Latest developments of the airGR rainfall-runoff modelling R package: new calibration procedures and other features

Olivier Delaigue, Guillaume Thirel, François Bourgin, Laurent Coron

To cite this version:

Olivier Delaigue, Guillaume Thirel, François Bourgin, Laurent Coron. Latest developments of the airGR rainfall-runoff modelling R package: new calibration procedures and other features. EGU General Assembly 2018, Apr 2018, Vienna, Austria. pp.1, 2018. hal-02607857

HAL Id: hal-02607857
https://hal.inrae.fr/hal-02607857
Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
GR is a family of lumped hydrological models designed for flow simulation at various time steps. The models are freely available in an R package called airGR (Coron et al., 2017a, 2017b). The models can easily be implemented on a set of catchments with limited data requirements.

How to use other R packages to perform parameters estimation

- Definition of the necessary function:
 - transformation of parameters to real space (available in airGR)
 - computation of the value of the performance criterion (e.g. RMSE)

\[
\text{OptimGR4J} \leftarrow \text{function(Param_Optim)}
\]

\[
\text{Param_Optim_Vre} \leftarrow \text{airGR::TransfoParam_GR4J(ParamIn = Param_Optim, Direction = "TR")}
\]

\[
\text{OutputsModel} \leftarrow \text{airGR::RunModel_GR4J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param_Optim_Vre)}
\]

\[
\text{return(OuputsCrit$CritValue)}
\]

- Definition of the lower and upper bounds of the four GR4J parameters in the transformed parameter space

\[
\text{lowerGR4J} \leftarrow \text{rep(-9.99, times = 4)}
\]

\[
\text{upperGR4J} \leftarrow \text{rep(+9.99, times = 4)}
\]

- Local optimisation:
 - Single-start (here) or multi-start approach to test the consistency of the local optimisation

\[
\text{optPORT} \leftarrow \text{stats::nlminb(start = startGR4J, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 10))}
\]

- Global optimisation:
 - Most often used when facing a complex response surface, with multiple local minima

\[
\text{optDE} \leftarrow \text{DEoptim::DEoptim(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = DEoptim::DEoptim.control(CR = 0.4, trace = 10))}
\]

- Particle Swarm Calibration algorithm

\[
\text{optPSO} \leftarrow \text{hydroPSO::hydroPSO(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = DEoptim::DEoptim.control(CR = 0.4, trace = 10))}
\]

- MA-LS-Chains calibration algorithm

\[
\text{optMA} \leftarrow \text{Rmiscchains::rmiscchains(fn = OptimGR4J, maxEval = 20000, lower = lowerGR4J, upper = upperGR4J)}
\]

Results

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>RMSE</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORT</td>
<td>257.288</td>
<td>1.012</td>
<td>88.235</td>
<td>2.208</td>
<td>0.7852</td>
<td>0.952</td>
<td></td>
</tr>
<tr>
<td>P02T</td>
<td>256.808</td>
<td>1.004</td>
<td>88.167</td>
<td>2.205</td>
<td>0.7852</td>
<td>0.792</td>
<td></td>
</tr>
<tr>
<td>P01</td>
<td>256.808</td>
<td>1.004</td>
<td>88.167</td>
<td>2.205</td>
<td>0.7852</td>
<td>0.792</td>
<td></td>
</tr>
<tr>
<td>FIT</td>
<td>256.808</td>
<td>1.004</td>
<td>88.167</td>
<td>2.205</td>
<td>0.7852</td>
<td>0.792</td>
<td></td>
</tr>
<tr>
<td>P001</td>
<td>256.808</td>
<td>1.004</td>
<td>88.167</td>
<td>2.205</td>
<td>0.7852</td>
<td>0.792</td>
<td></td>
</tr>
<tr>
<td>P002</td>
<td>256.808</td>
<td>1.004</td>
<td>88.167</td>
<td>2.205</td>
<td>0.7852</td>
<td>0.792</td>
<td></td>
</tr>
<tr>
<td>M01</td>
<td>256.808</td>
<td>1.004</td>
<td>88.167</td>
<td>2.205</td>
<td>0.7852</td>
<td>0.792</td>
<td></td>
</tr>
</tbody>
</table>

References

Download the airGR package

The airGR package is available on the Comprehensive Archive Network: https://CRAN.R-project.org/package=airGR/.