Frédéric Ros
email: frederic.ros@univ-orleans.fr

Serge Guillaume
email: serge.guillaume@irstea.fr

ProTraS: A Probabilistic Traversing Sampling Algorithm

Keywords: Distortion cost, clustering, distance, density

In the process of knowledge discovery in big data, sampling is a technological brick that can be included in a more general framework to speed up existing algorithms and contribute to the scalability issue. Two challenging and connected problems arise with complexity: tuning and timing. ProTraS 1 is a new algorithm that fulfills both requirements. It is driven by a unique parameter, the sampling cost. The cost is overestimated by the maximum within group distance and the group cardinality. It is an iterative algorithm, at each step a new representative is added, chosen as the farthest-first traversal item from the representative in the group with the highest probability of cost reduction. The novel algorithm is robust to noise and time optimized. A detailed comparison with alternative algorithms, conducted on various synthetic and real world data sets, shows that the proposal yields competitive results in terms of quality of representation for clustering, sampling size and sampling time.

Introduction

Defining a sample that behaves like the whole data set is a quite longstanding issue in data management. It has received fresh interest with the works [START_REF] Har-Peled | On coresets for k-means and k-median clustering[END_REF].

Sampling and coresets have been applied to clustering. Clustering is an unsupervised task to organize, summarize and finally understand the data. In the field of big data, clustering algorithms are becoming more and more sophisticated in order to deal with complex data of various shapes and densities [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]. Two challenging and connected problems arise with complexity: tuning and timing. Uniform sampling is the simplest and quickest way to proceed.

Unfortunately, it requires very large sample sets to deal with shape and density variability. Smarter and more powerful algorithms have been proposed. These sampling algorithms, a recent review is available in [START_REF] Ros | Dides: a fast and effective sampling for clustering algorithm[END_REF], are density or distance based and some of them combine the two notions under specific strategies. Density-based methods can be grouped in two main families for density estimation: space partition (e.g. grids, trees) [START_REF] Palmer | Density biased sampling: An improved method for data mining and clustering[END_REF][START_REF] Ilango | A survey of grid based clustering algorithms[END_REF] and local estimation, using neighborhood or kernel functions [START_REF] Kollios | Efficient biased sampling for approximate clustering and outlier detection in large data sets[END_REF]. Both are highly sensitive to parameters, cell definition for grids, bandwidth or neighborhood for local estimators. With an inappropriate setting, these methods are either likely to sample noise or to miss regions of interest. Distance-based clustering algorithms are used for sampling with a number of samples much greater than the number of clusters. The most famous representative of this family is the k-means [START_REF] Hartigan | A k-means clustering algorithm[END_REF].

Its sensitivity to initialization has been exhaustively investigated [START_REF] Zahra | Novel centroid selection approaches for kmeans-clustering based recommender systems[END_REF][START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF][START_REF] Celebi | A comparative study of efficient initialization methods for the k-means clustering algorithm[END_REF]. Single scan approaches have also been proposed such as leader [START_REF] Ling | Cluster analysis algorithms for data reduction and classification of objects[END_REF] clustering. The results are highly dependent on the distance threshold, even with improved versions [START_REF] Sarma | Speeding-up the kernel k-means clustering method: A prototype based hybrid approach[END_REF][START_REF] Viswanath | A hybrid approach to speed-up the k-means clustering method[END_REF]. Farthest first transversal, fft, algorithms [START_REF] Rosenkrantz | An analysis of several heuristics for the traveling salesman problem[END_REF] are of interest as they do not require a distance parameter.

Moreover, improvements in accuracy often conflict with time performance, and response time is of major concern nowadays for data processing algorithms.

The increased computational cost limits the application of some of the abovementioned algorithms to small or average size data sets. Several techniques have been investigated to address these challenges [START_REF] Lv | An efficient and scalable density-based clustering algorithm for datasets with complex structures[END_REF][START_REF] Zhong | A fast minimum spanning tree algorithm based on k-means[END_REF][START_REF] Ma | High-quality initial codebook design method of vector quantisation using grouping strategy[END_REF][START_REF] Sarma | Speeding-up the kernel k-means clustering method: A prototype based hybrid approach[END_REF]. The stratification concept has been proposed to speed up algorithms with quadratic or exponential time complexity.

To overcome sensitivity to splitting, extensions have been proposed to work with non disjoint partitions, using replication techniques [START_REF] Machová | A comparison of the bagging and the boosting methods using the decision trees classifiers[END_REF].

In [START_REF] Feldman | Scalable training of mixture models via coresets[END_REF], an Efficient Coreset Construction via Adaptive Sampling was proposed, involving density and distance concepts while biasing the random sampling.

Two fft improved algorithms, DIDES [START_REF] Ros | Dides: a fast and effective sampling for clustering algorithm[END_REF] and DENDIS (Ros & Guillaume, 2016a), were recently proposed to tackle the still open twofold challenge of tuning and timing. The two of them are iterative algorithms based on the hybridization of distance and density concepts. They differ in the priority given to distance or density, and in the stopping criterion defined accordingly. They benefit from an internal optimization that makes them faster than any competing approach. Their tuning is quite easy as they have only one meaningful and dimensionless parameter, called granularity. However, they also have limitations. First, the meaning that this unique parameter conveys is not the same for the two proposals, this may be an inconvenient from the user point of view. Second, they use internal heuristics based on parameters inferred from the data. Although the approach has been validated on a wide range of data sets with contrasted characteristics, heuristics elimination is always advisable.

The objective of this study is to propose a new sampling algorithm that is both easy to tune and scalable.

The proposed algorithm is only based on the sampling cost. It is a recursive partitioning algorithm: at each step a new representative is added to the sample until the cost falls below a threshold. The representative is chosen in the group with the highest probability of cost reduction. This probability is computed according to the within group distance and to the representativeness of the sample item. Therefore, ProTraS manages the concepts of distance and density in a new probabilistic way. The representative is the farthest item from the group representative. This ensures space coverage. ProTraS is explicitly designed to produce a (k, ε)-coreset: the approximation level, ε, is its unique parameter and it is also used as the stopping criterion.

The paper is organized as follows. The fft algorithms, as well as the recent proposals DIDES and DENDIS, are detailed in Section 2. The relationship to the concept of coreset is analyzed in Section 3. The proposed algorithm is introduced in Section 4 and its properties are illustrated using synthetic data.

Section 5 deals with the numerical experiments conducted on twenty-one synthetic and eight real world data sets. The sample representativeness is assessed with two well-known, and representative, algorithms, DBSCAN and k-means.

The sensitivity to the unique parameter, the distortion cost, is analyzed and a detailed comparison with selected competitors is carried out. Finally, the main conclusions and open perspectives are stated in Section 6.

Previous work: fft algorithms

Sampling [START_REF] Wang | Approximate pairwise clustering for large data sets via sampling plus extension[END_REF][START_REF] Thompson | Sampling[END_REF] is an interesting way to ensure process tractability. A recent review shows that many algorithms have been proposed since the first attempt, which was the random sampling [START_REF] Ros | Dides: a fast and effective sampling for clustering algorithm[END_REF]. They are based on density or distance, and sometimes combine the two concepts. Among the distance based sampling method, the farthest-first traversal principle is of special interest as it does not require any distance parameter in contrast to the leader [START_REF] Ling | Cluster analysis algorithms for data reduction and classification of objects[END_REF] or the mountain [START_REF] Yager | Generation of fuzzy rules by mountain clustering[END_REF] methods. The first use of fft aimed to solve the traveling salesman problem in 1977 [START_REF] Rosenkrantz | An analysis of several heuristics for the traveling salesman problem[END_REF]. Then the idea was applied to clustering [START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF], to minimize the maximum distance from any point to its nearest center, and, later, for image color quantization [START_REF] Xiang | Color image quantization by minimizing the maximum intercluster distance[END_REF]. To initialize the k-means algorithm, k-means++ [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF] for all x l ∈ T \ S do 7:

Find d near (x l) = min y k ∈S d(x l , y k) 8: T (y k) = T (y k) ∪ {x l } {Set of patterns represented by y k } 9:
end for 10: for all y k ∈ S do 11:

Find d max (y k) = max xm∈T (y k) d(x m , y k) 12: Store d max (y k), x max (y k) {where d max (y k) = d(x max (y k), y k)},
y w = arg max y k ∈S d max (y k), M axDmax = d max (y w), x w = x max (y w) 18: S = S ∪ {x w } 19: until Stopping condition is met 20: return S, T (y j), j = 1, . . . , s
Let T = {x i } be the input set of n multidimensional data, and S = {y j } the size-s sample to be built, S ⊂ T . The set of patterns represented by y k is:

T (y k) = {x i | d(x i , y k) = min j d(x i , y j)}.
The first pattern can be randomly chosen or it can be computed as the farthest, depending on the selected distance, from the minimum value in each input space dimension. After the initialization phase, the set S only counts this initial pattern, x init (lines 3-4).

The main loop (lines 5-19) includes two steps. First, each unselected pattern,

x ∈ T \ S, is attached to the closest selected one in S (lines 6-9). At the first step, T (y 1) = T \ {x init }. Then, for each set T (y k), the algorithm searches for the farthest attached pattern. The maximum distance in the group represented by y k is noted d max (y k) (lines 10-13).

The next selected representative, x w , is the farthest item chosen in a given group. In the pioneering version it was chosen as the farthest of all the already selected items. So, boundary patterns are first chosen instead of inner ones. This way, the selected set spans the whole input space.

Recently, two fft improvements that combine distance and density concepts were proposed. DIDES [START_REF] Ros | Dides: a fast and effective sampling for clustering algorithm[END_REF] and DENDIS (Ros & Guillaume, 2016a) differ in the group the new sample item is chosen from and, consequently, in the stopping criterion. The two algorithms are driven by a unique and meaningful parameter, called granularity. It impacts the S size, in that the lower the granularity the higher the number of representatives. It is data independent, and is combined with the whole set cardinality, n, to define a threshold: th = n granularity.

In DENDIS, density is of prime concern while distance is controlled: the representative is chosen in the most populated group. The stopping criterion is also based upon density: the algorithm stops when there are no more groups with a number of attached patterns higher than the threshold and with a maximum distance in the group high enough with respect to the whole distribution.

In DIDES, distance is the dominant criterion and the new representative is the farthest item from the already selected ones, as in the pioneering version. It is chosen in the group which corresponds to the maximum of the d max , M axDmax (lines 16-17). The threshold th is the minimum size, in the initial set, T , for a cluster one wants to have representatives in S. A representative with fewer than th patterns attached is called a poor representative. When the proportion of T whose representative is a poor representative is high enough, the input space is homogeneously covered. Then, the d max evolution curve can be modeled to define the stopping criterion as a distance threshold. Density is managed in a post-processing step to discard outliers and consider the representation of connected areas.

The main goal of DIDES is to ensure space coverage while the one of DENDIS is density representation. However, the two algorithms regulate the compromise between these two objectives. This trade-off management requires some specific internal, or hidden, parameters inferred from the data.

Relationship to coresets

The challenge of big data has aroused a new interest in sampling techniques.

But the idea is not new: vector quantization was introduced in the field of signal and image processing to summarize a data distribution by a finite number of vectors [START_REF] Linde | An algorithm for vector quantizer design[END_REF]. More recently, the coreset framework introduced the idea of approximation quantification: a subset is called a coreset of a whole set if solving the optimization problem on the subset gives an ε-approximate solution on the whole input set. This section aims to investigate whether there is a relationship between fft algorithms and coresets.

This concept was initially analyzed by Agarwal, Har-Peled and Varadarajan [START_REF] Agarwal | Approximating extent measures of points[END_REF] for the geometric approximation of point sets. Given a monotone measure function, µ, i.e. for S ⊆ T , µ(S) ≤ µ(T), and given ε > 0, S ⊆ T is an ε-coreset for T with respect to µ, if (1 -ε)µ(T) ≤ µ(S). Typical measures include statistics about the set itself such as diameter, width or the geometric shape enclosing T , e.g. the smallest enclosing ball characteristics such as radius or volume.

They proved that this approximation can be obtained using a sample whose size is independent of the number of points and only dependent on ε.

This concept has been extended to clustering applications [START_REF] Har-Peled | On coresets for k-means and k-median clustering[END_REF]. The authors proposed the following definition.

Definition. A set S, of s items, is an (k, ε)-coreset for a set T , of n > s items if:

(1 -ε)Cost T (C) ≤ Cost S (C) ≤ (1 + ε)Cost T (C) (1)
where

C = {c 1 , . . . , c k } is a set of k centers.
Let c * i ∈ C be the closest center for a given

x i ∈ T : d(x i , c * i) = min m∈1,...,k d(x i , c m).
Similarly, let c * j ∈ C be the closest center for a given y j ∈ S: d(y j , c * j) = min m∈1,...,k d(y j , c m).

With the k-means algorithm, the two costs are:

• Cost T (C) = n i=1 d(x i , c * i) • Cost S (C) = s j=1 w j d(y j , c * j), with w j = |T (y j)|, i.e. the number of items from T whose closest point in S is y j .
When this definition only holds for the optimal number of centers, k, S is called a weak coreset for T , otherwise, if it holds for any set C, it is called a strong coreset for T .

Theorem. fft algorithms yield a (k, ε)-coreset.

The proof is as follows:

As y j also belongs to T , let d(y j , c * i) be the distance between the representative and its closest center computed from the whole set T .

One obtains ∀j ∈

S: d(y j , c * i) > d(y j , c * j) if c * i = c * j otherwise d(y j , c * i) = d(y j , c * j) then: s j=1 w j d(y j , c * j) ≤ s j=1 w j d(y j , c * i) (2)
The triangle inequality yields:

d(y j , c * i) ≤ d(x, y j) + d(x, c * i)
The maximum within group distance, d max (y j) = d j for group j, provides an easy to estimate upper bound of any elementary distance to the center. For each group j ∈ S, the inequality can be applied to the set of all the items in the group:

w j d(y j , c * i) ≤ w j d j + wj l=1 d(x l , c * i) (3)
Considering the whole set of the representatives the index of the summation covers the n items and combining Eq (2) and Eq. (3) yields:

s j=1 w j d(y j , c * j) ≤ s j=1 w j d j + n i=1 d(x i , c * i). Finally: Cost S (C) ≤ s j=1 w j d j + Cost T (C) (4)
The quantity s j=1 w j d j is the sampling cost, or the quantization distortion.

The triangle inequality also gives:

d(x, c * j) ≤ d(x, y j) + d(y j , c * j) then d(y j , c * j) ≥ d(x, c * j) -d(
x, y j) A similar reasoning, which comes to apply the latter first to a group using d j as an upper estimate of the distance, second to all the groups, and finally stating that ∀x, d(x, c * j ≥ d(x, c * i), gives the following inequality:

s j=1 w j d(y j , c * j) ≥ n i=1 d(x i , c * i) - s j=1 w j d j
Meaning:

Cost S (C) ≥ Cost T (C) - s j=1 w j d j
The final relation between the two costs is:

Cost T (C) - s j=1 w j d j ≤ Cost S (C) ≤ Cost T (C) + s j=1 w j d j (5)
Dividing Eq. 5 by Cost T (C), and then multiplying by Cost T (C), yields:

    1 - s j=1 w j d j Cost T (C)     Cost T (C) ≤ Cost S (C) ≤     1 + s j=1 w j d j Cost T (C)     Cost T (C)
which is Eq. 1 with ε = S is thus a (k, ε)-coreset for T , with ε equals the ratio of the sampling cost to the whole cost. As there is no assumption about C, S is a strong coreset for T .

As mentioned above DIDES and DENDIS are driven by a unique parameter called granularity. The sampling cost and, consequently, ε has a monotonic evolution with respect to this parameter. A lower granularity tends to yield a higher sample size and adding a new item to S decreases both w and d.

ProTraS: the proposed algorithm

The fft-based algorithms yield coresets even if they were not designed with this goal in mind. The objective of the present proposal is to generate coresets.

Description of the algorithm

The approximation level, which is the sampling cost as shown in the previous section, plays a central role in coreset generation. ε, is the unique parameter. It also serves as the stopping criterion: the algorithm ends when the cost is below the threshold. Finally it is used to guide the sampling process itself: at each iteration a new representative is added to the sample, in the group with the highest probability of cost reduction. This tends to limit the sample size.

The algorithm is summarized in Figure 1. The representative is the farthest-first traversal item of a given group.

As the sampling cost in a given group, j, is proportional to both the number of attached patterns, w j = |T yj |, and the maximum within group distance,

d j = d max (y j)
, the new representative is chosen in the group that is likely to best contribute to the global cost, ε, reduction. The probability of cost reduction is a combination of two basic probabilities: the first one according to the distance and the other one according to the number of attached patterns.

Each of them is estimated by normalizing the values by the maximum over all the groups.

For a given group, j, the probabilities are:

• Density-based probability: P dens (j) =

wj max i wi • Distance-based probability: P dist (j) = dj max i di
Both have the same meaning: the higher the value, the higher the expected cost reduction. The probability of cost reduction is computed as the following combination:

P CostRed (j) = w j d j max i (w i d i)
.

This probabilistic approach differs from greedy algorithms. For instance in Decision Trees, the node to be split is the one with the highest gain. This requires all the nodes to be tested, i.e. all the gains have to be computed. The probability estimation tends to speed up the sampling process.

The algorithm is detailed in Algorithm 2.

The initial pattern selection (line 3) is no longer done at random. The first representative is the closest to a virtual item computed as the minimum in each dimension. This makes the algorithm fully deterministic. for all x l ∈ T \ S do 7:

Find dnear(x l) = min The algorithm uses, in line 18, a normalized distortion cost: . This new expression carries the same meaning for all the data, irrespective of the data size.

y k ∈S d(x l , y k) 8: T (y k) = T (y k) ∪ {x l } {Set of
A better cost estimation could be reached by choosing in each group the medoid as the representative.

Algorithm properties

Some interesting properties of the algorithm are illustrated using the S1 data shown in Figure 2. This synthetic data set includes 3000 2D-points and was used in [START_REF] Kärkkäinen | Dynamic local search algorithm for the clustering problem[END_REF] under the name A.set 1.

Robust to noise

An increasing amount of uniform random noise (from 1% to 19%) was added to the data. The new values were computed independently in each dimension.

according to the whole range of the given feature:

noise f = min f +U [0. + 1] * (max f -min f).
To assess the quality of representation, the resulting partitions of the same clustering algorithm applied to the whole set and the selected sample were compared using the Rand Index [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF].

As the optimum number of clusters is unknown, tests were carried out within a range [2,17]. The k-means algorithm was run 10 times for each configuration.

Table 1 reports the sample size and the RI averaged over all the trials.

Noise clearly impacts the sampling: the sample size tends to increase with the amount of noise, even if these results also include an initialization variation.

RI values show that the sampling algorithm is still able to identify and represent the data structure even with a significant level of noise.

Sample size mainly dependent on data structure

The test consists in comparing the algorithm performances on the initial set and an enriched similar one. The latter results from the aggregation of new pat- is randomly defined for each input dimension. Then it tends to become more stable. The sample size ranges from 261 to 392 while the whole size becomes 20 times bigger. This does not significantly impact the results. This experiment shows that the outcome of ProTraS depends more on the data structure than on the data size.

Time optimized

At a given iteration only a small part of the input space is modified. It is possible to avoid a lot of distance computations using the triangle inequality and a limited amount of memory space.

When a new representative in S has been selected, y * , the question is: should a given initial pattern, x, be attached to y * instead of remaining in T (y j)? In the case illustrated in Figure 3, three groups are defined and the new representative belongs to the first one.

Numerical experiments

Twenty-nine databases were used, 21 are synthetic, S1 to S21, and 8 are real world data sets, R1 to R8.

The selected data are from the data clustering repository of the computing school of Eastern Finland University2 , Finland hereafter, the UCI machine learning repository3 , UCI, the github clustering benchmark4 , clustering, or were proposed in the published literature.

Data are of various dimensions (from 2 to 10), sizes (from tiny to very large), shapes and densities. Their main characteristics and origin are summarized in Table 3.

The data were standardized to have a zero mean and a unit variance. Some synthetic data sets are plotted in Figure 4. The native versions were used in the present study.

5 The original data set, with 240 items, was enriched up to 12500 items. Each duplicated point is added a random Gaussian noise in each dimension, f ,:

x f = x f + N x f , 0.1σ f .

20

Author DBSCAN is quite tricky, unlike with k-means, for which this number is an input parameter. Using the k-means, when the number of clusters gets high, some of them may be very small, or even empty, for a given data set. In this case the range is restricted to the representative clusters.

DBSCAN is run with two parameters: the distance, d, that defines a spherical neighborhood, and the minimum number of points, minp, required to consider the data point as a core point, otherwise it is labeled as an outlier. A specific process was designed to set these two parameters in order to obtain a desirable number of clusters with a reasonable number of outliers, less than 10%.

First, DBSCAN was run on the sample with minp = max(1, 0.01n) to identify some distances that fit the above mentioned conditions. Let d init be the distance that gives 2 clusters. Then the range [0, d init] is equally divided into 1000. DBSCAN was run with all these distance parameters on the samples and on the whole sets. All the configurations that gave an acceptable number of clusters and with the proportion of outliers less than the threshold were kept.

The partitions were compared for all the pairs, one element with the sample the with the whole set, for which the difference in the number of clusters was at most 2.

As DBSCAN is computationally expensive, data was limited to 5000 to complete the test within a reasonable time. The extra items were randomly removed.

As k-means is sensitive to initialization, a given number of trials, 10 in this paper, were run for each number of clusters.

The resulting sample size as well as the computational cost were carefully studied as they have a strong impact on the practical use of the algorithm.

The CPU cost is characterized by a time ratio. As in the previous section, the RI is used to assess the quality of representation. The value reported in the following tables is the average of all experiments, number of runs and number of clusters.

The same cost, 0.1, was used for the sampling. As it is normalized by the data size, it carries the same meaning for all the data sets.

The results are summarized in Table 4: t is the whole set size, s the sample one, is thus the sampling ratio, and the RI and time ratio are reported for both algorithms.

It is interesting to see that the sampling ratio ranges from 0. % (R3) to 73% (R4). Similar values are obtained with the synthetic data: 0.4% for S5 and 70%

for S4. This highlights that there is no relationship between the cost, which is 0.1 for all the data sets, and the sample size or the sampling ratio. This is a strong asset of ProTraS : the sample size depends only on the data structure.

The sample size is limited to 1999 by the program. When this limit is reached, the real cost may be higher than the program parameter. This occurred for R1, R5 and R8. Even if the cost is not reached, the representativeness of the sample is satisfactory.

For a large number of clusters, i.e. when k tends to n, the relationship between the cost and the RI is clear. With the range studied here, however, it is not so clear. Even if the RI are usually high, some comments are in order. With the R2 data, this value is below 0.9 for the k-means. In these cases DBSCAN yields a better index. A detailed analysis of R2 experiments shows that some configurations are not stable for the k-means, given this cost (0.1) and the corresponding sample rate (about 1%). With k = 2, the mean RI is 0.76, and it is 0.77 with k = 5.

The last two columns of Table 4 report the time ratio given in percent. It is, as expected, clearly lower for DBSCAN than k-means. For the latter, sampling becomes interesting when dealing with large databases or well structured data.

In this case, the sample size is much smaller than the whole set.

Cost sensitivity

The cost plays a central role in the ProTraS algorithm. Not only is it the input parameter, it is also used to select the sample items and serves as a stopping criterion. To assess the algorithm sensitivity to the cost, 10 cost values, from 0.08 to 0.26 by steps of 0.02, were used with all the data sets. For each data set and a given cost the k-means was run 10 times with a number of clusters from 2 to 17 on the sample and the whole set. The RI was averaged over all these trials.

The results are summarized in Table 5. The first two columns report the maximum and minimum sample size over all the costs, the following two ones show the same information for the RI, and finally the differences are computed for both indicators.

The maximum size was limited to 1999 in 5 cases. In one of them, R1, it is also the minimum size, meaning that none of the cost approximations could be reached with such a limited size. For the R1 data, the differences in the RI are due only to the k-means initialization.

For 3 data sets, the difference in the sample size is higher than 1500: S14, R7 and R8. The corresponding variation for the RI is not that high.

The expected trend is that the smaller the cost, the better the representation will be, but the sample size and the RI are also determined by the data structure.

Two real data sets, R2 and R3 have a minimum RI less than 0.9. These experiments show that for a large range of distortion costs, the sample is able to well represent the whole according to the RI even with a reduced size.

This highlights the quality of the representative selection using the ProTraS algorithm.

Comparison with alternative approaches

This section focuses on the comparison between ProTraS, DENDIS, DIDES and two of the twelve methods already used to assess the relevance of DENDIS or DIDES. The two of them proved competitive regarding their computational 25

Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www.sciencedirect.com Doi: 10.1016/j.eswa.2018.03.052 cost and quality of representation. To be fair, the comparison is carried out with a same sample size, the one given by the ProTraS algorithm.

The first one, denoted AdaCor, described in [START_REF] Feldman | Scalable training of mixture models via coresets[END_REF], proposes an Efficient Coreset Construction via Adaptive Sampling. The key idea is to build an approximate solution (sample set, S) and to use it to bias the random sampling. The first step is achieved by an iterative algorithm that samples a small number of points, β, and removes half of the data set (T) closest to the sampled points. In the second step the sampling is biased with probabilities, for each point in T , which are roughly proportional to their squared distance to S.

The second approach, denoted AdaGri, combines the pioneering idea from [START_REF] Kollios | Efficient biased sampling for approximate clustering and outlier detection in large data sets[END_REF] to bias the sampling process with an adaptive grid partitioning [START_REF] Lin | Using fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural network[END_REF][START_REF] Pintore | Adaptive fuzzy partition in database mining: application to olfaction[END_REF]. At each step the densest bin (subspace) is split. The final subspace set is used to estimate the local densities f (x).

Once the local densities have been estimated, they are used to bias the sampling process as follows:

s f (x) f (x) α
where s is the desired sample size and α the bias parameter. If α = 0, the process reduces to a random sampling s n . Otherwise, if α > 0 (respectively α < 0) high density regions are sampled at a higher (lower) rate. This algorithm is sensitive to its parameters: the bias, α, the number of cuts To avoid a random effect, these two algorithms are initialized, as ProTraS, by the fft from a virtual extreme item. Only AdaCor is thus sensitive to random, the three others being deterministic. 10 samples are generated from AdaCor for each configuration. For each data set, the k-means was run 10 times with a number of clusters from 2 to 17, both on each of the samples and the whole set. The results were averaged over all these trials. The comparison is made, for the same sample size, on the running time and the quality of representation.

As the running time for DENDIS and DIDES is similar to the one of ProTraS, it is not analyzed.

Two contrasted cases were studied, corresponding to two costs: a high approximation level, 0.1, and a low one, 0.2. The results are given in Tables 6 and7.

The high approximation level yielded quite good results with ProTraS : the mean RI for the synthetic data is 0.979, it is higher than 0.95 in all cases and above 0.99 for 7 sets. For any alternative approach the result shown in the tables is computed as the ProTraS value minus the alternative corresponding one. DENDIS was better than ProTraS for S6 and S21 when an absolute value of 0.005 for the RI was used as a threshold of significance. In average, DENDIS and AdaCor performed better than DIDES and AdaGri with the synthetic data.

AdaCor proved slower than the others. For the eight real world data sets, the average quality was decreased to 0.961 for ProTraS and, in two cases, AdaCor and AdaGri did better than the proposal. The standard deviation of the RI are quite similar, ranging between 0.02 in average for ProTraS and DIDES to 0.04 for the others.

The result for the low approximation level are given in Table 6. The samples were, as expected, significantly smaller and the running time for ProTraS was half of the other one in average. The quality of representation is also decreased: only two RI for the synthetic data were higher than 0.99 and two of them are below 0.95. The difference in the averaged RI was increased for all the competitors except DIDES, which yielded a similar result to the previous experiment.

With the real data, the result of the low level approximation is confirmed: Ada-Cor gave a similar quality of representation to ProTraS, but it is much slower.

The standard deviation of the RI was also decreased by a factor 2 with respect The similarity of the results yielded by ProTraS and AdaCor is not surprising: they share the idea of tracking dense areas without forgetting the others.

In the AdaCor approach, dense areas are first covered by a biased random sampling, then the initial patterns represented by this sample are no longer considered giving more opportunity for less dense areas to be represented. ProTraS is clearly faster than AdaCor and this is more visible for large data sets (S5, S17

and most of the real world ones). The algorithm complexities are similar but the number of distance calculations is reduced in ProTraS thanks to an internal optimization.

In contrast, AdaGri may be faster than ProTraS but is outperformed by the latter. Although adaptive, the grid bins are likely to mix outliers or noisy data with more representative ones. Yet, the same bias is applied to the whole cell.

DIDES showed the worst performance for the same sample size. This was expected as the main goal of this algorithm is to ensure space coverage. DENDIS, whose aim is density representation, gave intermediate results.

To summarize, ProTraS proved to give similar, even better, results compared with AdaCor while being as fast as AdaGri, and without any post-processing step, in contrast with DENDIS or DIDES. The main characteristics of the compared algorithms are given in

Wilcoxon test

To assess how significant the differences between ProTraS and the four studied algorithms are, a Wilcoxon signed-rank test was performed on the mean RI values. The 29 synthetic and real world data sets were considered. The test was based upon the sign of the difference of the observed values, and the R Project6 implementation was used. The results are given in Table 9. For the two studied approximation levels the RI means, over the 29 data sets are reported for ProTraS and the alternative approach considered. The p-value is the probability of observing the computed statistic (not shown), given the experimental conditions, under the null hypothesis, meaning that both RI values come from a unique population, i.e. there is no difference between ProTraS and its competitor.

The Wilcoxon test clearly supports the rejection of the null hypothesis in all cases: the p-value are all below 1%. As stated before, the closest results are obtained with AdaCor for the low approximation level.

Conclusion

The sampling algorithm proposed in this paper achieves an iterative partitioning of the input space based on distance and density considerations.

At each step a new item is added to the sample set. It is chosen as the farthest from the already selected one in a given group. ProTraS is a fft-based algorithm.

It is shown in the present work that such fft algorithms yield (k, ε)-coresets.

For a given group, i, the approximation is proportional to the sampling cost, i.e. the product of the maximum within group distance, d i , and the group cardinality, w i . As these data are updated at each step of the algorithm, an upper estimate of the sampling cost is available without any additional computational effort.

ProTraS, in contrast to previous fft algorithms such as DIDES or DENDIS, aims to design a coreset. Hence, the sampling cost is given the central role.

First, it is the unique and meaningful parameter. Second, it also serves as the stopping criterion: the algorithm stops when the desired approximation level is reached. No hidden parameters or procedures are required. Finally, it is also used to guide the sampling process: at each step the new representative is added to the group with the highest probability of cost reduction. This value is the combination of two basic probabilities: one according to the within group distance, the other according to the group cardinality. The semantics are the same: the higher the distance or the cardinality, the higher the probability. The probabilistic approach in ProTraS achieves a trade-off between space coverage

 uses a fft-like algorithm: a probabilistic component is added to avoid the selection of outliers. The fft algorithm iteratively adds a new item to the sample at each loop, until a stopping criterion is met. The new representative is the farthest from the already selected ones and the stopping criterion in the original version was the sample size. The concept is summarized in Algorithm 1. Algorithm 1 Sampling algorithms: representative selection 1: Input: T = {x i }, i = 1 . . . , n 2: Output: S = {y j }, T (y j), j = 1, . . . , s 3: Select an initial pattern x init ∈ T 4: S = {y 1 = x init }, T (y 1) = {y 1 }, s = 1 5: repeat 6:

 Select the farthest pattern from the representative of the most populated group} 15: Sort y (1) , . . . , y (s) with |T y (1) | ≥ . . . ≥ |T y (s) |, x w = x max (y (1)) 16: {DIDES: Select the farthest pattern from the set of representatives} 17:

1.Figure 1 :

 1 Figure 1: ProTraS: summary of the algorithm

1:

 Input: T = {xi}, i = 1 . . . , n, ε 2: Output: S = {yj}, T (yj), j = 1, . . . , s 3: Select an initial pattern xinit ∈ T 4: S = {y1 = xinit}, s = 1, T (y1) = {y1} 5: repeat 6:

 patterns represented by y k } all y k ∈ S do 12: Find dmax(y k) = max xm∈T (y k) d(xm, y k) 13: Store dmax(y k), xmax(y k) {where dmax(y k) = d(xmax(y k), y k)} 14: p k = |T (y k)| dmax(y k) 15: if (p k > M axW D) then 16: M axW D = p k , y * = y k 17: end if 18: Cost := Cost + p k /n 19: end for 20: x * = xmax(y *) 21: S = S ∪ {x * }, s = s + 1, T (ys) = {x * } 22: Update Cost {Remove the part due to former y * and add the two new costs, induced by y * and x * } 23: until (Cost < ε)

 approximation, ε, is now a proportion of the whole normalized cost, Cost T (C) n

Figure 2 :

 2 Figure 2: The S1 data

Figure 3 :

 3 Figure 3: Optimization illustration

Figure 4 :

 4 Figure 4: Data sets S3, S17, S18, S20 and S21

 tested per axis, N cut , the maximum number of bins M ax b and the minimum number of points in a bin, Occ m . A given cost from ProTraS yields a sample size which is used as an input for the other algorithms. The relevant input parameters for AdaCor and AdaGri are similar to the ones used by the authors in the referenced papers: β = 100, α = -0.15, N cut = 2, M ax b = 200, Occ m = 5. DENDIS and DIDES are run with the granularity that yields a similar number of samples to ProTraS.

 Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www.sciencedirect.com Doi: 10.1016sciencedirect.com Doi: 10. /j.eswa.2018.03.052 .03.052

. 10

 . To update the current cost, the cost due to former y * is subtracted and the new costs, induced by y * and x * , are added. The cost is computed at each iteration without any additional computational effort.12Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www.sciencedirect.comDoi: 10.1016Doi: 10. /j.eswa.2018.03.052 .03.052

	Algorithm 2 The ProTraS algorithm

The main loop, lines 5-23, includes two for loops. The first one is described in Algorithm 1. The second loop is enriched compared to the previous version. It also computes the combined probability according to |T y k | and d max (y k) (line 14), identifies the group with the highest cost reduction probability (line 16) and updates the global cost before splitting (line 18). The new representative is the farthest-first traversal, x * , of the group with the highest probability, represented by y *

 Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www.sciencedirect.com Doi: 10.1016sciencedirect.com Doi: 10. /j.eswa.2018.03.052 .03.052

24: return Cost, S, T (yj), j = 1, . . . , s 13

14

 Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www.sciencedirect.com Doi: 10.1016sciencedirect.com Doi: 10. /j.eswa.2018.03.052 .03.052

Table 1 :

 1 Noise sensitivity: sample size and RI, on S1 data, cost = 0.1 Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www.sciencedirect.com Doi: 10.1016/j.eswa.2018.03.052

	% noise Size	s	RI
	0	3000 261 0.975
	1	3030 309 0.979
	2	3060 323 0.978
	3	3090 342 0.990
	4	3120 348 0.984
	5	3150 362 0.982
	6	3180 356 0.977
	7	3210 364 0.978
	8	3240 369 0.978
	9	3270 368 0.985
	10	3300 378 0.983
	11	3330 374 0.984
	12	3360 370 0.975
	13	3390 384 0.988
	14	3420 381 0.977
	15	3450 380 0.976
	16	3480 392 0.985
	17	3510 388 0.983
	18	3540 388 0.978
	19	3570 393 0.979
	µ		361 0.980
	σ		32	0.004
		15	

Table 2 :

 2 Data size sensitivity: sample size and RI, on S1 data, cost = 0.1

	Size	s	RI
	3000	261 0.976
	6000	309 0.973
	9000	323 0.980
	12000 342 0.977
	15000 348 0.983
	18000 354 0.970
	21000 363 0.980
	24000 357 0.981
	27000 366 0.979
	30000 369 0.980
	33000 368 0.983
	36000 377 0.984
	39000 374 0.982
	42000 381 0.983
	45000 376 0.983
	48000 382 0.985
	51000 381 0.977
	54000 380 0.976
	57000 392 0.985
	60000 388 0.986
	µ		0.980
	σ		0.004

 its representative, see Algorithm 1. In the figure, y * = y 4 is the farthest item in Group 1, x 1 , and the closest representative from y 1 is y 3 . The limits of the new group, Group 4, are plotted in dashed lines. Group 3 is reduced and x

The triangular inequality states: d(y j , y *) ≤ d(x, y j) + d(x, y *) and x would be attached to y * if d(x, y *) < d(x, y j). So, if d(y j , y *) ≥ 2 d(x, y j), x remains in T (y j). Storing the maximum within group distance, d max (y j), makes the test useless for all the items in the group if the inequality holds for the farthest from y j . That means that if d(y j , y *) ≥ 2 d max (y j) no change has to be made. This is the case for Group 2 in the upper part of the plot, the farthest item from y 2 is x 2 .

The number of patterns managed by this group level optimization increases with the sample size, as the averaged induced volume decreases. When the whole group is not managed by the previous test, only one alternative group must be considered, the closest from the one with the new representative, located at the distance d 1nn (y). The same triangle inequality applied at the pattern level provides a useful threshold. All x ∈ T (y j) with d near (x) ≤ 0.5 d(y j , y *) remain attached to T (y j). d near (x) is the distance from x to the closest element in S, i becomes the farthest element from y 3 , and it is now labeled as x 3 . Similarly, x j

Table 3 :

 3 -produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www.sciencedirect.com Doi: 10.1016/j.eswa.2018.03.052 The synthetic and real world databases

		Size Dim Name	Origin
	S1	3000	2 A.set 1	(Kärkkäinen & Fränti, 2002)
	S2	5250	2 A.set 2	(Kärkkäinen & Fränti, 2002)
	S3	7500	2 A.set 3	(Kärkkäinen & Fränti, 2002)
	S4	12000 5	2 FLAME	(Fu & Medico, 2007)
	S5	100000	2 Birch-set 3	(Zhang et al., 1997)
	S6	373	2 JAIN	(Jain & Law, 2005)
	S7	5000	2 S.sets 1	(Fränti & Virmajoki, 2006)
	S8	5000	2 S.sets 2	(Fränti & Virmajoki, 2006)
	S9	5000	2 S.sets 3	(Fränti & Virmajoki, 2006)
	S10	5000	2 S.sets 4	(Fränti & Virmajoki, 2006)
	S11	1351	2 Dim sets 1	Finland
	S12	2701	4 Dim sets 2	Finland
	S13	4051	6 Dim sets 3	Finland
	S14	5401	8 Dim sets 4	Finland
	S15	6751	10 Dim sets 5	Finland
	S16	8000	2 cluto-t8-8k	clustering
	S17	40000	2 Homemade	Fig. 4
	S18	3800	2 Homemade	Fig. 4
	S19	8000	2 t4.8k	(Karypis et al., 1999)
	S20	5500	2 Homemade	Fig. 4
	S21	12500	2 Homemade	Fig. 4
	R1	68040	9 Color moments	Finland
	R2	169308	3 Differential coordinates	(Fränti & Virmajoki, 2006)
	R3	13467	2 User Location (Finland) (Fränti & Virmajoki, 2006)
	R4	950	10 Stock	(Alcalá et al., 2010)
	R5	857357	3 Transactions90k	(Alcalá et al., 2010)
	R6	1837	3 House5	(Fränti & Virmajoki, 2006)
	R7	34112	3 House8	(Fränti & Virmajoki, 2006)
	R8	45781	3 Tamildanu	UCI

 It is computed as the sum of the sampling time and the time for clustering the sample divided by the time required to cluster the whole data.22Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www.sciencedirect.comDoi: 10.1016Doi: 10. /j.eswa.2018.03.052 .03.052

Table 4 :

 4 ProTraS with cost = 0.1 and two clustering algorithms

					RI		Time ratio (%)
		t	s	s/t k-means DBSCAN k-means DBSCAN
	S1	3000	261 0.089	0.978	0.960	122.8	1.8
	S2	5250	315 0.060	0.978	0.960	52.5	0.95
	S3	7500	341 0.046	0.972	0.975	45.1	0.6
	S4	12000	133 0.696	0.952	1.000	22.5	0.29
	S5	100000	259 0.004	0.979	1.000	25.7	0.03
	S6	373	108 0.308	0.958	0.980	178.9	18.0
	S7	5000	237 0.048	0.985	1.000	52.7	0.8
	S8	5000	327 0.066	0.981	1.000	50.0	1.1
	S9	5000	422 0.084	0.981	1.000	54.8	1.3
	S10	5000	448 0.084	0.969	1.000	56.7	1.3
	S11	1351	17 0.012	0.978	1.000	71.4	0.6
	S12	2701	17 0.007	0.997	0.980	30.6	0.6
	S13	4051	20 0.106	0.995	1.000	53.8	3.4
	S14	5401	416 0.277	0.994	0.990	152.2	8.8
	S15	6751	379 0.296	0.995	1.000	208.6	9.9
	S16	8000	303 0.061	0.993	0.980	42.3	0.08
	S17	40000	475 0.006	0.976	0.940	22.3	1.0
	S18	3800	236 0.044	0.979	1.000	38.8	0.7
	S19	8000	475 0.060	0.971	0.980	36.8	0.1
	S20	5500	253 0.060	0.971	0.980	36.8	0.1
	S21	12500	238 0.060	0.975	0.980	36.8	0.1
	R1	68040 1999 0.029	0.933	1.000	98.2	0.02
	R2	169308 1008 0.011	0.884	1.000	39.1	0.03
	R3	13467	103 0.008	0.934	1.000	27.1	0.2
	R4	950	695 0.733	0.999	1.000	210.2	60.9
	R5	857357 1999 0.020	0.991	0.985	70.2	0.004
	R6	1837 1252 0.682	0.977	1.000	312.1	51.6
	R7	34112 1672 0.049	0.982	0.970	95.5	0.3
	R8	45781 1999 0.027	0.961 24	0.950	93.1	0.05

Table 5 :

 5 Cost sensitivity, with RI for the k-means

		sMaxC sMinC RIMaxC RIMinC	∆s	∆RI
	S1	353	66	0.988	0.934	287 0.054
	S2	429	76	0.982	0.941	353 0.040
	S3	472	74	0.979	0.939	398 0.040
	S4	403	87	0.976	0.943	316 0.033
	S5	360	70	0.984	0.939	290 0.044
	S6	140	37	0.962	0.951	103 0.011
	S7	332	65	0.981	0.960	267 0.022
	S8	438	82	0.992	0.951	356 0.040
	S9	582	106	0.988	0.945	476 0.043
	S10	582	106	0.980	0.953	476 0.027
	S11	25	10	0.974	0.968	15 0.006
	S12	41	10	0.996	0.969	31 0.027
	S13	721	21	0.995	0.960	700 0.035
	S14	1999	69	0.996	0.965	1930 0.030
	S15	472	164	0.998	0.987	308 0.011
	S16	666	102	0.976	0.935	564 0.041
	S18	302	92	0.991	0.974	210 0.017
	S19	298	53	0.972	0.934	245 0.038
	S20	335	80	0.990	0.952	255 0.035
	S21	239	47	0.982	0.945	192 0.037
	R1	1999	1999	0.937	0.929	0 0.008
	R2	1446	214	0.930	0.889	1232 0.041
	R3	130	43	0.928	0.912	87 0.016
	R4	736	412	0.997	0.980	324 0.017
	R5	1999	533	0.987	0.968	1466 0.019
	R6	1369	260	0.981	0.942	1109 0.040
	R7	1999	237	0.983	0.953	1762 0.031
	R8	1999	416	0.984	0.962	1583 0.022

Table 6 :

 6 Alternative approaches: comparison for high level approximation

			ProTraS		DENDIS DIDES	AdaCor	AdaGri
		s t (ms)	RI	∆RI	∆RI	∆t	∆RI	∆t	∆RI
	S1	261	25 0.978	0.008	0.017	-17	0.018	7	0.032
	S2	315	31 0.978	0.006	0.017	-68	0.021	2	0.042
	S3	341	36 0.972	0.017	0.014	-122	0.014	1	0.035
	S4	133	46 0.952	0.005	0.019	-215	0.032	0	0.034
	S5	259	207 0.979	0.123	0.130 -2392	0.012 -152	0.050
	S6	108	11 0.959	-0.005	0.054	8	0.001	10	0.013
	S7	237	19 0.986	0.005	0.038	-62	0.011	-5	0.024
	S8	327	24 0.981	0.017	0.048	-65	0.024	-2	0.031
	S9	422	26 0.981	0.007	0.044	-68	0.014	-1	0.025
	S10	448	36 0.969	-0.001	0.016	-59	0.018	9	0.055
	S11	17	26 0.979	0.005	0.047	-68	0.013	-1	0.027
	S12	17	6 0.997	0.034	0.029	-6	0.070	-1	0.088
	S13	20	9 0.995	0.038	0.012	-26	0.020	-16	0.032
	S14	476	46 0.994	0.012	-0.002	-70	0.000	-26	0.012
	S15	379	126 0.995	-0.001	0.005	-143 -0.001	36	0.005
	S16	303	221 0.993	-0.004	0.020	-265 -0.002	-12 -0.004
	S17	475	38 0.977	0.006	0.046	-147	0.009	-9	0.045
	S18	236	98 0.979	0.055	0.119 -1682	0.043	-57	0.057
	S19	475	71 0.971	0.008	0.043	-116	0.005	23	0.023
	S20	253	27 0.971	0.022	0.097	-68	0.010	-1	0.032
	S21	238	39 0.975	-0.008	0.090	-252	0.012	-17 -0.002
	mean		55 0.979	0.017	0.043	-281	0.016	-10	0.031
	R1	1999	1204 0.929	0.014	0.019 -5133 -0.010	9	0.020
	R2	1008	329 0.925	0.054	0.042 -2824	0.033	13	0.069
	R3	103	25 0.934	0.013	0.044	-285	0.039	-29 -0.012
	R4	695	20 0.999	0.010	0.021	-6	0.001	-6	0.010
	R5	1999	609 0.990	0.030	0.120 -3892	0.010	160	0.039
	R6	1252	48 0.958	0.003	0.019	-3 -0.023	34 -0.009
	R7	1672	331 0.978	0.051	0.110 -1927	0.008	145	0.000
	R8	1999	575 0.976	0.017	0.044 -3358	0.007	164	0.048
	mean		393 0.961	0.024	0.052 -2179	0.008	61	0.021

Table 7 :

 7 Alternative approaches: comparison for low level approximation

			ProTraS		DENDIS DIDES	AdaCor	AdaGri
		s t (ms)	RI	∆RI	∆RI	∆t	∆RI	∆t	∆RI
	S1	97	19 0.938	0.009	0.002	-19	0.020	1	0.028
	S2	116	23 0.956	0.023	0.018	-57	0.036	-4	0.056
	S3	119	24 0.952	0.008	0.002	-109	0.033	-10	0.031
	S4	261	68 0.963	-0.005	0.009	-215	0.032	22	0.028
	S5	104	124 0.959	0.212	0.130 -2387	0.106 -158	0.086
	S6	56	6 0.940	0.008	0.045	4	0.011	5	0.030
	S7	96	15 0.968	0.020	0.036	-60	0.034	-11	0.040
	S8	120	15 0.962	0.032	0.035	-60	0.034	-11	0.033
	S9	155	14 0.963	0.015	0.039	-63	0.015	-14	0.033
	S10	166	16 0.956	0.039	0.077	-62	0.021	-10	0.058
	S11	15	15 0.962	0.007	0.042	-62	0.020	-11	0.028
	S12	10	6 0.967	0.090	0.100	-5	0.065	0	0.104
	S13	10	6 0.988	0.035	0.022	-29	0.252	-19	0.306
	S14	175	25 0.977	0.020	0.009	-60 -0.004	-40	0.036
	S15	175	16 0.991	0.038	0.016	-109	0.000	-69	0.007
	S16	492	36 0.993	0.002	-0.001	-198	0.006 -186 -0.003
	S17	152	20 0.949	0.012	0.027	-129	0.009	-25	0.046
	S18	116	69 0.961	0.059	0.110 -1639	0.037	-83	0.031
	S19	152	30 0.955	0.011	0.029	-118 -0.001	-15	0.076
	S20	118	25 0.965	0.022	0.093	-63	0.013	-4	0.036
	S21	83	31 0.967	-0.006	0.098	-240	0.002	-26	0.001
	mean		28 0.963	0.031	0.045	-270	0.035	-32	0.052
	R1	1999	1198 0.931	0.027	0.157 -4900	0.002	267	0.025
	R2	321	179 0.882	0.148	0.130 -2477	0.020 -125	0.104
	R3	56	20 0.891	-0.023	0.007	-281 -0.018	-34	0.005
	R4	508	13 0.997	0.005	0.022	-9	0.004	-13	0.008
	R5	809	294 0.978	0.013	0.109 -2878	0.019 -177	0.042
	R6	488	17 0.854	0.087	0.099	-14	0.002	5	0.010
	R7	396	116 0.964	0.004	0.097 -1422	0.003 -110	0.029
	R8	795	286 0.971	0.042	0.083 -2515	0.007 -162	0.037
	mean		265 0.935	0.038	0.088 -1812	0.005	-74	0.033

Table 8 .

 8 31Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www.sciencedirect.com Doi: 10.1016sciencedirect.com Doi: 10. /j.eswa.2018.03.052 .03.052

Table 8 :

 8 Comparison of the different algorithms

			Internal	Stopping		
		Input params			Cons	Pros
			params	criterion		
					Post-processing	Space
	DIDES	Granularity	Yes	Distance		
					on density	coverage
					Post-processing	Density
	DENDIS	Granularity	Yes	Density		
					on distance	representation
		β, ε or		ε or		
	AdaCor		Yes		Slow	Hybrid
		sample size		sample size		
	AdaGri	α, N cut ,	No	Based on	Tuning may	Fast
		M ax b , Occ m		input params	be difficult	
	ProTraS	ε	No	ε		Fast, ε

Table 9 :

 9 Wilcoxon signed-rank test results

	Approx level		ProTraS DENDIS DIDES AdaCor AdaGri
	high	mean	0.974	0.955	0.929	0.960	0.946
		p-value		0.00242 0.00008 0.00421 0.00005
	low	mean	0.955	0.923	0.899	0.929	0.909
		p-value		0.00632 0.00001 0.00980 0.00015

Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www.sciencedirect.com Doi: 10.1016sciencedirect.com Doi: 10. /j.eswa.2018.03.052 .03.052

https://cs.joensuu.fi/sipu/datasets/

https://archive.ics.uci.edu/ml/

https://github.com/deric/clustering-benchmark

https://r-project.org, wilcox.test function with paired=TRUE.

Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www. sciencedirect.com Doi: 10.1016sciencedirect.com Doi: 10. /j.eswa.2018.03.052 .03.052 Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76 The tests carried out on a synthetic data set already used in [START_REF] Kärkkäinen | Dynamic local search algorithm for the clustering problem[END_REF] show that ProTraS shares some properties with the previous two fft algorithms. It is robust to noise, the sample size mainly depends on the data structure instead of on the data size and it is time optimized. As the first steps of the algorithm are the most time consuming, a grid approach could really impact the process time.

Numerical experiments using 29 data sets, both synthetic and real world, show that the sample yielded by ProTraS is representative of the initial set.

For two famous clustering algorithms, k-means and DBSCAN, the partitions computed from the whole and the sample are similar. The time ratio, i.e. sampling time plus time to cluster the sample over time to cluster the whole data, proved extremely low for a smart, but costly, algorithm like DBSCAN, enhancing the usefulness of the sampling approach. Using the k-means, the interest of ProTraS is restricted to large and/or structured data sets. The sensitivity to the unique parameter showed that for a large range of distortion costs, the sample is able to accurately represent the whole according to the Rand Index, even with a reduced size. A comparison with competitors selected from previous studies showed that ProTraS yielded the best RI mean on average over all the data sets for the studied configurations. A Wilcoxon signed-rank test clearly supported the alternative hypothesis, i.e. the two RI series come from two distinct distributions, the ProTraS and the competitor ones, in all the configurations with a p-value below 1%.

The proposal could be improved to deal with a huge number of observations. Several ways could be explored or combined. To begin with, it is possible to speed up the first steps of the algorithm, using a grid. This is likely to impact the running time as the first steps are the most expensive ones. Other optimization techniques can also be envisaged such as a kd-tree implementation or a neighborhood graph.

A stratification strategy could be developed [START_REF] He | Mrdbscan: an efficient parallel density-based clustering algorithm using mapreduce[END_REF]: divide the strata, run the algorithm on each subset and combine the separate samples to

Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www. sciencedirect.com Doi: 10.1016sciencedirect.com Doi: 10. /j.eswa.2018.03.052 .03.052 yield the final result. As there is no post-processing stage, a streaming version [START_REF] Guha | Clustering data streams[END_REF] can also be imagined.

The main challenge is to deal with high dimensional data, to understand and visualize these data. The most common approaches propose a space reduction, using a feature selection or a space transform process, before sampling. These two objectives can be combined in a single optimization problem to design a system that performs a dual selection of features and patterns according to a given criterion. Some attempts are based on evolutionary algorithms [START_REF] Ros | An efficient nearest neighbor classifier[END_REF]. The proposal could be adapted to be included in such a system.

Author-produced version of the article published in Expert Systems with Applications, 2018, N°105, p. 65-76. The original publication is available at https://www. sciencedirect.com Doi: 10.1016sciencedirect.com Doi: 10. /j.eswa.2018.03.052 .03.052