-ha field in England near Amble, Northumberland (WGS84 datum: E: -

1.62, N: 55.37) and on a 31-ha field in the north of France near Evreux (WGS84 datum: E: 0.78, N: 48.95). Both 

fields are cropped in a wheat (Triticum aestivum) and canola (Brassica napus) rotation and exhibit a relatively 

strong yield spatial structure. For the English field, wheat yield data were acquired for six years between 2004 and 

2015 with a Case combine harvester operating a 10-m cutting front. For the French field, eight years of yield 

mapping were available spanning the 2003-2011 period. Over the years, the field was mostly harvested with a 

Claas combine using a 6-m front.  

2.2 Pre-processing multi-year yield data 

Yield data were first cleaned to remove technical errors commonly reported in the literature, e.g. speed changes, 

unknown cutting width when entering the crop, filling and emptying times and abnormal yield values among others 

(Arslan and Colvin, 2002; Sudduth and Drummond, 2007). To compare yield data from multiple years with 



possible significant temporal variations, yield observations were standardized for each year m with a mean of zero 

and a variance of one (Eq. 1): 

 
𝑌̃𝑚(𝑖) =  

𝑌𝑚(𝑖) − 𝑌𝑚
̅̅̅̅

𝜎𝑚

 Eq. 1 

 

Where 𝑌̃𝑚(𝑖) is the ith scaled and centered yield observation in year m, 𝑌𝑚(𝑖) is the ith yield observation in year m, 

𝑌𝑚
̅̅̅̅  is the mean yield in year m and 𝜎𝑚 is the yield standard deviation in year m. 

Following a methodology proposed by Blackmore et al. (2003) and Marques da Silva (2006), a grid composed of 

20x20m cells, and whose orientation followed that of the harvested rows, was superimposed on the yield data. For 

each cell of the grid, yield values were first meand by year so as to obtain one yield value for each pixel and each 

year. The objective was to make sure that each year had the same influence in each cell even if the number of 

observations falling into each cell was different from year to year. Empty pixels in specific years due to missing 

yield observations were given the mean yield value over the years in the same pixel. 

2.3 Delineating within-field yield zones 

2.3.1 General description of the algorithm 

 

The objective is to delineate within-field yield zones using a time series of yield data. Within-field yield 

zones were derived from a seeded region growing algorithm (Adams and Bischof, 1994; Mehnert and Jackway, 

1997). This procedure, arising from the image processing domain, starts by selecting a set S of k observations [S1, 

S2, …, Sk], referred to as the seeds, from which zones are grown.. Once the seeds have been chosen, the remaining 

observations inside the field, i.e. the non-seeds, are recursively associated to an existing seed, given similarity 

measures between observations. As a consequence, this process expands and grows the zones from the selected 

seeds. The growing algorithm stops when all the observations have been associated to a zone. Such a procedure 

has already been applied in the precision agriculture domain but solely with regard to one single agronomic 

variable (Leroux et al., 2017; Pedroso et al., 2010; Zane et al., 2013). Here, the objective is to extend the procedure 

to a multi-dimensional case for which there is a need to account for several yield data at the same time. Note that 

the proposed methodology presents some similarities with that of Leroux et al. (2017).   

 

2.3.2 The Multivariate Distance between Pixel Vectors 

Several algorithms have been proposed in the literature to segment multiple layers of information, and especially 

multi-band images, into reliable and informative spatial objects prior to the spectral classification of these 

delineated objects (Fauvel et al., 2011; Fauvel et al., 2012; Noyel et al., 2007). Most of these methods make use 

of morphological elements or watershed algorithms, which are extended to multivariate data. Among the different 

approaches to pass from a one-band image to a multi-band image, Tarabalka et al. (2010) have proposed to 

calculate a spectral distance between pixel vectors instead of single-valued pixels, where the vector consists of all 

the variables of interest within a given pixel. In their study, the authors refer to this spectral distance as a vectorial 

gradient. It is proposed here to make use of the same approach regarding the distance computation between 

neighbouring pixels. Let p be the number of layers considered and let 𝑥𝑖
𝑝
 be the ith pixel vector of p values in the 

dataset. The multivariate distance between two pixel’ vectors 𝑥𝑖
𝑝
 and 𝑥𝑗

𝑝
 is set as a multivariate euclidean distance 

(Eq. 2).  
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𝑝
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𝑝
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Eq. 2 

Where d(𝑥𝑖
𝑝
,𝑥𝑗

𝑝
) is the multivariate euclidean distance between the pixel vectors 𝑥𝑖

𝑝
 and 𝑥𝑗

𝑝
, 𝑤𝑝 is the weight 

associated to the layer p, 𝑥𝑖
1 is the value of the first layer of the ith pixel vector.  

In this study, it is considered that all the available years are given the same importance, i.e all 𝑤𝑝 are set to 1. 

2.3.3 The creation of a variance map 

Within-field yield zones are defined here as contiguous spatial entities over which the yield is supposed 

to be homogeneous. The mean zone yield should however be relatively different to that of a neighbouring zone. 



As such, by considering the variance between neighbouring pixels, the variance should be relatively low within a 

zone and exhibit a quite strong peak between pixels belonging to different zones. Be aware that here, neighbouring 

pixels are pixel vectors, which means that the variance is calculated between vectors of pixels and not between 

single-valued pixels (Eq. 3). If a seed was to be placed inside a homogeneous zone, i.e. with low variance, and the 

zone was grown until the boundaries of that zone are reached, i.e. a strong increase in the variance, this region 

should be well delineated. 

The neighbourhood of each pixel vector 𝑥𝑖
𝑝
 was defined as follows: Let 𝑁4(𝑥𝑖

𝑝
) and 𝑁8(𝑥𝑖

𝑝
) be the 4-order and 8-

order neighbourhood of the ith pixel vector respectively (Fig. 1). 𝐻4(𝑥𝑖
𝑝

) is the group of observations such that 𝑥𝑖
𝑝
 

∪  𝑁4(𝑥𝑖
𝑝

). Same goes for 𝐻8(𝑥𝑖
𝑝

). For each pixel vector 𝑥𝑖
𝑝
, a variance metric 𝑉i was computed with respect to 

𝑁8(𝑥𝑖
𝑝

) as follows: 

 𝑉𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛 (| 𝐻8(𝑥𝑖
𝑝

) − 𝑚𝑒𝑑𝑖𝑎𝑛 (𝐻8(𝑥𝑖
𝑝

) |) Eq. 3 

 

Where 𝐻8(𝑥𝑖
𝑝

) − 𝑚𝑒𝑑𝑖𝑎𝑛 (𝐻8(𝑥𝑖
𝑝

) is a vector of distances d(𝑥𝑗
𝑝
,𝑥𝑗′

𝑝
) between each pixel vector belonging to 

𝐻8(𝑥𝑖
𝑝

) and the median of the values of the pixel vectors inside 𝐻8(𝑥𝑖
𝑝

) 

The formula beyond 𝑉i is in fact the median absolute deviation, a more robust estimate of the variance.  

 

 

 

 

 

 

 

 

 

Figure 1. Four- and eight-order neighbourhood of an observation. 

2.3.5  The Seed Selection Process 

At least one seed has to be placed inside each within-field zone to be delineated. As the zones are 

expanded from the initial k seeds, seeds must be carefully located inside the field. Seeds have to share relatively 

strong characteristics with the observations inside their neighbourhood to make sure that the resulting regions will 

be homogeneous. As such, seeds were selected as the observations with the lowest variance with respect to their 

neighbourhood, i.e. the lowest Vi. To prevent multiple seeds from characterizing the same within-field zone and 

to prevent noisy observations from strongly affecting the delineation process, a variance homogeneity criterion 

was put into place. This criterion is a threshold below which it is considered that there is no need to place another 

seed because observations are still consistent with the seed previously selected. To define this threshold, the 

amount of noise 𝜃i around each pixel 𝑥𝑖
𝑝

 was first calculated as in Eq. 4:  

 𝜃i = 𝑠𝑑 (𝐻8(𝑉𝑖)) Eq. 4 

 

Where sd stands for standard deviation. 

The step in variance, Thresh, is then defined as the mean of the 𝜃𝑖 distribution. The seed selection process consists 

in the following steps: 



a. Define G1 as the group containing all the unassigned pixels, G2 as the group containing all the 

seeds and G3 as the group containing all the assigned pixels. At first, all observations belong to 

G1 

b. Calculate the step in variance, Thresh as defined above 

c. Order the observations from the lowest to highest 𝑉𝑖 

d. Select the first seed, 𝑆1
𝑝
 as the observation with the lowest 𝑉𝑖 and put it in G2 

e. For each pixel 𝑥𝑖
𝑝
 inside 𝑁4(𝑆1

𝑝
), if the step in variance is lower than Thresh between 𝑉𝑆1

 and 

𝑉𝑥𝑖
, then 𝑥𝑖

𝑝
 is put in G3 because it is considered that 𝑥𝑖

𝑝
 is consistent with 𝑆1

𝑝
 

f. Repeat step e. for each observation 𝑥𝑗
𝑝
 inside 𝑁4(𝑥𝑖

𝑝
),  and so on until there are no neighbours 

for which the step in variance is lower than Thresh. Be aware that here, the step in variance takes 

into account the spatial proximity as it is evaluated between 𝑉𝑖 and 𝑉𝑗. 

g. Repeat step d. to f. with the next seed (that with the lowest 𝑉𝑖 inside the new set G1 resulting 

from the previous iteration) until no future seed can be selected. 

The 4-order neighbourhood 𝑁4(𝑥𝑖
𝑝

) was chosen to obtain more compact zones by preventing the zones from 

expanding diagonally. 

2.3.6 The Growing of the initial regions 

 

The set S of k seeds, i.e. the group G2 as defined in the previous section, constitutes the starting points of 

the zones within the fields (see Section 2.3.1). At the end of the growing procedure, there will be as many zones 

as the number of initial seeds. It must be clear that the methodology detailed in section 2.3.5 was only done to 

select locations for seeds.  The growing of the zones is detailed hereafter. Let Z be the set of k zones inside the 

fields. It must be clear that the zth zone 𝑍𝑧
𝑝

 is related to the seed 𝑆𝑧
𝑝
. At each iteration of the region growing 

algorithm, the pixel vector 𝑥𝑖
𝑝
 with the smallest multivariate distance to a neighbouring zone 𝑍𝑧

𝑝
, i.e. the smallest 

d(𝑥𝑖
𝑝
, 𝑍𝑧

𝑝
), is associated to 𝑍𝑧

𝑝
. Be aware that as 𝑍𝑧

𝑝
 can contain new pixels at each iteration, each value of the p-

vector associated to 𝑍𝑧
𝑝

 is calculated as the mean of the values of all the pixels belonging to 𝑍𝑧
𝑝

. Note that the zones 

are grown pixel by pixel, i.e. one pixel is attributed to an existing zone at each iteration. The process stops when 

all the pixels have been associated to an existing zone. 

 

A simple flowchart of the proposed yield multi-temporal analysis is proposed in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Workflow of the proposed yield multi-temporal analysis. 

 

 



2.4 Evaluation of relevance of the zoning 

The objective is to evaluate whether the delineated zones encompass the yield spatial patterns for each year under 

consideration. If so, in each year m, each yield observation inside a zone 𝑍𝑧 should be relatively similar to the 

mean yield in 𝑍𝑧. On top of that, if the yield variability is spatially structured, the mean yield in 𝑍𝑧 should be quite 

different to the mean yield in neighbouring zones. Here, it is proposed to make use of a variance reduction-based 

approach inspired from Fraisse et al. (2001). This method was extended to the multivariate case to cope with the 

analysis of a time-series of historical yield datasets. The variance reduction index, referred to as RV, depicts to 

what extent the zoning accounts for the spatial variability within the field or, in other words, to what extent the 

zoning delimitates homogeneous zones. For a given year m, the variance reduction index can be defined as follows: 

 
𝑅𝑉𝑚 = 1 − 

𝜎𝑚
2 (𝑍)

𝜎𝑚
2

 Eq. 5 

 

Where 𝜎𝑚 is the yield standard deviation in year m and 𝜎𝑚
2 (𝑍) is the area-weighted yield variance in year m given 

a zoning Z.  The calculation of this latter term is defined in Eq. 6: 

 𝜎𝑚
2 (𝑍) = ∑(𝜔𝑍𝑧

∗  𝜎𝑚
2 (𝑍𝑧))

𝑘

𝑧=1

 Eq. 6 

 

Where 𝜔𝑍𝑧
 is the weighted area of the zone 𝑍𝑧, k is the number of seeds and consequently of zones in the field, 

and 𝜎𝑚
2 (𝑍𝑧) is the yield variance within the zone 𝑍𝑧 in year m 

To extend the 𝑅𝑉𝑚 index to the multivariate case and, as such, evaluate the performance of the zoning algorithm 

over multiple years of yield data, there is a need to refine the variance terms presented in Eq. 5. and Eq. 6. In the 

unidimensional case, the yield variance within the zone 𝑍𝑧 in year m can be simply written as a sum of squared 

differences between the yield of each observation xi belonging to 𝑍𝑧 and the mean yield value inside 𝑍𝑧: 

 

 𝜎𝑚
2 (𝑍𝑧) =  

1

𝑛𝑍

∑ (𝑌𝑚(𝑖) − 𝑌𝑚
̅̅̅̅ (𝑍𝑧))

2

𝑥𝑖𝜖 𝑍𝑧

 Eq. 7 

 

Where 𝑛𝑍 is the number of observations inside the zone 𝑍𝑧, 𝑌𝑚(𝑖) is the yield of the ith observation in year m and 

𝑌𝑚
̅̅̅̅ (𝑍𝑧) is the mean yield value inside 𝑍𝑧 in year m. Be aware that the calculation is done with the standardized 

yield values. This notation has not been added for ease of reading. 

By using the multivariate euclidean distance defined in Eq. 2, it becomes possible to calculate the yield variance 

inside 𝑍𝑧 over all the p years of study:  

 𝜎2(𝑍𝑧) =  
1

𝑛𝑍

∑ d(𝑌𝑖
𝑝

, 𝑍𝑧
𝑝

)2

𝑥𝑖𝜖 𝑍𝑧

 Eq. 8 

 

Where d(𝑌𝑖
𝑝

, 𝑍𝑧
𝑝

) is the multivariate euclidean distance between a pixel vector 𝑌𝑖
𝑝

 containing the yield values of 

the ith cell for each of the p years, and a vector 𝑍𝑧
𝑝

 containing the mean yield values in the zone 𝑍𝑧 for each of the 

p years.  

The multivariate RV index can then be computed as: 

 
𝑅𝑉 = 1 − 

𝜎2(𝑍)

𝜎2
 Eq. 9 

 



Where 𝜎2 is the yield variance over the p years, 𝜎2(𝑍) is the area-weighted yield variance of the proposed zoning 

over the p years.  

Note that 𝜎2 is calculated similarly as 𝜎2(𝑍), i.e. in the multivariate space, except that no zoning is considered. 

The RV index ranges from 0, i.e. very poor delineation to 1, i.e. perfect delineation.  

2.5 Characterization of the within-field yield zones 

Growers are interested to know about the mean yield spatial and temporal patterns over their fields so they can 

make informed and reliable management decisions. In most published studies, spatial and temporal stability maps 

are generated by computing mean and variance yield data over the years (Blackmore et al., 2003; Ping and 

Dobermann, 2005). Thresholds are generally defined empirically to separate (i) high from low yielding areas and 

(ii) temporally stable from variable zones. Here, the spatial and temporal stability maps are proposed to be 

computed at the within-zone level, given that a zoning has been performed previously, and following a 

methodology inspired from the image processing domain, i.e. using co-occurence matrices and Haralick textural 

indices (Haralick et al., 1973). 

2.5.1 Co-occurrence matrices and yield multi-temporal analysis 

Co-occurence matrices have been originally dedicated to the analysis of texture information inside images. Mostly 

referred to as 𝑃(𝑖, 𝑗, 𝑑, 𝜃), these matrices contain the relative frequencies 𝑝(𝑖, 𝑗) with which two neighbouring 

pixels of an image separated by a distance d with the orientation 𝜃, occur on the image, one with the information 

i and the other with the information j (Haralick et al. 1973). To perform a multi-temporal yield analysis at the 

within-zone level, this same approach can be used to evaluate the relative frequencies 𝑝(𝑖, 𝑗) with which a zone Zz 

has a yield level i in year m and a yield level j in a consecutive year, i.e. d is the temporal distance between 

consecutive available years. Be aware that the term ‘consecutive available years’ is used because yield data is 

missing for some years and with crop rotations, this will be the norm for any temporal yield data analysis. 

Regarding the proposed methodology, 𝜃 would be 0° as the analysis would be made zone by zone with a temporal 

sequence of yield levels (Fig. 2). In the case of a multi-temporal yield analysis, co-occurences matrices 𝑃(𝑖, 𝑗, 𝑑, 𝜃) 

can then be written 𝑃(𝑖, 𝑗, 1,0°). 

 

2.5.2 Generation of a temporal sequence of yield level for each within-field zone 

For a given year m, each zone within the field was characterized by its mean yield level. In order to ease the 

computation of the co-occurrence matrix, the mean yield value of each zone in year m was given a label according 

to a classification in c classes. Given that yield values are standardized at the beginning of the method with a mean 

of zero and a variance of one (Eq. 1), 5 classes of equal intervals were computed between -1 and 1 and labelled 

‘Very Low’ [-1 : -0.6], ‘Low’ [-0.6 : -0.2], ‘Medium’ [-0.2 : 0.2], ‘High’ [0.2 : 0.6], and ‘Very High’ [0.6 : 1]. For 

a given zone Zz and a year m, a mean yield level falling into one of these intervals was given the corresponding 

label of the interval. If the mean yield value of a zone was < -1, it was labelled as ‘Very Low’ and likewise if it 

was > 1 then it was labelled ‘Very High’.. 

 

2.5.3 Computation of specific Haralick indexes 

Once the temporal sequence of yield level has been created for each zone, the co-occurrence matrix 𝑃(𝑖, 𝑗, 1,0°) 

can be generated. These matrices were normalized to lessen the influence of the number of years available for the 

analysis (Fig. 2). To evaluate the spatial and temporal stability of the yield patterns within the field, two textural-

based indexes defined in Haralick et al. (1973) were computed, i.e. respectively the Sum mean and Sum of Squares 

(Fig. 2). Those metrics, referred to as the sixth and fourth Haralick indices are defined as follows: 

 
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 =  ∑ ∑(𝑖 −  𝜇)2 ∗ 𝑝(𝑖, 𝑗)

𝑐

𝑗=1

𝑐

𝑖=1

 Eq. 10 

Where 𝜇 is the mean of the yield classes within the temporal yield sequence and 𝑝(𝑖, 𝑗) is the probability of having 

a yield class j consecutively to a class i in the yield temporal sequence. 



 

𝑆𝑢𝑚 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  ∑ 𝑡 ∗ 𝑝𝑥+𝑦(𝑡)

2𝑐

𝑡=2

 
Eq. 11 

Where 𝑝𝑥+𝑦(𝑡) is computed as stated below: 

 
     𝑝𝑥+𝑦(𝑡) =  ∑ ∑ 𝑝(𝑖, 𝑗)  , 𝑖 + 𝑗 = 𝑡

𝑐

𝑗=1

𝑐

𝑖=1

 
Eq. 12 

The higher the Sum Average index, the higher the production level over the years. The Sum of Squares ranges 

between 0 and 1. The closer to 0, the stronger the temporal stability of the yield patterns. The use of these two 

metrics will allow to obtain a range of spatial and temporal stability levels to help characterize the yield behaviour 

at the within-zone level across years. 

The process involved in the co-occurrence matrix analysis and derivation of the Sum of Squares and Sum Average 

metrics is then illustrated in Fig. 3. Note that in Fig 3, the number of classes has been reduced (c = 3, ‘Low’, 

‘Medium’ and ‘High’) for simplicity. The process of 1. Labelling, 2. Co-occurrence matrix derivation, 3. Matrix 

normalization and 4. The metric calculations are shown for two contrasting scenarios representing a yield zone 

with low temporal variance and low yield level (Scenario 1) and yield zone with a high temporal variance and 

medium to high yield level (Scenario 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Characterization of the within-field yield zones in terms of spatial and temporal stability. Low(m) means 

that the zone has a low yield level in year m. In the top-left hand corner of the co-occurrence matrix for the 

sequence 1, the number 4 means that there were four occurrences of the zone being a low-yielding area in year 

m-1 and in year m. Note that the temporal sequence is read from left to right (two occurrences) but also from right 

to left (two occurrences) 

 

 

 

 



3 Results and discussion 

3.1 Summary of yield information from the case studies. 

Figures 4 and 5 show the spatial patterns in the wheat and canola yield data for the years with available data in the 

two fields under investigation after the yield abnormal values were removed. Associated yield descriptive statistics 

can be found in Table 1. From a first visual inspection and considering each crop separately, it appears that the 

spatial yield patterns are consistent within both fields over time. For Field 1, in 2004, 2007 and 2015, the western-

part of the field is less productive than the eastern-side. This pattern is reversed in 2012 when it clearly appears 

that the normally high-yielding areas in the eastern-part of the field become the low-yielding areas. This year, 

2012, was characterized by a wet growing season that resulted in the lighter soils in the western-part of the field 

being less water-logged and more productive in this year (Tab. 1). In Field 1 the canola spatial yield patterns do 

not seem to exhibit any temporal stability, nor do they align with the wheat yield patterns. Moreover, canola 

observations are noisier and spatial patterns are not as visually distinguishable as those of wheat. From a general 

perspective, the annual yield variability is relatively low, the coefficient of variation being less than 16% (Tab. 1). 

Wheat production in Field 1 has significantly increased from 2004 to 2015, starting with a mean at 7.8 tons ha-1 

(2004) and rising to reaching 12.3 (2015) tons ha-1. Note that the minimum yield values remain quite low while 

the maximum values increase significantly. The rainfall conditions in 2012 did not alter this increasing trend. 

Table 1. Yield descriptive statistics for the study field over six years. Yield values are reported in tons per hectare. 

Rainfall is reported for the whole cropping season. 

Field Year 
Rainfall  

(mm) 
Crop Min 1st quartile Mean 3rd quartile Max CV (%) 

1 

2004 802 Wheat 3.3 7.0 7.8 8.7 11.0 15.8 

2007 652 Wheat 5.5 9.0 9.6 10.1 12.0 8.9 

2011 582 Canola 2.8 4.7 5.0 5.3 6.2 9.0 

2012 1160 Winter Wheat 5.0 9.2 9.9 10.7 13.4 12.1 

2014 631 Canola 2.0 3.3 3.7 4.1 5.4 15.6 

2015 401 Winter Wheat 5.4 11.3 12.3 13.4 16.8 13.1 

          

2 

2003 708 Wheat 4.0 7.7 9.0 10.7 15.2 20.4 

2004 614 Canola 0.2 1.7 3.1 4.3 8.4 54.0 

2005 576 Wheat 7.1 9.5 9.9 10.3 12.0 6.1 

2006 668 Canola 0.1 1.7 2.4 3.0 6.3 42.8 

2007 775 Wheat 5.6 8.9 9.5 10.1 12.0 9.1 

2009 550 Wheat 7.9 11.2 12.0 12.8 15.0 9.1 

2010 612 Canola 2.1 4.4 5.1 5.7 8.1 20.1 

2011 717 Wheat 4.7 8.5 9.6 10.7 13.2 15.4 

 

Interestingly, regarding Field 2, the crop type did not affect the spatial yield patterns observed in the field (Fig. 5). 

In this field, the northern side exhibited generally low yield values, associated with relatively light soils, while the 

southern section was found to be a high-yielding area. This pattern appears to be reversed for the wheat rotation 

in 2004 and 2007. Note that the spatial pattern in 2007 is here again due to increased in-season precipitation and 

further interaction with soil characteristics. In 2003, the wheat yield data appears noisier than in other years, which 

makes the overall yield pattern more difficult to visually detect. Yield observations are also much more variable, 

high coefficient of variation, when canola is cropped (Tab. 1). Contrary to Field 1, there does not seem to be a 

clear trend towards increasing yields over time. 

When developing this methodology, the authors were aware that it may be difficult to compare the spatial patterns 

of different crops, such as wheat and canola that belong to different genera that have different yield levels, water 

requirements and root systems among others. All the spatial patterns were nonetheless plotted to see whether it 

was conceivable to aggregate the information arising from these two crops under the specific conditions of the 

field study (Fig. 4 and Fig. 5). Because the spatial canola yield patterns showed little structure and little 

resemblance to the wheat yield patterns in Field 1, it was decided not to include them in the historical yield data 

analysis. The main reason for this was to ensure growers were not provided with abnormal or irrelevant information 

at the end of the analysis. Unfortunately, only two years canola yield data were available for this study. More years 

would have certainly have enabled a clearer understanding of the spatial yield patterns for this crop in this field. 



In contrast, for Field 2 the yield patterns were found to be very consistent within and between crop types so all the 

years were included in the analysis. Note that this study might still have been conducted for both crops separately. 

While the intent is to develop an automated approach to yield pattern analysis, ultimately the quality of the analysis 

will be linked to the choice of data used. Growers and agronomists do need to be conscious of the quality and 

utility of any data included into the multi-temporal yield pattern analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Yield spatial patterns in Field 1 for the six years over the 2004-2015 period. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Yield spatial patterns in Field 2 for the eight years over the 2004-2011 period 

3.2 Evaluation of the resulting within-field yield zones 

The delineation of within-field yield zones appears to be consistent with what could stem from intuitive delineation 

(Fig. 6 and 7). FOr both fields the zoning exhibited relatively high RV values, respectively 0.65 and 0.64 for Field 

1 and Field 2. Interestingly, both RV values are very similar despite the fact that the number of delineated zones 

and the number of years of yield mapping available are different for Field 1 and Field 2. In fact, the zoning could 



have been considered more reliable for Field 1 given that less zones were generated (Z = 13) but it must be 

understood that the zoning of Field 2 (Z = 17) involved a longer temporal yield sequence. These RV values can be 

considered high because the zones have been generated from simultaneous analysis of multiple yield, which means 

that the major yield spatial patterns across the years have been spotted. Note that while the zoning can be 

considered as being effective, there is still some noise and yield variance within the zones.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Correspondence between yield spatial patterns and within-field yield zones in Field 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Correspondence between yield spatial patterns and within-field yield zones in Field 2. 

When looking at the delineated zones more precisely, it appears that in some years, specific zones might not be 

considered optimal. This is the case for instance for the zone in the north-eastern part of Field 2 for years such as 

2003 or 2010. However, it can also be seen that for the remaining years, this zone gathers relatively homogeneous 

observations. As the delineation accounts for all the years in a single run, it is sometimes difficult to spot year-

specific behaviours, especially if the deviations from the general patterns are not strong. These behaviours might 

be identified by lowering the threshold Thresh that was used in the methodology (Eq. 4). From a general 



perspective, the proposed algorithm delineated quite large and compact zones in both fields, which is considered 

agronomically desirable even if it is not statistically optimal. The smallest zones are mainly located near the 

boundaries of the fields, which is generally the place of lower and noisier yield observations. In both fields the 

transition between high and low-yielding areas is quite clear and it comes with a good level of spatial 

autocorrelation. These specificities obviously helped the zoning algorithm to delineate relevant within-field yield 

zones. 

Once these zones have been delineated, it is interesting to focus on the differences that these zones exhibit with 

their direct neighbours (Fig. 8). The major objective of the proposed approach was to delineate relevant within-

field yield zones, i.e. zones whose yield behaviour should diverge with that of their neighbours. In the case of 

similar yield trends across the years, neighbouring zones might benefit from being merged as no clear differences 

exist between them. In the comparison of Zone 1 with its direct neighbours (Fig 8) , it is interesting to see how the 

rainfall conditions in 2012 affected the yield trends. The yield in Zone 4 substantially increases in 2012 (increased 

precipitation on a lighter soils) while all the other neighbouring zones exhibit a decreased yield in 2012. This 

behaviour is also very clear for Zones 5 and 6 that share similar soil characteristics with Zone 4 (data not shown). 

Given the strong accordance between the yield trends in Zones 4 and 5, it might be desirable to merge these later 

to facilitate the interpretation of the maps. Note however that it does not prevent the yield-affecting factors in these 

two zones being different but the further analysis of these zones is beyond the scope of this work. Be aware that, 

in this methodology, unlike for example the segmentation algorithms proposed by Leroux et al. (2017), Pedroso 

et al. (2011), and Roudier et al. (2008), there is no option for region (zone) merging. The number of zones is preset 

from the seed selection process.  The only way to alter the number of zones is to influence the seed selection 

process. From a general perspective, neighbouring zones in both fields displayed distinct yield trends, validating 

the proposed zoning delineation.  

 

 

 

 

 

 

 

 

 

 

Figure 8. Within-field yield zones and corresponding boxplots regarding the mean yield inside neighbouring zones 

for Field 1. 

3.3 Analyzing the within-field zones in terms of yield level and temporal stability 

Figure 9 displays the derived yield zones along with the temporal stability of each delineated yield zone. When 

considering all the study years together, these maps seem to show that Field 1 is composed of (i) a large high-

yielding area in the northern-eastern part, (ii) relatively large zones with a medium yield level in the center of the 

field, and (iii) low-yielding areas near the boundaries. The temporal stability analysis suggests that the western 

side of the field has an unstable yield pattern over the years which might be of concern for future differential 

management. However, any differential management plan will need to consider managerial and environmental 

conditions within the yield zones. The zones and conclusions here arise solely from the analysis of yield data with 

no other considerations. There is a need to account for the external factors that impacted the yield patterns, and 

more particularly the rainfall conditions. It has been discussed previously that the high amount of precipitation 

which occurred in 2012 in Field 1 (Tab. 1) completely reversed the expected spatial yield pattern (Fig. 4). By 

considering the four years of yield mapping simultaneously, Zone 4, which was most affected by the variability in 

rainfall conditions, was given a medium mean yield level over time and was considered temporally unstable. The 

analysis would have led to different conclusions if the wet growing season, i.e. 2012, had been processed 



separately. More specifically, Zone 4 would have been labelled a low yielding, temporally stable zone under 

normal growing conditions and a high yielding area in wet growing conditions. For Field 2, results showed that 

the spatial yield patterns were more stable over time than for Field 1. This is essentially due to the fact that only 

four years of yield mapping are available for Field 1 and one out of the four yield data exhibited a complete reverse 

yield pattern compared to the other years. Reverse yield patterns are also visible for Field 2 but the substantially 

higher number of years lessened their influence. It can also be seen that when more years are used, it is more 

difficult to reach a very low value of stability. Yield spatial stability patterns are also well represented in Field 2, 

with Zones 3 and 1 exhibiting the highest yield level. Contrary to the observed difference in yield temporal 

stability, both fields show a relatively similar range of yield variation. 

The spatial and temporal stability metrics, i.e. Sum Average and Sum of Squares, are of interest as they enable a 

quantitative analysis across a relatively wide gradient of variation. The zones are not considered either temporally 

stable or variable across years but rather they are given a degree of variability over the years of study. This enables 

growers and operators to obtain more interpretable zones and offers the potential to use personal thresholds given 

their knowledge of the fields. In this study, the co-occurrence matrices have been computed by considering a 

temporal distance of one year (d = 1) for the temporal sequence of yield level in each zone. This means that the 

matrices are solely generated considering a specific year and the direct following or previous year available. In 

other words, the order of the years in the temporal sequence is taken into account. This might be questionable for 

annual crops such as wheat and canola. However, here, the use of the Sum Average and Sum of Squares indicators 

are very similar to mean and variance indicators which means that, in the end, the order of the years does not 

matter for these metrics. Nonetheless, this consideration of order might be much more appropriate for perennial 

crops, such as grape vines, for which consecutive years are much more related. For fields where fixed crop rotations 

are used, e.g. the alternate Wheat – Canola rotation in Field 2, and when long temporal sequences of yield mapping 

are available, it might be interesting to adjust the temporal distance accordingly. As such, by making use of a 

temporal distance of two years (d =2) for Field 2, the same analysis could be conducted on just the wheat or canola 

crop. This might be of particular importance in longer rotations where first and second wheat crops may want to 

be considered separately. The Haralick-based temporal analysis proposed here is a first step towards reliable 

metrics to describe the spatial and temporal stability of zones, in this case yield zones. This approach could be 

enhanced further as only two Haralick indicators have been adapted here. Other Haralick indicators may be more 

suitable for other cropping systems, such as perennial crops, where there is a stronger inter-annual link between 

years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Yield level and temporal stability of the within-field zones in Field 1 and Field 2. 



 

3.4 Practical considerations for the delineation of within-field yield zones 

Even though the proposed algorithm has been shown to be efficient in delineating yield zones, a couple 

of considerations still need to be discussed. First of all, it must be said that the concatenation of multiple years of 

yield data makes it difficult to have a clear understanding of the absolute yield level in each management zone. 

Indeed, there was a need to work with standardized yield values to lessen the influence of temporal variability in 

the delineation of within-field spatial units. Without this pre-processing, the yield multi-temporal analysis would 

not have been as meaningful. Absolute mean zone yields need to be back transformed or calculated when the yield 

zones are being assessed otherwise growers and advisors would be forced to make decisions using relative and not 

absolute information. Secondly, it is clear that the history and technical management of the field are crucial when 

considering which yield data to include in an analysis. Crops with a similar agronomic behaviour might be 

considered in the same analysis.  Saying that, it would be interesting to know whether there would be a possibility 

to consider some groups of cultivated crops for which yield data could be mixed. In this study, wheat and canola 

yield data were intentionally analyzed simultaneously for Field 2 given the high consistency in the yield spatial 

pattern for both crops. 

The analysis of historical yield data cannot be considered reliable unless it is based on a significant number of 

years encompassing a wide range of growing conditions and affecting external factors. However, it is relatively 

difficult to come up with a minimum threshold of years required due to the diversity in crop production systems 

in the same region, let alone world-wide. However, given the analysis that was conducted here, it appears risky to 

obtain reliable conclusions with less than four years of yield data. Knowing the spatial response of the yield to 

different external factors, particularly climatic variations, will help predict and refine the expected yield spatial 

pattern at the end of the upcoming growing season. For instance, in Field 1 it is likely that very wet growing 

conditions will reproduce the spatial yield pattern that occurred in 2012. Furthermore, the proposed methodology 

makes it possible to vary the weight associated to each yield map, although that has not been done here. This aspect 

is interesting if the intent is to simultaneously analyze multiple years of yield data while lowering the weight 

attributed to some of the years, i.e. because of very bad growing conditions or pest/disease effects for instance.  

The choice of the grid originating the change of spatial support for the yield data has been little discussed. In this 

work, a grid size consistent with that used in published studies has been chosen to simplify the processing chain. 

It must be clear however that changing the grid size will very likely generate unique within-field yield zones 

outcomes. For example, as the grid becomes coarser, small scale variations will be missed which will prevent 

small zones from being identified. This effect may be minimal however if the yield data exhibit quite a large spatial 

structure. One strong advantage of large grids is that they will be able to provide a simple, though less precise, 

zoned yield map which might help to make decisions. There is an agronomic advantage in interpretation and 

application to having a grid size that matches the width of field operations. The threshold Thresh that is proposed 

in the study to select the seeds from which the zones are grown is related to the size of the grid that is chosen. Even 

though this threshold has been selected to be relatively robust relative to the grid size, coarser grids might require 

the threshold to be decreased to make sure relevant information is not lost. Note also that this study solely 

considered one grid size for all the yield data. Nonetheless, all the yield data sets come with a different spatial 

resolution and the location of punctual observations do not match from year to year. The optimal grid size for 

different years might not be necessary similar. This raises questions regarding the choice of reliable grid sizes to 

aggregate yield data so as the way to combine those grid sizes if they are different from one year to another.  

3.5. Perspectives for the analysis of the within field yield zones. 

So far, the analysis has been solely aimed at differentiating zones with specific yield behaviour across 

years. This work did not intend to propose any particular management of these zones nor to provide growers with 

variable rate application maps. However, these delineated yield zones might be useful for a further differentiate 

management within the field. The concept of management zones is fuzzy because it definitely depends on the 

grower’s goal in sub-dividing the field (Kitchen et al., 2005). When using yield datasets to delimitate these zones, 

three dominant applications will be of interest for growers.  

First of all, yield-based regions could help identify yield-limiting or at least yield-affecting factors. As 

the yield is the result of the combination of multiple factors that can vary over space, the division of a field into 

spatially homogeneous yield units would facilitate the characterization of these within-field external factors. Some 



of these drivers might or might not be manageable but the understanding of the underlying factors affecting the 

yield is decisive for the decision-making process.  

Secondly, these yield-based zones can help separate the fields into areas of different potential or 

productivity (Bochi et al., 2007; Robertson et al., 2008; Taylor et al., 2001). Such analyses are also referred to as 

yield-gap analyses because there is a difference, to a greater or lesser extent, between what the field actually 

produces and the productivity that it could achieve (Oliver and Robertson, 2013). A large yield gap means that 

there is probably considerable space for improvements in management practices and agronomical decisions. There 

should be more focus on high-potential areas because this is where yield outcomes can be greatly increased.  

Finally, the yield zones can help define economically interesting areas for the growers (Massey et al., 

2008). Zones that consistently deliver insufficient returns on investments are not worth it, especially if the zones 

do not a great potential or if the underlying yield-limiting factors cannot be corrected.  In addition to production 

potential, growers also need an indication of the  risk associated with achieving production potential for a zone 

(Marques da Silva, 2006).. The metrics proposed here will assist in economic modelling and determining whether 

specific yield (or management) zones are worth an investment or whether some management decisions are risky. 

 

4 Conclusion 

This works presents a methodology to extract and characterize within-field yield zones from a temporal series of 

yield data. The proposed approach generates contiguous and relatively large yield zones that encompass the general 

spatial patterns over the years. The efficacy of the zoning algorithm was assessed for spatial and temporal stability 

using image-based metrics of mean and variance.  The methodology was applied to two fields to good effect, with 

the derived zones and associated metrics raising questions regarding yield performance in space and time and 

spatio-temporal yield-limiting factors, particularly climatic factors. Seasonal rainfall patterns significantly 

influenced the spatial and temporal stability maps in the fields investigated. Yield zones could be further 

investigated by evaluating the risk of managing them. This risk analysis could be conducted for each zone through 

the characterization of multiple components such as the yield-affecting factors, the yield potential, or the return on 

investments among others. 
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