Olivier Delaigue

Guillaume Thirel

François Bourgin

Laurent Coron

Latest developments of the airGR rainfall-runoff modelling R package: new calibration procedures and other features

GR is a family of lumped hydrological models designed for flow simulation at various time steps. The models are freely available in an R package called airGR (Coron et al., 2017a(Coron et al., , 2017b)). The models can easily be implemented on a set of catchments with limited data requirements.

GR hydrological models

Designed with the objective to be as efficient as possible for flow simulation at various time steps (from hourly to interannual) Warranted complexity structures and limited data requirements Can be applied on a wide range of conditions, including snowy catchments (CemaNeige snow routine included) Main components of the airGR package Plot diagnostics example (GR4J + CemaNeige) Pot. evaporation computation (from temp.-based formula) Optimization algorithm Calibration/Validation testing procedure Criteria for model calibration and evaluation

Outputs

News since EGU 2017 -airGR 1.0.9.64 vs airGR 1.0.5.12

The Param Sets GR4J dataset was added. It contains generalist parameter sets for the GR4J model

If the calibration period is too short (< 6 months) and by consequence non representative of the catchment behaviour, a local calibration algorithm can give poor results and we recommend to use the generalist parameter sets instead Vignettes were added. They explain how to perform parameters estimation with: Differential Evolution calibration algorithm Particle Swarm calibration algorithm MA-LS-Chains calibration algorithm Bayesian MCMC framework A new airGRteaching package [START_REF] Delaigue | airGRteaching: Teaching Hydrological Modelling with the GR Rainfall-Runoff Models[END_REF] provides tools to simplify the use of the airGR hydrological package for education, including a 'Shiny' interface

Future developments

New version of CemaNeige that allows to use satellite snow cover area for calibration (Riboust et al., accepted) Parameters maps on France for GR4J, GR5J & GR6J models for ungauged bassins (Poncelet et al., submitted) How to use other R packages to perform parameters estimation Definition of the necessary function:

transformation of parameters to real space (available in airGR) computation of the value of the performance criterion (e.g. RMSE)

Results ## % latex table generated in R 3.4.2 by xtable 1.8-2 package ## % Tue Mar 27 17:21:31 2018 ## \begin{table}[ht] ## \centering ## \begin{tabular}{rlrrrr} ## \hline ## & Algo & X1 & X2 & X3 & X4 \\
Definition of the lower and upper bounds of the four GR4J parameters in the transformed parameter space

Download the airGR package

The airGR package is available on the Comprehensive Archive Network: https://CRAN.R-project.org/package=airGR/

•

 Time series of simulated flows and internal state variables • Efficiency criteria • Plot diagnostics for simulation Inputs • Precipitation and temperature time series • Streamflow time series • Catchment size and latitude • Hypsometric curve (for snow module) 01/1991 01/1992 01/1993 01/1994 01/1995 01/1996 01/1997 01/1998 01

 OptimGR4J <-function(Param_Optim) { Param_Optim_Vre <-airGR::TransfoParam_GR4J(ParamIn = Param_Optim, Direction = "TR") OutputsModel <-airGR::RunModel_GR4J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param_Optim_Vre) OutputsCrit <-airGR::ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) return(OutputsCrit$CritValue) } lowerGR4J <-rep(-9.99, times = 4) upperGR4J <-rep(+9.99, times = 4) Local optimization startGR4J <-c(4.1, 3.9, -0.9, -8.7) optPORT <-stats::nlminb(start = startGR4J, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) startGR4J <-expand.grid(data.frame(CalibOptions$StartParamDistrib)) optPORT_ <-function(x) { opt <-stats::nlminb(start = x, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) } list_opt <-apply(startGR4J, 1, optPORT_) summary(df_port) Global optimization Differential Evolution optDE <-DEoptim::DEoptim(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = DEoptim::DEoptim.control(NP = 40, trace = 10)) Particle Swarm optPSO <-hydroPSO::hydroPSO(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(write2disk = FALSE) MA-LS-Chains optMALS <-Rmalschains::malschains(fn = OptimGR4J, maxEvals = 2000, lower = lowerGR4J, upper = upperGR4J)

 OptimGR4J <-function(Param_Optim) { Param_Optim_Vre <-airGR::TransfoParam_GR4J(ParamIn = Param_Optim, Direction = "TR") OutputsModel <-airGR::RunModel_GR4J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param_Optim_Vre) OutputsCrit <-airGR::ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) return(OutputsCrit$CritValue) } lowerGR4J <-rep(-9.99, times = 4) upperGR4J <-rep(+9.99, times = 4) Local optimization startGR4J <-c(4.1, 3.9, -0.9, -8.7) optPORT <-stats::nlminb(start = startGR4J, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) startGR4J <-expand.grid(data.frame(CalibOptions$StartParamDistrib)) optPORT_ <-function(x) { opt <-stats::nlminb(start = x, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) } list_opt <-apply(startGR4J, 1, optPORT_) summary(df_port) Global optimization Differential Evolution optDE <-DEoptim::DEoptim(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = DEoptim::DEoptim.control(NP = 40, trace = 10)) Particle Swarm optPSO <-hydroPSO::hydroPSO(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(write2disk = FALSE) MA-LS-Chains optMALS <-Rmalschains::malschains(fn = OptimGR4J, maxEvals = 2000, lower = lowerGR4J, upper = upperGR4J) Results ## % latex table generated in R 3.4.2 by xtable 1.8-2 package ## % Tue Mar 27 17:21:31 2018 ## \begin{table}[ht] (here) or multi-start approach to test the consistency of the local optimisation OptimGR4J <-function(Param_Optim) { Param_Optim_Vre <-airGR::TransfoParam_GR4J(ParamIn = Param_Optim, Direction = "TR") OutputsModel <-airGR::RunModel_GR4J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param_Optim_Vre) OutputsCrit <-airGR::ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) return(OutputsCrit$CritValue) } lowerGR4J <-rep(-9.99, times = 4) upperGR4J <-rep(+9.99, times = 4) Local optimization startGR4J <-c(4.1, 3.9, -0.9, -8.7) optPORT <-stats::nlminb(start = startGR4J, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) startGR4J <-expand.grid(data.frame(CalibOptions$StartParamDistrib)) optPORT_ <-function(x) { opt <-stats::nlminb(start = x, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) } list_opt <-apply(startGR4J, 1, optPORT_) summary(df_port) Global optimization Differential Evolution optDE <-DEoptim::DEoptim(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = DEoptim::DEoptim.control(NP = 40, trace = 10)) Particle Swarm optPSO <-hydroPSO::hydroPSO(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(write2disk = FALSE) MA-LS-Chains optMALS <-Rmalschains::malschains(fn = OptimGR4J, maxEvals = 2000, lower = lowerGR4J, upper = upperGR4J) rep(-9.99, times = 4) upperGR4J <-rep(+9.99, times = 4) Local optimization startGR4J <-c(4.1, 3.9, -0.9, -8.7) optPORT <-stats::nlminb(start = startGR4J, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) startGR4J <-expand.grid(data.frame(CalibOptions$StartParamDistrib)) optPORT_ <-function(x) { opt <-stats::nlminb(start = x, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) } list_opt <-apply(startGR4J, 1, optPORT_) summary(df_port) Global optimization Differential Evolution optDE <-DEoptim::DEoptim(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = DEoptim::DEoptim.control(NP = 40, trace = 10))

 rep(-9.99, times = 4) upperGR4J <-rep(+9.99, times = 4) Local optimization startGR4J <-c(4.1, 3.9, -0.9, -8.7) optPORT <-stats::nlminb(start = startGR4J, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) startGR4J <-expand.grid(data.frame(CalibOptions$StartParamDistrib)) optPORT_ <-function(x) { opt <-stats::nlminb(start = x, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) } list_opt <-apply(startGR4J, 1, optPORT_) summary(df_port) Global optimization Differential Evolution optDE <-DEoptim::DEoptim(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = DEoptim::DEoptim.control(NP = 40, trace = 10))

 rep(-9.99, times = 4) upperGR4J <-rep(+9.99, times = 4) Local optimization startGR4J <-c(4.1, 3.9, -0.9, -8.7) optPORT <-stats::nlminb(start = startGR4J, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) startGR4J <-expand.grid(data.frame(CalibOptions$StartParamDistrib)) optPORT_ <-function(x) { opt <-stats::nlminb(start = x, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1)) } list_opt <-apply(startGR4J, 1, optPORT_) summary(df_port) Global optimization Differential Evolution optDE <-DEoptim::DEoptim(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = DEoptim::DEoptim.control(NP = 40, trace = 10))

Evolution of 3

 3 Markov chains & posterior density for each parameter

table generated

 generated

		Particle Swarm
		in R 3.4.2 by xtable 1.8-2 package
	## % Tue Mar 27 17:21:31 2018
	## \begin{table}[ht]
	## \centering
	## \begin{tabular}{rlrrrr}
	##	\hline
	## & Algo & X1 & X2 & X3 & X4 \\
	##	\hline
	## 1 & Michel & 257.00 & 1.01 & 88.20 & 2.21 \\
	##	2 & PORT & 257.00 & 1.00 & 88.20 & 2.21 \\
	##	3 & DE & 257.00 & 1.00 & 88.20 & 2.21 \\
		1

HYDRO

Olivier Delaigue <olivier.delaigue@irstea.fr> EGU General Assembly 2018 -8-13 April 2018 -Vienna (Austria) -EGU2018-13049 | HS3.1 airGR Development Team <airGR@irstea.fr>