2

Section II a detailed description of our method. We then analyze the scalability of our approach with state of the art deep nets and Spot-7 and Sentinel-2 images (Section III). We finally discuss the main advantages and limits of our approach in Section IV.

II. METHOD

A. Overview

The Orfeo ToolBox (OTB) is a library for RS image processing, built on top of an application development framework widely used in medical image processing, the Insight Toolkit (ITK) [START_REF] Yoo | Engineering and algorithm design for an image processing API: A technical report on ITK -The Insight Toolkit[END_REF]. The machine learning framework of OTB is able to process large datasets at continental scale for land mapping [START_REF] Inglada | Operational high resolution land cover map production at the country scale using satellite image time series[END_REF] and benefits from High Performance Computing (HPC) architectures like clusters [START_REF] Cresson | A generic framework for the development of geospatial processing pipelines on clusters[END_REF]. TensorFlow (TF) is a library for dataflow programming. It is a symbolic math library, and is intensively used for machine learning applications such as deep nets. It can also operate at large scale in HPC architectures like GPU. We aim to extend the existing rich machine learning framework of OTB with TF. Implementation of state of the art deep nets should be enabled with the minimum effort, and the opportunity to apply them on RS images must be granted to non-developers, namely users. The existing user-oriented machine learning framework of OTB must be preserved. We also sought the implementation of a component which can be used in a transparent way inside any OTB pipeline, to enable the combination of already implemented approaches with DL. In the following sections, we provide description of the libraries processing frameworks (Sections II B and II C). Then we introduce our low-level OTB compliant component in Section II D and our new user-oriented OTB applications in Section II E. Finally, we analyze performances of our approach with state of the art RS deep nets in Section III.

B. Libraries paradigms

This section describes the processing logic of OTB and TF.

OTB workflow

A pipeline refers to a directed graph of process objects, that can be either sources (initiating the pipeline), filters (processing the data) or mappers (typically, write a result on disk). Sources and filters can generate one or multiple data objects (e.g. image, vector). In the same way, filters and mappers consume one or multiple data objects. The architecture of OTB inherits from ITK and hides the complexity of internal mechanisms for pipeline execution, which involve several steps. Detailed description of the pipeline mechanism can be found in [START_REF] Ibez | ITK[END_REF] including figures and sequence diagram. The execution of a pipeline starts from a mapper, triggering its upstream filter(s). When a filter is triggered, information about mandatory input data (i.e. information about output data of upstream process object(s)) is also requested upstream. In this way, it is propagated back through the pipeline, from mappers to sources via filters. Once this request reach sources, data objects information are generated (e.g. image size, pixel spacing) then propagated downstream to mappers. It should be noted that filters can potentially modify these information, according to the process they implement (e.g. changing image size) which is the case with image resampling for instance. Finally, they reach the mapper, initiating the data processing. Information regarding the size of the image that will be produced, is then used by the mapper to choose a splitting strategy. The default splitting scheme is based on the system memory specification. Other strategies can be chosen, e.g. striped or tiled regions with fixed dimensions. Then, the mapper requests its input image to upstream filter(s) sequentially, region after region. The data request and generation is handled through the pipeline in the same way as for the information: once the request reaches the sources, initiating the pipeline, the requested region is produced, then processed through filters, to finally end in the mapper. The pipeline execution continues with the next image region until the entire output is generated. This mechanism, named streaming, enables the processing of very large images regardless the memory consumption of the process objects composing the pipeline.

TF workflow

TF uses symbolic programming, which distinguish definition of computations from their execution. In TF, tensors are abstraction objects of the operations and objects in the memory, simplifying manipulation regardless the computing environment (e.g. CPU or GPU). A TF model consists in operations arranged into a graph of nodes. Each node can viewed as an operation taking zero or more tensors as inputs, and producing a tensor. This data flow graph defines the operations (e.g. linear algebra operators), but the computations are performed within the so-called session. A high-level API enables the construction of TF graphs, and the session runs the graph in delegating calculations to low level, highly-optimized routines. Among tensors, we can distinguish concepts such as Placeholders, Constants and Variables. A Placeholder is a symbol hosting input data, e.g. a set of images. As its name indicates, Constants are tensors with constant values, and Variables hold non persistent values, e.g. parameters to estimate during training. Variables must be explicitly initialized, and can be saved or restored during a session along with the graph. A number of tools enable design of TF models, like the TF Python API or user-oriented software developed 3 by the TF community.

C. Flowing the pipeline

In this section, we present prerequisites for the integration of a process object that runs TF session for generic deep nets, in a OTB pipeline with RS images as data objects. In the pipeline workflow, the generation of images information and the requested regions computation by process objects, are crucial steps. We denote the spacing the physical size of a single RS image pixel. The generation of output images information includes origin, spacing, size, and additional RS metadata e.g. projection reference. Process objects must also propagate the requested regions to input images. Regarding deep nets implementation, and particularly CNNs, this process must be carefully handled. CNNs usually involve several operations, mostly including a succession of convolutions, pooling, and non-linear functions. There is also a number of deriving operators e.g. transposed convolution. Most of these operators modify the size and spacing of the result. For example, convolution can change the output image size, depending its kernel size and input padding. It can also change the spacing of the output if performed with strides, that is, the step of which is shifted the filter at each computation. Pooling operators are also a common kind of operator that modify the output size and spacing, depending of the stride and the size of the sliding window. We should note that a number of other operators change size and scale the spacing of the output.

Considering a process object implementing such operations, it must propagate requested regions of images to its inputs. In the following, we introduce a generic description of size and spacing modifications that a deep net induces in processing RS images. We name the scaling factor of a particular output of the net, the ratio between the output spacing and a reference spacing (typically one input image feeding the deep net). This parameter enables the description of any change of physical size of the pixel introduced by operators such as pooling or convolution involving non-unitary strides. In addition, each input has its own receptive field , the input space that a particular output of the net is affected by. In the same way, each output has its own expression field, the output space resulting from the receptive field. Images regions and spacing modifications induced by a TF graph are thus defined with the receptive field of inputs, and the scaling factor and expression field of outputs.

D. Running TF session in process object

We introduce a new OTB process object which internally invokes the TF engine and enforces the pipeline execution described in Section II C and hence, can seamlessly process large images. It takes one or multiple input images, and produces zero or multiple output images. The input placeholders of the TF model are fed with the input images of the process object. After the session run, computed tensors are assigned to the process object outputs. Placeholders corresponding to input images, as well as tensors corresponding to output images, are both specified as named in the TF model. The process object uses receptive field of inputs, as well as expression field and scaling factor of outputs, to propagate requested input images regions and generate information of output images. Finally, two processing modes are currently supported:

1. Patch-based
Extract and process patches independently at regular intervals. Patches sizes are equal to the receptive field sizes of inputs. For each input, a tensor with a number of elements equal to the number of patches feds the TF model.

Fully-convolutional

Unlike patch-based mode, it allows the processing of an entire requested region. For each input, a tensor composed of one single element, corresponding to the input requested region, is fed to the TF model. This mode requires that receptive fields, expression fields and scale factors are consistent with operators implemented in the TF model, input images physical spacing and alignment. Blocking artifact is avoided by computing input images regions aligned to the expression field sizes of the model, and keeping only the subset of the output corresponding to the requested output region.

E. New OTB applications

OTB applications generally implement pipelines composed of several process objects connected together. We first provide a new application dedicated to RS images sampling suited for DL. Then, using our new filter described in Section II D, we provide new applications for TF model training and serving. Finally, we introduce some new applications consisting in an assembly of multiple OTB applications. All these new applications are integrated seamlessly in the existing machine learning framework of OTB.

Sampling

The existing machine learning framework of OTB includes sample selection and extraction applications suited for geospatial data like vector layers and RS images. Multiple sampling strategies can be chosen, Author-produced version of the article published in IEEE Geoscience and Remote Sensing Letters, 2019, 16 (1), pp. 25-29 The original publication is available at https://ieeexplore.ieee.org Doi: 10.1109/LGRS.2018.2867949 with fine control of parameters. However, DL on images usually involves reference data made of patches, but the existing application performs pixel-wise sample extraction. We introduce a new application that performs patches extraction in input images, from samples positions resulting from the existing sample selection application of OTB. As we want to stick to RS images files formats, samples are concatenated in rows to form one unique big image of patches. Typically, considering a number n of sampled patches of size [S row , S col , S ch], the resulting image have a size of [n ⋅ S row , S col , S ch]. The main advantage of this technique is that pixel interleave is unchanged (typically row, column, channel), guaranteeing the efficient copy and processing.

Training

Since the high level TF API is Python, we provide a light Python environment to allow developers to build and train their models from patches images produced using our sampling application described in Section II E 1. As there is already a number of available TF models and existing user-oriented opens-source applications to create TF models, we chose not to focus it.

Our contribution for RS images deep net training is a user-oriented OTB application dedicated for training existing TF models. The application can import any existing TF model. It can restore from file model variables before the training, or save them to disk after training. Thus this application can be used either to train a particular model from scratch, or perform fine tuning depending on the variables restored. The training can be performed over one or multiple inputs given their corresponding TF placeholders names and provide usual evaluation metrics.

Model serving

We introduce a single OTB application dedicated to TF model serving, that implements a pipeline with the filter described in Section II D. It produces one output image resulting from TF model computations. As the entire pipeline implements the streaming mechanism described in Section II C, it can process one or multiple images of arbitrary sizes. The user can adjust the produced images blocks sizes, thanks to the internal OTB application architecture. This application provides a generic support for the operational deployment of trained deep nets on RS images.

Composite applications

Composite applications are OTB applications connected together. Recent studies have suggested that deep nets features can be used as input features of In the sake of demonstrating the operational aspect of our approach, we implement a composite application that reuse our model serving application (described in II E 3) as input of two existing OTB applications: the TrainIm-agesClassifier and ImagesClassifier applications respectively dedicated to train a classifier and perform an image classification.

III. EXPERIMENTS

In this section, we analyze performances of our TF model serving application. We conduct a series of experiments on two representative state of the art deep nets for RS images, the Maggiori et al. fully convolutional model [START_REF] Maggiori | High-resolution aerial image labeling with convolutional neural networks[END_REF] and the Ienco M3 data fusion model [START_REF] Ienco | Land cover classification via multitemporal spatial data by deep recurrent neural networks[END_REF]. Both perform land cover classification, but are different in terms of architecture as well as implementation. The model of Maggiori is a single-input CNN composed exclusively of convolutions, pooling and activation functions, allowing to process one image region with a single convolution. The M3 model is an hybrid CNN-RNN model that inputs time series (TS) and one VHRS image. Unlike the Maggiori model, it consumes patches of the VHRS image and one pixel stack of time series, to perform a single estimation at one only location. Table 1 RAM). The second is a server with GPU support (Intel (R) Xeon (R) CPU E5-2667 v4@3.20Ghz with 256 GB of RAM and TITAN X GPU). Libraries versions are OTB 6.7 and TF 1.7. We measure run times of our applications using the two models on both configurations, for different computed images sizes and various tile size. We presents separately the results for both models because their processing time differs largely due to the fact that M3 is more complex than the Maggiori model. Figure 1 shows that processing time is linear to the number of pixels of the produced image, regardless parameters. Very large input datasets are entirely processed thank to the streaming mechanism, even on the basic workstation with only 16Gb RAM. TF computations are benefiting strongly from the GPU support especially for image convolution, but CPU workstation processing time is reasonable with less than 24 hours for M3 (Fig. 1b) and less than 1 hour for the Maggiori model (Fig. 1a).

IV. DISCUSSION

A. Operational deep learning framework for RS images

Our first goal was to provide a generic DL framework for RS images processing. We propose a solution which takes roots in the OTB library. The original machine learning framework was enriched to embed TF for training and using deep neural networks. We introduce a new component enforcing the OTB workflow, that developers can implement in pipelines. We present a set of new applications that users without programming knowledge can operate: patches sampling, model training and serving, and also training and classification applications performing on features of any deep net exported as a TF model. Our approach is successfully applied to common RS images with two representative state of the art deep nets. Processing times measurements have shown a great scalability and also that our applications can run deep nets without restriction on dataset size and regardless hardware configuration.

B. Limits and further research

It should be noted that the presented method also has limits. The user has responsibility in providing crucial parameters to applications. In particular, receptive field, expression field and scale factor of deep nets. In future development, those parameters could be extracted from the serialized TF graph. In the same way, the memory footprint is computed within the OTB pipeline, but does not takes in account the memory consumed internally by TF during the execution of the computational graph: the user is thus responsible of fine tuning using the OTB application engine parameters.

V. CONCLUSION

This work was carried out with a view toward processing remote sensing (RS) images using deep learning (DL) techniques from the user perspective. We propose a generic framework based on Orfeo Toolbox (OTB) and TensorFlow (TF) libraries. We have successfully applied existing state of the art deep nets on common RS images using our framework and shown a good computational efficiency, without restriction on images sizes and regardless hardware configuration. Our approach enables users without coding skills to use deep nets in their RS applications, and developers to create operational RS processing pipelines benefiting from the development framework of OTB library. Our approach allows the combination of the existing OTB machine learning framework with deep nets. The integration of DL processes in high performance computing architectures is enabled thank to the heterogeneous devices supported by the used libraries. Further research could focus on improving the automatic retrieval of nets parameters and memory footprint. The source code and documentation corresponding to the implementation presented in this paper is available at [START_REF]OTBTensorflow remote module for orfeo toolbox[END_REF], and the exposed framework will be proposed as official contribution in the forthcoming releases of OTB.

Figure 1 .

 1 Figure 1. Measured processing times for different images sizes for (a) the Maggiori model (MAG17) and (b) Ienco M3 model (M3)

Table 1 .

 1 Models parameters

		Maggiori FC17	Ienco M3
	RF	80x80 (VHRS) 1x1 (TS), 25x25 (VHRS)
	EF	16x16	1x1
	Mode	Fully-conv	Patch-based
	Reference	VHRS	TS

Table 2 .

 2 Characteristics of the datasetIdProduct type Size (col × row × band) Pixel spacing

	VHRS Spot-7 PXS	24110 × 33740 × 4	1.5 meters
	TS	S2 Time series 3616 × 5060 × 592	10 meters
	algorithms like classification, leading state of the art
	results. Regarding RS image classification, OTB al-
	ready implement a number of algorithms in its classifi-
	cation application, e.g. SVM, Random Forests, boost
	classifier, decision tree classifier, gradient boosted tree
	classifier, normal Bayes classifier.

Author-produced version of the article published in IEEE Geoscience and Remote Sensing Letters, 2019, 16 (1), pp. 25-29 The original publication is available at https://ieeexplore.ieee.org Doi: 10.1109/LGRS.2018.2867949

ACKNOWLEDGMENTS

The author thanks the OTB team, Dino Ienco and Emmanuel Maggiori. This work was supported by public funds received through GEOSUD, a project (ANR-10-EQPX-20) of the Investissements d'Avenir program managed by the French National Research Agency. The author would also like to thank the reviewers for their valuable suggestions.

Author-produced version of the article published in IEEE Geoscience and Remote Sensing Letters, 2019, 16 (1), pp. 25-29 The original publication is available at https://ieeexplore.ieee.org Doi: 10.1109/LGRS.2018.2867949