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Introduction

The anaerobic digestion (AD) is a natural process in which organic material is converted into biogas in an environment without oxygen by the action of a microbial ecosystem. It is used for the treatment of waste or wastewater and has the advantage of producing methane or hydrogen under appropriate conditions. Thus, it has a high potential within the actual context of green energy development. However, its management is not easy because a number of intermediate metabolites may accumulate and lead to the destabilization of the biological reactions. To better understand and control this process, many models have been reported in the literature, cf. [1-4, 6, 8, 10, 11]. In particular, a key biological step has been described as the syntrophic relationship between acid consumers (which produce hydrogen) and hydrogen consumer (which produce methane). Indeed, in degrading the hydrogen -which is inhibiting microbial growth rate -methanogens allow their coexistence with acid producers: this fragile equilibrium has been thoroughly studied in the past years. In [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial "food chain[END_REF], a model of such a syntrophic relationship is studied. As underlined in this paper, for thermodynamic reasons propionate degradation is extremely sensitive to accumulation of hydrogen. Thus in Figure 1. The acetogenesis and the hydrogenetrophic methanogenesis phases: the fatty acids produced by the previous phase (the acidogenesis) are consumed by the acetogenic bacteria to produce the hydrogen, which is converted by the hydrogenetrophic methanogenic bacteria into methane. An excess of hydrogen in the system can inhibit the acetogenic bacteria growth. methanogenic ecosystems propionate degradation is only sustainable in the presence of hydrogenotrophic organisms. To study the syntrophy, the authors have considered a system involving precisely propionate degraders and hydrogenotrophic methanogens. The substrate/product variables are the propionate and the hydrogen (cf. Fig. 1). Using realistic parameters values for this two-step model, Xu et al. (cf. [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial "food chain[END_REF]) have shown that the introduction of maintenance terms (equivalent to mortality terms in their study) does not destabilize the positive equilibrium of the system. This result has been made generic by Sari and Harmand (cf. [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF]) in the sense they have shown that for a large class of kinetics and whatever the model parameters values, the stability of the equilibrium is maintained. However, in these studies, only one substrate input -the input substrate concentration in propionate -was considered. In reality, some hydrogen is produced by other reactions taking place in parallel of the main reactions considered in the model under interest. Thus, to deal with a more realistic situation, we incorporate the input substrate concentration in hydrogen in the model. The aim of this study is to give a comprehensive analysis of the extended model of [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF]. We describe all steady states of the model and their stability. We prove, in particular, that the existence of the steady state, corresponding to the washout of acetogenic bacteria, is possible for certain values of the operating parameters and we give necessary and sufficient conditions for its stability. To describe the qualitative behavior of the system, we determine the operating diagram of the model according to the the operating parameters. The operating diagrams can be useful to interpret experimental results. With respect to purely commensalistic systems described by [START_REF] Stephanopoulos | The dynamics of commensalism[END_REF], our model is different because of the dependence of the growth rate of microorganisms of the first step by the product of the reaction. With respect to more general models as those considered in [START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF] or [START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF], it differs in that it includes mortality terms while the latter do not.

The paper is organized as follows. In Section 2, we present the two-step model with two input substrate concentrations and we give a preliminary result on the positivity and the boundedness of the solution under general hypotheses on the growth functions. In Section 3, we give the description of the steady states and in section 4, we discuss their stability. In Section 5, we illustrate the effect of the second input substrate concentration, in designing the operating diagrams, first, with respect to the first input substrate concentration and the dilution rate and second, with respect to the second input substrate concentration and the dilution rate. In Section 6, numerical simulations with realistic growth functions are presented to illustrate our results in different cases. The technical proofs of the results are given in the Appendix A.

The model

The two-step model reads:

                     ds 0 dt = D(s in 0 -s 0 ) -µ 0 (s 0 , s 1 )x 0 , dx 0 dt = -Dx 0 + µ 0 (s 0 , s 1 )x 0 -a 0 x 0 , ds 1 dt = D(s in 1 -s 1 ) + µ 0 (s 0 , s 1 )x 0 -µ 1 (s 1 )x 1 , dx 1 dt = -Dx 1 + µ 1 (s 1 )x 1 -a 1 x 1 , (2.1) 
where s 0 and s 1 are the concentration substrates (the fatty acid and the hydrogen, respectively), introduced in the chemostat with input concentrations s in 0 and s in 1 . D is the dilution rate, x 0 and x 1 are the acetogenic bacteria and hydrogenetrophic methanogenic bacteria concentrations. This model includes the maintenance (or decay) terms a 0 x 0 and a 1 x 1 , where a 0 and a 1 are positive parameters. The functions µ 0 (., .) and µ 1 (.) are the specific growth rate of the bacteria.

The terms µ 0 (s 0 , s 1 )x 0 and µ 1 (s 1 )x 1 in the first and third equations represent the consumption of substrates s 0 and s 1 by the biomasses x 0 and x 1 , respectively. These terms in the second and fourth equations represent the growth of the biomassess x 0 and x 1 , respectively. The variables have been rescaled such that all the constant parameters were fixed to 1, see [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF] for the details.

We assume that the functions µ 0 (., .) and µ 1 (.) satisfy: H1 For all s 0 > 0 and s 1 ≥ 0, µ 0 (s 0 , s 1 ) > 0, µ 0 (0, s 1 ) = 0 and sup s0 0 µ 0 (s 0 , s 1 ) < +∞.

H2 For all s 1 > 0, µ 1 (S 1 ) > 0, µ 1 (0) = 0 and m 1 := sup

s1 0 µ 1 (s 1 ) < +∞.
H3 For all s 0 > 0 and s 1 > 0, ∂µ 0 ∂s 0 (s 0 , s 1 ) > 0 and ∂µ 0 ∂s 1 (s 0 , s 1 ) < 0.

H4 For all s 1 > 0, dµ 1 ds 1 (s 1 ) > 0.

For s 1 fixed, we denote:

m 0 (s 1 ) = sup s0 0 µ 0 (s 0 , s 1 ).
We assume that: H5 For all s 1 > 0, dm 0 ds 1 < 0.

Hypothesis H1 means that no growth can take place for species x 0 without the substrate s 0 . Hypothesis H2 means that the intermediate product s 1 is necessary for the growth of species x 1 . Hypothesis H3 means that the growth rate of species x 0 increases with the substrate s 0 but it is self-inhibited by the intermediate product s 1 . Hypothesis H4 means that the growth of species x 1 increases with intermediate product s 1 produced by species x 0 . Note that this defines a syntrophic relationship between the two species. Hypothesis H5 means that the maximal growth rate of species x 0 decreases with the substrate s 1 .

We first state the following result:

Proposition 2.1. For every non-negative initial condition, the solution of (2.1) has non-negative components and is positively bounded and thus is defined for every positive t.

The proof is given in the Appendix A.

Steady state analysis

A steady state of (2.1) is a solution of the following nonlinear algebraic system obtained by setting the right-hand sides of (2.1) equal to zero:

D(s in 0 -s 0 ) -µ 0 (s 0 , s 1 )x 0 = 0, (3.1) 
-Dx 0 + µ 0 (s 0 , s 1 )x 0 -a 0 x 0 = 0, (3.2)

D(s in 1 -s 1 ) + µ 0 (s 0 , s 1 )x 0 -µ 1 (s 1 )x 1 = 0, (3.3) 
-Dx 1 + µ 1 (s 1 )x 1 -a 1 x 1 = 0, (3.4) 
Since all state variables are concentrations, steady state E = (s 0 , x 0 , s 1 , x 1 ) exists if and only if all its components are non-negative. From equation (3.2) we deduce that:

x 0 = 0 or µ 0 (s 0 , s 1 ) = D + a 0 , and from equation (3.4) we deduce that:

x 1 = 0 or µ 1 (s 1 ) = D + a 1 .
We obtain the four equilibria: SS0: x 0 = 0, x 1 = 0, where both species are washed out. SS1: x 0 > 0, x 1 = 0, where species x 1 is washed out while x 0 survives. SS2: x 0 > 0, x 1 > 0, where both species survive. SS3: x 0 = 0, x 1 > 0, where species x 0 is washed out while x 1 survives. For the description of the steady states, we need the following notations. Since the function s 1 → µ 1 (s 1 ) is increasing, it has an inverse function y → M 1 (y), so that, for all s 1 ≥ 0 and y ∈ [0, m 1 [

s 1 = M 1 (y) ⇐⇒ y = µ 1 (s 1 ).
Let s 1 be fixed. Since the function s 0 → µ 0 (s 0 , s 1 ) is increasing, it has an inverse function y → M 0 (y, s 1 ), so that, for all s 0 , s 1 ≥ 0, and y ∈ [0, m 0 (s 1 )[ s 0 = M 0 (y, s 1 ) ⇐⇒ y = µ 0 (s 0 , s 1 ).

Then, we have the following result. Proposition 3.1. Using assumptions H1-H4, we have:

• For all y ∈ [0, m 0 (s 1 )[ and s 1 0, ∂M 0 ∂y (y, s 1 ) > 0 and ∂M 0 ∂s 1 (y, s 1 ) > 0. • For all y ∈ [0, m 1 [, dM 1 dy (y) > 0.
The proof is given in the Appendix A. Thus, we can prove the following proposition:

Proposition 3.2. Assume that assumptions H1-H4 hold. Then, (2.1) has at most four steady states:

• SS0 = s in 0 , 0, s in 1 , 0 . It always exists. • SS1 = (s 01 , x 01 , s 11 , 0)
, where s 01 is the solution of the equation:

µ 0 (s 01 , (s in 0 + s in 1 ) -s 01 ) = D + a 0 . x 01 = D D+a0 (s in 0 -s 01 ) and s 11 = (s in 0 + s in 1 ) -s 01 . It exists if and only if s in 0 > M 0 D + a 0 , s in 1 .
• SS2 = (s 02 , x 02 , s 12 , x 12 ), where

s 02 = M 0 (D + a 0 , M 1 (D + a 1 )), x 02 = D D+a0 s in 0 -s 02 , s 12 = M 1 (D + a 1 ) and x 12 = D D+a1 (s in 0 + s in 1 ) -s 02 -s 12 . It exists if and only if s in 0 > M 0 (D + a 0 , M 1 (D + a 1 )) and s in 0 + s in 1 > M 0 (D + a 0 , M 1 (D + a 1 )) + M 1 (D + a 1 ). • SS3 = s in 0 , 0, M 1 (D + a 1 ), D D+a1 s in 1 -M 1 (D + a 1 ) . It exists if and only if s in 1 > M 1 (D + a 1 ).
The proof is given in the Appendix A. With respect to [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF], a new steady state SS3 exists. Notice that, if s in 1 = 0 the condition µ 1 (s in 1 ) > a 1 is not satisfied and SS3 does not exist. In the next section, we analyse local stability of the steady states.

Stability analysis

The stability of the steady states is given by the sign of the real part of eigenvalues of the Jacobian matrix or by the Routh-Hurwitz criteria (in the case of SS2). In the following, we use the abbreviations LES for locally exponentially stable. Proposition 4.1. Assume that assumptions H1-H4 hold. Then, the local stability of steady states of (2.1) is given by:

• SS0 is LES if and only if s in 1 < M 1 (D + a 1 ) and s in 0 < M 0 D + a 0 , s in 1 . • SS1 is LES if and only if s in 0 + s in 1 < M 0 (D + a 0 , M 1 (D + a 1 )) + M 1 (D + a 1 ). • SS2 is LES if it exists. • SS3 is LES if and only if s in 0 < M 0 (D + a 0 , M 1 (D + a 1 )
). The proof is given in the Appendix A. The results of Propositions 3.2 and 4.1 are summarized in Table 1 where the functions F i , i = 0, 1, 2, are defined by:

F 0 (D) = M 0 D + a 0 , s in 1 , F 1 (D) = M 1 (D + a 1 ) + M 0 (D + a 0 , M 1 (D + a 1 )), F 2 (D) = M 0 (D + a 0 , M 1 (D + a 1 )). (4.1)
The domains of definition of the functions F i , for i = 0, 1 and 2, are given in Proposition 4.2. Notice that:

s in 1 < M 1 (D + a 1 ) ⇐⇒ D > µ 1 (s in 1 ) -a 1 .
Proposition 4.2. We have:

• F 0 is defined in [0, D 0 [, with D 0 = m 0 (s in 1 ) -a 0 . This interval is not empty if and only if a 0 < m 0 (s in 1 ). • F 1 is defined in [0, D 1 [, with D 1 = min(m 1 -a 1 , D 2 ) with D 2 is the positive solution of equation D + a 0 = m 0 (M 1 (D + a 1 )). [0, D 1 [ is not empty if and only if a 1 < m 1 and a 0 < m 0 (M 1 (a 1 )). • F 2 is defined in [0, D 2 [, D 2 exists if and only if a 0 < m 0 (M 1 (a 1 )).
The proof is given in the Appendix A.

Operating diagrams

The operating diagrams show how the system behaves when we vary the three operating parameters s in 0 , s in 1 and D. These diagrams are specially useful for the operators, to estimate in particular, for a given a triplet s in 0 , s in 1 and D, the margin of stability they have, with respect to a region of the space where the washing out of at least one biomass is stable. For a planar operating diagram, we must fix one of the three operating parameters D, s in 0 or s in 1 . In Section 5.1, we fix s in 1 and we determine the operating diagrams in the plane (s in 0 , D) and, in Section 5.2, we give the operating diagrams in the plane (s in 1 , D) with s in 0 fixed. 

s in 0 < F 0 (D) and D > µ 1 (s in 1 ) -a 1 SS1 s in 0 > F 0 (D) s in 0 + s in 1 < F 1 (D) SS2 s in 0 + s in 1 > F 1 (D) and s in 0 > F 2 (D) Stable when it exists SS3 µ 1 (s in 1 ) > a 1 and D < µ 1 (s in 1 ) -a 1 s in 0 < F 2 (D) Table 2. The cases µ 1 (s in 1 ) < a 1 . Condition Region SS0 SS1 SS2 F 0 (D) < s in 0 < F 1 (D) -s in 1 (s in 0 , D) ∈ R 1 U S s in 0 < F 0 (D) (s in 0 , D) ∈ R 2 S F 1 (D) -s in 1 < s in 0 (s in 0 , D) ∈ R 6 U U S Table 3. The cases µ 1 (s in 1 ) > a 1 . Condition Region SS0 SS1 SS2 SS3 F 0 (D) < s in 0 < F 1 (D) -s in 1 (s in 0 , D) ∈ R 1 U S D > D s in 0 < F 0 (D) (s in 0 , D) ∈ R 2 S F 1 (D) -s in 1 < s in 0 (s in 0 , D) ∈ R 6 U U S s in 0 < F 2 (D) (s in 0 , D) ∈ R 3 U S D < D F 2 (D) < s in 0 < F 0 (D) (s in 0 , D) ∈ R 4 U S U s in 0 > F 0 (D) (s in 0 , D) ∈ R 5 U U S U
5.1. Operating diagram with respect to (s in 0 , D) and s in 1 fixed

In a first step, we fix s in 1 and we illustrate the equilibria existence and stability domains in the plane (s in 0 , D). Let F 0 (D), F 1 (D) and F 2 (D) be the functions defined by (4.1). We define the curve γ 0 of equation s in 0 = F 0 (D), the curve γ 1 of equation s in 0 = F 1 (D) -s in 1 and the curve γ 2 of equation s in 0 = F 2 (D). We denote D = µ 1 (s in 1 ) -a 1 , see Table 1. These curves with the line D = D separate the operating plane (s in 0 , D) in at most six regions as shown in Figure 3, labelled R 1 , . . . , R 6 .

The results of Proposition 4.1 are summarized in the next theorem which shows the existence and local stability of the steady states SS0, . . ., SS3 in the regions R 1 , • • • , R 6 of the operating diagram, for a given s in 1 . The regions R i , i = 1, . . . , 6 of operating diagram are colored by four different colors. Each color corresponds to one and only one stable steady-state: in the region R 4 , R 5 and R 6 , SS2 exists and is stable. In R 5 , all the other steady states exist but are unstable. In the region R 4 , (respectively R 6 ), the steady-state SS1 (respectively SS3) does not exist and the other steady-states exist. Therefore these regions are all colored in the same yellow color. Similarly the region R 2 (in green) is the stability region of the washout steady-state SS0, the region R 1 (in blue) is the stability region of steady-state SS1 and R 3 (in purple) is the stability region of steady state SS3. It is useful to state the next properties on the functions F i , i = 0, 1, 2.

Lemma 5.1. We have 

• If µ 1 (s in 1 ) < a 1 then F 0 (D) < F 1 (D) -s in 1 . • If µ 1 (s in 1 ) > a 1 and D > µ 1 (s in 1 ) -a 1 then F 0 (D) < F 1 (D) -s in 1 . • If µ 1 (s in 1 ) > a 1 and D < µ 1 (s in 1 ) -a 1 then F 2 (D) < F 0 (D).
> F 3 (D) and s in 1 < F 1 (D) -F 2 (D) SS1 D3 > 0 and s in 1 < F 3 (D) s in 1 < F 1 (D) -s in 0 SS2 s in 1 > F 1 (D) -s in 0 , D1 > 0 and D < D1 Stable when it exists SS3 s in 1 > F 1 (D) -F 2 (D) D > D1
Table 5. The cases D1 < 0, D3 < 0 and 0 < D < D2 eee.

Condition Region SS0 SS3 s in 1 < F 1 (D) -F 2 (D) (s in 1 , D) ∈ R 2 S F 1 (D) -F 2 (D) < s in 1 (s in 1 , D) ∈ R 3 U S Table 6. The cases D1 < 0, D3 > 0 and 0 < D < D2 . Condition Region SS0 SS1 SS3 s in 1 < F 3 (D) (s in 1 , D) ∈ R 1 1 U S F 3 (D) < s in 1 < F 1 (D) -F 2 (D) (s in 1 , D) ∈ R 2 S F 1 (D) -F 2 (D) < s in 1 (s in 1 , D) ∈ R 3 U S
Table 7. The cases D1 > 0, D3 > 0 and 0 < D < D2 .

Conditions

Region SS0 SS1 SS2 SS3

s in 1 < F 3 (D) (s in 1 , D) ∈ R 1 1 U S D1 < D F 3 (D) < s in 1 < F 1 (D) -F 2 (D) (s in 1 , D) ∈ R 2 S F 1 (D) -F 2 (D) < s in 1 (s in 1 , D) ∈ R 3 U S F 3 (D) < s in 1 (s in 1 , D) ∈ R 4 U S U D < D1 F 1 (D) -F 2 (D) < s in 1 < F 3 (D) (s in 1 , D) ∈ R 5 U U S U F 1 (D) -s in 0 < s in 1 < F 1 (D) -F 2 (D) (s in 1 , D) ∈ R 6 U U S s in 1 < F 1 (D) -s in 0 (s in 1 , D) ∈ R 1 2 U S
For a detailed proof, see the Appendix A. We can now state the following result:

Theorem 5.2. The existence and stability properties of the system (2.1), in the plane (s in 0 , D), are summarized in the following tables:

The letter S (resp. U ) means that the corresponding equilibrium is LES (resp. unstable). The absence of letter means that the equilibrium does not exist.

The proof is given in the Appendix A. These results are essentially the same as those presented in Table 1. Notice that Table 2 is identical to the Table 2 of [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF], it corresponds to the case where the concentration s in 1 is small or equal to zero. Table 3 emerges due to the presence of s in 1 : three regions -where SS3 exists -appear. Moreover, in the regions R i , i = 1, . . . , 6, there is only one stable steady state and all other equilibria are unstable or not even exist. Table 8. Nominal parameters values for a syntrophic model of degradation of fatty acids and hydrogen by the acetogenic bacteria and methanogenic hydrogenetrophic bacteria, respectively.

Parameters

Units Nominal values Now, let s in 0 be fixed. Since the function s 1 → µ 0 (s 0 , s 1 ) is decreasing, it has a decreasing inverse function z → M 2 (s 0 , z), so that, for all s 0 , s 1 ≥ 0, and z ∈ [0, sup µ 0 (s 0 , •)[

m 0 d -1 0.52 K 0 kg COD/m 3 0.124 m 1 d -1 2.10 K 1 kg COD/m 3 0.25 K i kg COD/m 3 0.035 a 0 d -1 0.02 a 1 d -1 0.02
s 1 = M 2 (s 0 , z) ⇐⇒ z = µ 0 (s 0 , s 1 ).
We define the function:

F 3 (D) = M 2 s in 0 , D + a 0 . (5.1) 
Let D1 , if it exists, be the largest solution of F 2 (D) = s in 0 , and D2 = min(m 1 -a 1 , D 2 ), such that F 1 is defined in [0, D2 [. Let D3 the solution of F 3 (D) = 0. Since F 3 is decreasing, then D3 < 0 implies that F 3 (D) < 0. To illustrate the regions of existence and stability of the steady states in the plane (s in 1 , D), we first express the conditions of Table 1 according to s in 1 , which gives the following table: It is useful to state the next properties on the functions F i , i = 1, 2, 3.

Lemma 5.3. We assume that D2 > 0. Then, we have

• If D > D1 then F 3 (D) < F 1 (D) -F 2 (D) < F 1 (D) -s in 0 . • If D < D1 and D1 > 0 then F 1 (D) -s in 0 < F 1 (D) -F 2 (D) < F 3 (D)
. Moreover, the three curves of functions F 1 -F 2 , F 1 -s in 0 and F 3 intersect at D = D1 satisfying D3 > D1 . For a detailed proof, see the Appendix A. The regions R i , i = 1, . . . , 6 appear in the plane (s in 1 , D) as the regions delimited by the following curves : Γ 0 is the curve of the function

s in 1 = F 1 (D) -s in 0 , Γ 1 is the curve of the function s in 1 = F 1 (D) -F 2 (D)
and Γ 2 is the curve of the function s in 1 = F 3 (D). These curves with the line D = D1 separate the operating plane (s in 1 , D) in at most six regions as shown in Figure 6. We notice that the region R 1 is divided into two subregions defined as follows R 1 = R 1 1 ∪ R 1 2 . We can now state the following result:

Theorem 5.4. The existence and stability properties of the system (2.1), in the plane (s in 1 , D), are given in the following tables:

The proof is given in the Appendix A.

Simulations

The stability regions of steady states are given by the operating diagram in the plane (s in 0 , D) in Figures 234, for different values of s in 1 . For the simulations, we use the following growth functions:

µ 0 (s 0 , s 1 ) = m 0 s 0 K 0 + s 0 1 1 + s 1 /K i , µ 1 (s 1 ) = m 1 s 1 K 1 + s 1
For the operating diagrams in Figure 2, 3 and 4, we use the parameters of Table 3 of [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF] and obtained from Table 1 of [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial "food chain[END_REF], see Table 8.

The inverse functions M 1 (.) and M 0 (., s 1 ) of the functions µ 1 (.) and µ 0 (., s 1 ) can be calculated explicitly: we have 

y ∈ [0, m 1 [ → M 1 (y) = K 1 y m 1 -y , y ∈ 0, m 0 1 + s 1 /K i → M 0 (y, s 1 ) = K 0 y m0 1+s1/Ki -y .
F 0 (D) = K 0 (D + a 0 )(1 + s in 1 Ki ) m 0 -(D + a 0 )(1 + s in 1 Ki ) , F 1 (D) = K 1 (D + a 1 ) m 1 -(D + a 1 ) + K 0 (D + a 0 )(1 + M1(D+a1) Ki ) m 0 -(D + a 0 )(1 + M1(D+a1) Ki ) , F 2 (D) = K 0 (D + a 0 )(1 + M1(D+a1) Ki ) m 0 -(D + a 0 )(1 + M1(D+a1) Ki ) . (6.1) F 0 is defined if D < m 0 -a 0 (1 + s in 1 Ki ) 1 + s in 1 Ki and (m 0 -a 0 )K i a 0 ≥ s in 1 . F 1 is defined if D < m 1 -a 1 and (K i -K 1 )D 2 + ((K i -K 1 )(a 0 + a 1 ) -K i (m 1 + m 0 ))D + ((m 0 -a 0 )K i (m 1 - a 1 ) -a 0 a 1 K 1 ) > 0, F 2 is defined if (K i -K 1 )D 2 + ((K i -K 1 )(a 0 + a 1 ) -K i (m 1 + m 0 ))D + ((m 0 -a 0 )K i (m 1 -a 1 ) -a 0 a 1 K 1 ) > 0, that is to say if D ∈ [0, D2 [.
Figures 234illustrate the operating diagrams for increasing values of s in 1 . When s in 1 is small, namely s in 1 = 0.005, the most important regions are the regions R i , i = 1, 2, 6, (see Fig. 2). These regions correspond to those obtained in the case s in 1 = 0, see (Fig. 1 of [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF]). Increasing s in 1 leads to the emergence of the existence region of equilibrium SS3 R i , i = 3, 4, 5 and to the reduction of the region R 1 and R 6 , (see Figs. 3 and4). Thus, the input concentration of the second species leads to the emergence of a new region related to the new equilibrium SS3 and to changes in the size of the existence and stability regions of the other equilibria.

Including s in 1 in the model changes slightly the operating diagram of [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF]. On the first side, when s in 1 increases, D increases (it may be verified that d D ds in 1 > 0). The stability region of SS2 under the curve γ 2 remains the same (γ 2 does not depend to s in 1 ). On the other side, the stability region R 3 of SS3, which corresponds to the extinction of the first species, increases in size. When the dilution value of D is small and S 0in large, the coexistence steady-state is stable. If D large and S 0in small, then washout steady-state is stable.

The stability region of steady states are given by the operating diagram in the plane (s in 1 , D), see Figures 567, for different values of s in 0 . The function F 3 is given by:

F 3 (D) = m 0 K i s in 0 (D + a 0 )(K 0 + s in 0 ) -K i . F 3 is defined if m0Kis in 0 -a0Ki(K0+s in 0 ) Ki(K0+s in 0 )
≥ D and s in 0 ≥ a0K0 m0-a0 . When s in 0 increases, D1 increases and new regions R 4 , . . ., R 6 appear under the line D = D1 and Γ 0 . This regions correspond to the stability region of the coexistence steady state SS2. D2 = 0.24 d -1 . It does not depend on the values of s in 0 . When D1 increases the regions R 1 , R 2 and R 3 become very small, see Figure 7.

Discussion

We have considered a model of an ecosystem involving two bacteria in a chemostat where there are two resources in the input. More precisely, we have proposed a mathematical model involving a syntrophic relationship of two bacteria. For one of the populations, one resource is needed for its growth and the other is inhibitory for the other population growth. One of the populations produces as a by-product the resource that is inhibitory to itself but needed for growth by the other population.

Extending the model studied in [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF] by considering that there may have some s 1in in the influent and using a more general class of kinetics functions, we show that the qualitative behavior of the system can be significantly modified. We have highlighted the existence of a new equilibrium point corresponding to the washout of the first species and the existence of the second.

By using the operating diagram, we can show how the system behaves when we vary the three operating parameters s in 0 , s in 1 and D while varying the two others in given ranges. To plot the operating diagrams in the plan, we must fixe one of the three operating parameters s in 0 , s in 1 or D. We determine first the operating diagrams in the plane (s in 0 , D), for fixed values of s in 1 . Then, we fix s in 0 and the stability regions are described in the plane (s in 1 , D). We can also fix the dilution rate D, if needed, and give the stability regions in the plane (s in 1 , s in 0 ). For sake of brevity, we do not give this last diagram, in the present work.

The operating diagrams are divided at most into six regions, colored into four different colors corresponding to the stability regions of the four steady-states. In all cases, we have shown that, whatever the region of space considered, there exists only one locally exponentially stable steady state.

The operating diagrams can be useful to interpret experimental results. The biologists use the results of operating diagrams to know what value of operating parameters to choose for controlling the biogaz (methane or hydrogen) rate product. In particular, R 4 , R 5 and R 6 are the regions of interest for an operator (regions where the coexistence of all species is guaranteed). To optimize the process, one may now couple the informations provided by these diagrams together with plots representing the total amount of biogas produced. Then, two cases may arise: either the operator can act on the input substrate characteristics (for instance in combining several substrate deposits for instance within the framework of codigestion) or he can predict the issue of the process performance given input characteristics.

Then, if we take the derivative of equation (A.1) according to y and we use H3, we obtain: ∂M 0 ∂y (y, s 1 ) = [ ∂µ 0 ∂s 0 (M 0 (y, s 1 ), s 1 )] -1 > 0.

Now, if we take the derivative of equation (A.1) according to s 1 and we use H3, we obtain:

∂M 0 ∂s 1 (y, s 1 ) = -[ ∂µ 0 ∂s 1 (M 0 (y, s 1 ), s 1 ][ ∂µ 0 ∂s 0 (M 0 (y, s 1 ), s 1 ] -1 > 0.
Finally, from the equivalence s 1 = M 1 (y) ⇐⇒ y = µ 1 (s 1 ), we have for all y ∈ [0, m 1 [, µ 1 (M 1 (y)) = y. Taking the derivative of this equation according to y and using H4, we obtain:

dM 1 dy (y) = [ ∂µ 1 ∂s 1 (M 1 (y))] -1 > 0.
Proposition 3.1 is necessary to establish the results of Proposition 3.2.

Proof of Proposition 3.2. A steady state (s 0 , x 0 , s 1 , x 1 ) of (2.1) is a solution of the set of algebraic equations (3.1)-(3.4).

• For SS0, x 0 = 0, x 1 = 0. As a result of (3.1) and (3.3), we deduce that s 0 = s in 0 and s 1 = s in 1 . Then, SS0 = s in 0 , 0, s in 1 , 0 . It always exists. • For SS1, x 0 = 0, x 1 = 0. As a consequence of (3.2), we deduce that µ 0 (s 0 , s 1 ) = D + a 0 . We have D(s in 0 -s 0 ) = µ 0 (s 0 , s 1 )x 0 and D(s 1 -s in 1 ) = µ 0 (s 0 , s 1 )x 0 .

Hence, x 0 = D D+a0 s in 0 -s 0 and D(s in 0 -s 0 ) = D(s 1 -s in 1 ), so that s 0 + s 1 = s in 0 + s in 1 . Therefore, s 0 is a solution of equation

µ 0 (s 0 , s in 0 + s in 1 -s 0 ) = D + a 0 .
SS1 exists if and only if this equation has a solution in the interval (0, s in 0 + s in 1 ). The function

s 0 → ψ(s 0 ) = µ 0 (s 0 , s in 0 + s in 1 -s 0 )
is strictly increasing since its derivative dψ ds 0 (s 0 ) = ∂µ 0 ∂s 0 (s 0 , s 1 ) -∂µ 0 ∂s 1 (s 0 , s 1 ) is positive. Using ψ(0) = 0 and ψ(s in 0 + s in 1 ) = µ 0 (s in 0 + s in 1 , 0) we conclude that equation µ 0 (s 0 , s in 0 + s in 1 -s 0 ) = D + a 0 has a solution in the interval (0, s in 0 + s in 1 ) if and only if ψ(s in 0 + s in 1 ) = µ 0 (s in 0 + s in 1 , 0) > D + a 0 , which means that:

s in 0 + s in 1 > M 0 (D + a 0 , 0).
Now, SS1 exists if and only if all his components are strictly positive. For that, it's sufficient that s 0 < s in 0 because s in 0 < s in 0 + s in 1 . By applying ψ who is strictly increasing and by using µ 0 , we obtain: D + a 0 < µ 0 (s in 0 , s in 1 ) which is equivalent to say that:

s in 0 > M 0 (D + a 0 , s in 1 ).
Since s in 0 < s in 0 + s in 1 , using the same arguments, we obtain: µ 0 (s in 0 , s in 1 ) < µ 0 (s in 0 + s in 1 , 0). So, if

D + a 0 < µ 0 (s in 0 , s in 1 ), then, necessarily D + a 0 < µ 0 (s in 0 + s in 1 , 0).
Therefore, SS1 exists if and only if

s in 0 > M 0 (D + a 0 , s in 1 ).
Then, SS1 = (s 01 , x 01 , s 11 , 0), where s 01 is the solution of the equation:

µ 0 (s 01 , (s in 0 + s in 1 ) -s 01 ) = D + a 0 , x 01 = D D+a0 (s in 0 -s 01 ) and s 11 = (s in 0 + s in 1 ) -s 01 . It exists if and only if s in 0 > M 0 D + a 0 , s in 1 . • For SS2, x 0 = 0 et x 1 = 0.
As a consequence of (3.2) and (3.4), we deduce that s 0 and s 1 are solutions of the set of equations

µ 0 (s 0 , s 1 ) = D + a 0 , µ 1 (s 1 ) = D + a 1 .
Applying M 1 , we obtain s 1 = M 1 (D + a 1 ) and s 0 is a solution of equation µ 0 (s 0 , M 1 (D + a 1 )) = D + a 0

Applying M 0 , we obtain s 0 = M 0 (D + a 0 , M 1 (D + a 1 )). As a result of (3.1) and (3.3)

x 0 = D D + a 0 s in 0 -s 0 , x 1 = D D + a 1 s in 0 + s in 1 -s 0 -s 1 .
SS2 exists if and only if s in 0 + s in 1 > s 0 + s 1 and s in 0 > s 0 . This means that:

s in 0 + s in 1 > M 0 (D + a 0 , M 1 (D + a 1 )) + M 1 (D + a 1 ), and 
s in 0 > M 0 (D + a 0 , M 1 (D + a 1 ))).
Then, SS2 = (s 02 , x 02 , s 12 , x 12 ), where s 02 = M 0 (D + a 0 , M 1 (D + a 1 )), x 02 = D D+a0 s in 0 -s 02 , s 12 = M 1 (D + a 1 ) and x 12 = D D+a1 (s in 0 + s in 1 ) -s 02 -s 12 . It exists if and only if s in 0 > M 0 (D + a 0 , M 1 (D + a 1 )) and s in 0 + s in 1 > M 0 (D + a 0 , M 1 (D + a 1 )) + M 1 (D + a 1 ). • For SS3, x 0 = 0 et x 1 = 0. As a consequence of (3.1) and (3.4), we deduce that s 0 = s in 0 and s 1 are solution of this equation

µ 1 (s 1 ) = D + a 1 .
The function s 1 → µ 1 (s 1 ) is increasing, then we have:

µ 1 (s in 1 ) < D + a 1 ⇐⇒ s in 1 < M 1 (D + a 1 ).
Therefore, SS0 is locally exponentially stable if and only if s in 1 < M 1 (D + a 1 ) and s in 0 < M 0 D + a 0 , s in 1 .

• For SS1 = (s 01 , x 01 , s 11 , 0), where s 01 is the solution of the equation: µ 0 (s 01 , (s in 0 + s in 1 ) -s 01 ) = D + a 0 , x 01 = D D+a0 (s in 0 -s 01 ) and s 11 = (s in 0 + s in 1 ) -s 01 , the Jacobian matrix (A.2) becomes:

J =     -D -Ex 0 -D -a 0 F x 0 0 Ex 0 0 -F x 0 0 Ex 0 D + a 0 -D -F x 0 -µ 1 0 0 0 µ 1 -D -a 1     Its characteristic polynomial is: det(J -λI) = (λ -µ 1 + D + a 1 )(λ + D) λ 2 + [D + (E + F )x 0 ] λ + (D + a 0 )(E + F )x 0
Its eigenvalues are λ 1 = µ 1 -D -a 1 , λ 2 = -D and λ 3 and λ 4 are the roots of the following quadratic equation: where s 0 is the solution of µ 0 (s 0 , (s in 0 + s in 1 ) -s 0 ) = D + a 0 . Since the function s 1 → µ 1 (s 1 ) is increasing, we have the following equivalence µ 1 (s in 0 + s in 1 -s 0 ) < D + a 1 ⇐⇒ s 0 > s in 0 + s in 1 -M 1 (D + a 1 ).

λ 2 + [D + (E + F )x 0 ] λ + (D + a 0 )(E + F )x 0 = 0 Since λ 3 λ 4 = (D + a 0 )(E + F )x 0 > 0 and λ 3 + λ 4 = -[D + (E + F )x 0 ] < 0,
Since the function s 0 → ψ(s 0 ) = µ 0 s 0 , s in 0 + s in 1 -s 0 is increasing, we deduce that ψ (s 0 ) > ψ s in 0 + s in 1 -M 1 (D + a 1 ) . Since, ψ (s 0 ) = µ 0 s 0 , s in 0 + s in 1 -s 0 = D + a 0 Therefore, the condition µ 1 (s in 0 + s in 1 -s 0 ) < D + a 1 of stability of SS1 is equivalent to: D + a 0 > µ 0 s in 0 + s in 1 -M 1 (D + a 1 ), M 1 (D + a 1 ) .

Since the function s 0 → µ 0 (s 0 , M 1 (D + a 1 )) is increasing, the condition D + a 0 > µ 0 (s in 0 + s in 1 -M 1 (D + a 1 ), M 1 (D + a 1 )) is equivalent to

s in 0 + s in 1 -M 1 (D + a 1 ) < M 0 (D + a 0 , M 1 (D + a 1 )) ,
which is equivalent to s in 0 + s in 1 < M 1 (D + a 1 ) + M 0 (D + a 0 , M 1 (D + a 1 )) .

Therefore, SS1 is locally exponentially stable if and only if s in 0 + s in 1 < M 0 (D + a 0 , M 1 (D + a 1 )) + M 1 (D + a 1 ).

• For SS2 = (s 02 , x 02 , s 12 , x 12 ), where s 02 = M 0 (D + a 0 , M 1 (D + a 1 )), x 02 = D D+a0 s in 0 -s 02 , s 12 = M 1 (D + a 1 ) and x 12 = D D+a1 (s in 0 + s in 1 ) -s 02 -s 12 . At SS2, the Jacobian matrix is given by:

J =     -D -Ex 0 -D -a 0 F x 0 0 Ex 0 0 -F x 0 0 Ex 0 D + a 0 -D -F x 0 -Gx 1 -D -a 1 0 0 Gx 1 0     .
Its characteristic polynomial is:

det(J -λI) = λ 4 + f 1 λ 3 + f 2 λ 2 + f 3 λ + f 4 ,
where We use the Routh-Hurwitz criterium for the stability of SS2. Using the same arguments as Appendix D [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF], we have: f i > 0 for i = 1, . . . , 4, (A.3)

f 1 = Gx 1 + (E + F )x 0 + 2D,
f 1 f 2 -f 3 > 0, (A.4) f 1 f 2 f 3 -f 2 1 f 4 -f 2 3 > 0. (A.5)
According to (A.3), (A.4) and (A.5) the Routh-Hurwitz criteria are satisfied. Therefore, SS2 is stable if and only if x 0 = x 02 > 0 and x 1 = x 12 > 0. This means that s in 0 > M 0 (D + a 0 , M 1 (D + a 1 )) and s in 0 + s in 1 > M 0 (D + a 0 , M 1 (D + a 1 )) + M 1 (D + a 1 ). Therefore, SS2 is stable as long as it exists. • For SS3 = s in 0 , 0, M 1 (D + a 1 ), D D+a1 s in 1 -M 1 (D + a 1 ) , the Jacobian matrix (A.2) becomes

J =     -D -µ 0 0 0 0 µ 0 -D -a 0 0 0 0 µ 0 -D -Gx 1 -D -a 1 0 0 Gx 1 0     .
Its characteristic polynomial is: det(J -λI) = (-D -λ)(µ 0 -D -a 0 -λ) ([D + Gx 1 + λ] λ + (D + a 1 )Gx 1 ) .

Its eigenvalues are λ 1 = -D, λ 2 = µ 0 -D -a 0 and λ 3 and λ 4 are the roots of the following quadratic equation:

λ 2 + [D + Gx 1 ] λ + (D + a 1 )Gx 1 = 0.

Figure 2 .

 2 Figure 2. Operating diagram of the model (2.1) for s in 1 = 0.005 KgCODm -3 and D = 0.021 d -1 . The region R 2 (in green) is the stability region of the washout steady-state SS0, R 1 (in blue) is the stability region of steady-state SS1 , R 6 , R 5 and R 4 (in yellow) are the stability region of steady-state SS2 and the region R 3 (in purple) is the stability region of steady-state SS3. (the figure at right is a zoom of the bottom of the figure at left)

Figure 3 .

 3 Figure 3. Operating diagram of the model (2.1) for s in 1 = 0.03 KgCODm -3 and D = 0.205 d -1 .

Figure 4 .

 4 Figure 4. Operating diagram of the model (2.1) for s in 1 = 0.05 KgCODm -3 and D = 0.33 d -1 .

Figure 5 .

 5 Figure 5. Operating diagram of the model (2.1) for s in 0 = 0.005 KgCODm -3 .

Figure 6 .

 6 Figure 6. Operating diagram of the model (2.1) for s in 0 = 0.05 KgCODm -3 .

Figure 7 .

 7 Figure 7. Operating diagram of the model (2.1) for s in 0 = 5 KgCODm -3 .

f 2 =

 2 EGx 0 x 1 + (2D + a 0 )(E + F )x 0 + (2D + a 1 )Gx 1 + D 2 , f 3 = (2D + a 0 + a 1 )EGx 0 x 1 + D(D + a 0 )(E + F )x 0 + D(D + a 1 )Gx 1 , f 4 = (D + a 0 )(D + a 1 )EGx 0 x 1 .

Table 1 .

 1 Existence and local stability of steady states.

	Steady state	Existence condition	Stability condition
	SS0	Always exists	

Table 4 .

 4 Existence and local stability of steady states, according to s in 1 .

	Steady state	Existence condition	Stability condition
	SS0	Always exists	s in 1

  the real parts of λ 3 and λ 4 are negative. So, for being stable we must have λ 1 < 0. Therefore, SS1 is stable if and only ifµ 1 (s in 0 + s in 1 -s 0 ) < D + a 1
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Appendix A

Proof of Proposition 2.1. For all initial condition s 0 (0) 0, if it exists one first time t 0 > 0 such as s 0 (t 0 ) = 0, then we have ṡ0 (t 0 ) = Ds in 0 > 0. Therefore s 0 (t) > 0 for all t > t 0 . Since s 0 (t) 0 for all t ∈ [0, t 0 ], then s 0 (t) 0 for all t 0.

On the other hand, for all initial conditions x i (t) 0 for i = 1, 2, if it exists one first time t 0 > 0 such as x i (t 0 ) = 0, then we have ẋi (t 0 ) = 0, then x i (t) are null from this time t 0 , then x i (t) 0 for all t 0.

Finally, for all initial condition s 1 (0) 0, if it exists one first time t 0 > 0 such as s 1 (t 0 ) = 0, we obtained ṡ1 (t 0 ) = µ 0 (s 0 , 0)x 0 + Ds in 1 > 0. Therefore s 1 (t) 0 for all t > t 0 . Since s 1 (t) 0 for all t ∈ [0, t 0 ], then s 1 (t) 0 for all t 0. This proves the positivity of solutions of (2.1).

To demonstrate that all solutions of (1) are bounded, we set

We deduce that, ż D(2s in 0 + s in 1 -z). We now set

then, v -Dv. By applying Gronwall Lemma, we obtain v(t) v(0)e -Dt and consequently

We deduce that

Concequently, the solutions of (2.1) are bounded for all t 0.

Proof of Proposition 3.1. From the equivalence s 0 = M 0 (y, s 1 ) ⇐⇒ y = µ 0 (s 0 , s 1 ),

we have: for all y ∈ [0, m 0 (s 1 )[ and s 1 0, µ 0 (M 0 (y, s 1 ), s 1 ) = y. (A.1)

Applying M 1 , we obtain

As a result of (4), we have:

.

Proof of Proposition 4.1. The local stability of each steady state depends on the sign of the real parts of the eigenvalues of the corresponding Jacobian matrix. At a given steady state (s 0 , x 0 , s 1 , x 1 ), this matrix is given by:

where

The eigenvalues of (A.2) are the roots of its characteristic polynomial det(J -λI). Notice that we have used the opposite sign for the partial derivative F = -∂µ0 ∂s1 (s 0 , s 1 ), so that all constants involved in the computations become positive, which will simplify the analysis of the characteristic polynomial of (A.2).

• For SS0 = s in 0 , 0, s in 1 , 0 , the Jacobian matrix (A.2) reads

For being stable, we need λ 1 < 0 and λ 2 < 0. Therefore, SS0 is stable if and only if

and

For s 1 fixed, since the function s 0 → µ 0 (s 0 , s 1 ) is increasing, we have the following equivalence:

Since λ 3 λ 4 = (D + a 1 )Gx 1 > 0 and λ 3 + λ 4 = -(D + Gx 1 ) < 0, the real parts of λ 3 and λ 4 are negative. Therefore, SS3 is locally exponentially stable if and only if λ 2 < 0, that is to say

which is equivalent to

By the same way, F 2 is defined on [0, D 2 [ when it exists.

The idea of the proof of Theorem 5.2 is based on Lemma 5.1 and comparison between the growth functions. We first prove Lemma 5.1.

Proof of Lemma 5.1.

• If we have µ 1 (s in 1 ) < a 1 < D + a 1 then s in 1 < M 1 (D + a 1 ). M 0 is increasing with respect to the second variable then M 0 (D + a 0 , s in 1 ) < M 0 (D + a 0 , M 1 (D + a 1 )). By using s in 1 < M 1 (D + a 1 ), which is equivalent to M 1 (D + a 1 ) -s in 1 > 0, we obtain

Therefore, F 0 (D) < F 1 (D) -s in 1 , for all D > 0.

Therefore,

Then, we have

Therefore, F 2 (D) < F 0 (D), for all D > 0.

Proof of Theorem 5.2. Theorem 5.2 follows from Lemma 5.1 and the next inequalities:

Since

Finally,

Finally, we obtain

The proof of Theorem 5.4 is based on Lemma 5.3 and comparison between growth functions. We first prove Lemma 5.3.

Proof of Lemma 5.3.

In the other hand, we have M 0 (D + a 0 , M 1 (D + a 1 )) > s in 0 . Since µ 0 is increasing with respect to the first variable then D + a 0 > µ 0 (s in 0 , M 1 (D + a 1 )). M 2 is decreasing with respect to the second variable then M 2 (s in 0 , D + a 0 ) < M 1 (D + a 1 ). Finally, we obtain

• If D < D1 and D1 > 0, then F 2 (D) < F 2 ( D1 ) = s in 0 and we obtain

). M 2 is decreasing with respect to the second variable then M 2 (s in 0 , D + a 0 ) > M 1 (D + a 1 ). Finally, we obtain

This implies that F 1 -F 2 and F 1 -s in 0 intersect at the value D = D1 . On the other hand, F 2 ( D1 ) = s in 0 is equivalent to M 0 ( D1 + a 0 , M 1 ( D1 + a 1 )) = s in 0 . Then, we have µ 0 (s in 0 , M 1 ( D1 + a 1 )) = D1 + a 0 . Now, F 3 ( D1 ) = M 2 (s in 0 , D1 + a 0 ) which is equivalent to µ 0 (s in 0 , F 3 ( D1 )) = D1 + a 0 . The two last equalities lead to F 3 ( D1 ) = M 1 ( D1 + a 1 ). Thus,