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STEADY STATE ANALYSIS OF A SYNTROPHIC MODEL: THE
EFFECT OF A NEW INPUT SUBSTRATE CONCENTRATION

Y. Daoud1,2,*, N. Abdellatif1,5, T. Sari3,6 and J. Harmand4

Abstract. In this work, we are interested in a reduced and simplified model of the anaerobic diges-
tion process. We focus on the acetogenesis and hydrogenetrophic methanogenesis phases. The model
describes a syntrophic relashionship between two microbial species (the acetogenic bacteria and the
hydrogenetrophic methanogenic bacteria) with two input substrates (the fatty acids and the hydrogen)
including both decay terms and inhibition of the acetogenic bacteria growth by an excess of hydrogen
in the system. The existence and stability analysis of the steady states of the model points out the
existence of a new equilibrium point which can be stable according to the operating parameters of the
system. By means of operating diagrams, we show that, whatever the region of space considered, there
exists only one locally exponentially stable steady state.
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1. Introduction

The anaerobic digestion (AD) is a natural process in which organic material is converted into biogas
in an environment without oxygen by the action of a microbial ecosystem. It is used for the treatment
of waste or wastewater and has the advantage of producing methane or hydrogen under appropriate con-
ditions. Thus, it has a high potential within the actual context of green energy development. However,
its management is not easy because a number of intermediate metabolites may accumulate and lead to
the destabilization of the biological reactions. To better understand and control this process, many mod-
els have been reported in the literature, cf. [1–4, 6, 8, 10, 11]. In particular, a key biological step has been
described as the syntrophic relationship between acid consumers (which produce hydrogen) and hydrogen con-
sumer (which produce methane). Indeed, in degrading the hydrogen – which is inhibiting microbial growth
rate – methanogens allow their coexistence with acid producers: this fragile equilibrium has been thoroughly
studied in the past years. In [11], a model of such a syntrophic relationship is studied. As underlined in this paper,
for thermodynamic reasons propionate degradation is extremely sensitive to accumulation of hydrogen. Thus in
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Figure 1. The acetogenesis and the hydrogenetrophic methanogenesis phases: the fatty acids
produced by the previous phase (the acidogenesis) are consumed by the acetogenic bacteria
to produce the hydrogen, which is converted by the hydrogenetrophic methanogenic bacte-
ria into methane. An excess of hydrogen in the system can inhibit the acetogenic bacteria
growth.

methanogenic ecosystems propionate degradation is only sustainable in the presence of hydrogenotrophic organ-
isms. To study the syntrophy, the authors have considered a system involving precisely propionate degraders
and hydrogenotrophic methanogens. The substrate/product variables are the propionate and the hydrogen
(cf. Fig. 1).
Using realistic parameters values for this two-step model, Xu et al. (cf. [11]) have shown that the introduction of
maintenance terms (equivalent to mortality terms in their study) does not destabilize the positive equilibrium
of the system. This result has been made generic by Sari and Harmand (cf. [5]) in the sense they have shown
that for a large class of kinetics and whatever the model parameters values, the stability of the equilibrium is
maintained. However, in these studies, only one substrate input – the input substrate concentration in propionate
– was considered. In reality, some hydrogen is produced by other reactions taking place in parallel of the main
reactions considered in the model under interest. Thus, to deal with a more realistic situation, we incorporate
the input substrate concentration in hydrogen in the model. The aim of this study is to give a comprehensive
analysis of the extended model of [5]. We describe all steady states of the model and their stability. We prove,
in particular, that the existence of the steady state, corresponding to the washout of acetogenic bacteria, is
possible for certain values of the operating parameters and we give necessary and sufficient conditions for its
stability. To describe the qualitative behavior of the system, we determine the operating diagram of the model
according to the the operating parameters. The operating diagrams can be useful to interpret experimental
results. With respect to purely commensalistic systems described by [7], our model is different because of the
dependence of the growth rate of microorganisms of the first step by the product of the reaction. With respect
to more general models as those considered in [2] or [6], it differs in that it includes mortality terms while the
latter do not.

The paper is organized as follows. In Section 2, we present the two-step model with two input substrate
concentrations and we give a preliminary result on the positivity and the boundedness of the solution under
general hypotheses on the growth functions. In Section 3, we give the description of the steady states and
in section 4, we discuss their stability. In Section 5, we illustrate the effect of the second input substrate
concentration, in designing the operating diagrams, first, with respect to the first input substrate concentration
and the dilution rate and second, with respect to the second input substrate concentration and the dilution
rate. In Section 6, numerical simulations with realistic growth functions are presented to illustrate our results
in different cases. The technical proofs of the results are given in the Appendix A.
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2. The model

The two-step model reads:

ds0

dt
= D(sin0 − s0)− µ0(s0, s1)x0,

dx0

dt
= −Dx0 + µ0(s0, s1)x0 − a0x0,

ds1

dt
= D(sin1 − s1) + µ0(s0, s1)x0 − µ1(s1)x1,

dx1

dt
= −Dx1 + µ1(s1)x1 − a1x1,

(2.1)

where s0 and s1 are the concentration substrates (the fatty acid and the hydrogen, respectively), introduced
in the chemostat with input concentrations sin0 and sin1 . D is the dilution rate, x0 and x1 are the acetogenic
bacteria and hydrogenetrophic methanogenic bacteria concentrations. This model includes the maintenance (or
decay) terms a0x0 and a1x1, where a0 and a1 are positive parameters. The functions µ0(., .) and µ1(.) are the
specific growth rate of the bacteria.

The terms µ0(s0, s1)x0 and µ1(s1)x1 in the first and third equations represent the consumption of substrates
s0 and s1 by the biomasses x0 and x1, respectively. These terms in the second and fourth equations represent
the growth of the biomassess x0 and x1, respectively. The variables have been rescaled such that all the constant
parameters were fixed to 1, see [5] for the details.

We assume that the functions µ0(., .) and µ1(.) satisfy:

H1 For all s0 > 0 and s1 ≥ 0, µ0 (s0, s1) > 0, µ0 (0, s1) = 0 and sup
s0>0

µ0(s0, s1) < +∞.

H2 For all s1 > 0, µ1 (S1) > 0, µ1(0) = 0 and m1 := sup
s1>0

µ1(s1) < +∞.

H3 For all s0 > 0 and s1 > 0,
∂µ0

∂s0
(s0, s1) > 0 and

∂µ0

∂s1
(s0, s1) < 0.

H4 For all s1 > 0,
dµ1

ds1
(s1) > 0.

For s1 fixed, we denote:

m0(s1) = sup
s0>0

µ0(s0, s1).

We assume that:
H5 For all s1 > 0,

dm0

ds1
< 0.

Hypothesis H1 means that no growth can take place for species x0 without the substrate s0. Hypothesis H2
means that the intermediate product s1 is necessary for the growth of species x1. Hypothesis H3 means that
the growth rate of species x0 increases with the substrate s0 but it is self-inhibited by the intermediate product
s1. Hypothesis H4 means that the growth of species x1 increases with intermediate product s1 produced by
species x0. Note that this defines a syntrophic relationship between the two species. Hypothesis H5 means that
the maximal growth rate of species x0 decreases with the substrate s1.

We first state the following result:

Proposition 2.1. For every non-negative initial condition, the solution of (2.1) has non-negative components
and is positively bounded and thus is defined for every positive t.

The proof is given in the Appendix A.
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3. Steady state analysis

A steady state of (2.1) is a solution of the following nonlinear algebraic system obtained by setting the
right-hand sides of (2.1) equal to zero:

D(sin0 − s0)− µ0(s0, s1)x0 = 0, (3.1)

−Dx0 + µ0(s0, s1)x0 − a0x0 = 0, (3.2)

D(sin1 − s1) + µ0(s0, s1)x0 − µ1(s1)x1 = 0, (3.3)

−Dx1 + µ1(s1)x1 − a1x1 = 0, (3.4)

Since all state variables are concentrations, steady state E = (s0, x0, s1, x1) exists if and only if all its
components are non-negative. From equation (3.2) we deduce that:

x0 = 0 or µ0(s0, s1) = D + a0,

and from equation (3.4) we deduce that:

x1 = 0 or µ1(s1) = D + a1.

We obtain the four equilibria:
SS0: x0 = 0, x1 = 0, where both species are washed out.
SS1: x0 > 0, x1 = 0, where species x1 is washed out while x0 survives.
SS2: x0 > 0, x1 > 0, where both species survive.
SS3: x0 = 0, x1 > 0, where species x0 is washed out while x1 survives.
For the description of the steady states, we need the following notations. Since the function s1 7→ µ1(s1) is

increasing, it has an inverse function y 7→M1(y), so that, for all s1 ≥ 0 and y ∈ [0,m1[

s1 = M1(y)⇐⇒ y = µ1(s1).

Let s1 be fixed. Since the function s0 7→ µ0(s0, s1) is increasing, it has an inverse function y 7→M0(y, s1), so
that, for all s0, s1 ≥ 0, and y ∈ [0,m0(s1)[

s0 = M0(y, s1)⇐⇒ y = µ0(s0, s1).

Then, we have the following result.

Proposition 3.1. Using assumptions H1–H4, we have:

• For all y ∈ [0,m0(s1)[ and s1 > 0,
∂M0

∂y
(y, s1) > 0 and

∂M0

∂s1
(y, s1) > 0.

• For all y ∈ [0,m1[,
dM1

dy
(y) > 0.

The proof is given in the Appendix A. Thus, we can prove the following proposition:

Proposition 3.2. Assume that assumptions H1–H4 hold. Then, (2.1) has at most four steady states:

• SS0 =
(
sin0 , 0, s

in
1 , 0

)
. It always exists.

• SS1 = (s01, x01, s11, 0), where s01 is the solution of the equation: µ0(s01, (sin0 + sin1 )− s01) = D + a0.
x01 = D

D+a0
(sin0 − s01) and s11 = (sin0 + sin1 )− s01.

It exists if and only if sin0 > M0

(
D + a0, s

in
1

)
.
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• SS2 = (s02, x02, s12, x12), where s02 = M0 (D + a0,M1(D + a1)), x02 = D
D+a0

(
sin0 − s02

)
, s12 = M1

(D + a1) and x12 = D
D+a1

(
(sin0 + sin1 )− s02 − s12

)
.

It exists if and only if sin0 > M0 (D + a0,M1(D + a1)) and sin0 + sin1 > M0 (D + a0,M1(D + a1)) + M1

(D + a1).
• SS3 =

(
sin0 , 0,M1(D + a1), D

D+a1

(
sin1 −M1(D + a1)

))
. It exists if and only if sin1 > M1(D + a1).

The proof is given in the Appendix A. With respect to [5], a new steady state SS3 exists. Notice that, if
sin1 = 0 the condition µ1(sin1 ) > a1 is not satisfied and SS3 does not exist. In the next section, we analyse local
stability of the steady states.

4. Stability analysis

The stability of the steady states is given by the sign of the real part of eigenvalues of the Jacobian matrix or
by the Routh–Hurwitz criteria (in the case of SS2). In the following, we use the abbreviations LES for locally
exponentially stable.

Proposition 4.1. Assume that assumptions H1–H4 hold. Then, the local stability of steady states of (2.1) is
given by:

• SS0 is LES if and only if sin1 < M1(D + a1) and sin0 < M0

(
D + a0, s

in
1

)
.

• SS1 is LES if and only if sin0 + sin1 < M0 (D + a0,M1(D + a1)) +M1(D + a1).
• SS2 is LES if it exists.
• SS3 is LES if and only if sin0 < M0 (D + a0,M1(D + a1)).

The proof is given in the Appendix A. The results of Propositions 3.2 and 4.1 are summarized in Table 1
where the functions Fi, i = 0, 1, 2, are defined by:

F0(D) = M0

(
D + a0, s

in
1

)
,

F1(D) = M1(D + a1) +M0(D + a0,M1(D + a1)),
F2(D) = M0(D + a0,M1(D + a1)).

(4.1)

The domains of definition of the functions Fi, for i = 0, 1 and 2, are given in Proposition 4.2. Notice that:

sin1 < M1(D + a1)⇐⇒ D > µ1(sin1 )− a1.

Proposition 4.2. We have:
• F0 is defined in [0, D0[, with D0 = m0(sin1 )− a0. This interval is not empty if and only if a0 < m0(sin1 ).
• F1 is defined in [0, D1[, with D1 = min(m1 − a1, D2) with D2 is the positive solution of equation

D + a0 = m0(M1(D + a1)). [0, D1[ is not empty if and only if a1 < m1 and a0 < m0(M1(a1)).
• F2 is defined in [0, D2[, D2 exists if and only if a0 < m0(M1(a1)).

The proof is given in the Appendix A.

5. Operating diagrams

The operating diagrams show how the system behaves when we vary the three operating parameters sin0 , sin1
and D.

These diagrams are specially useful for the operators, to estimate in particular, for a given a triplet sin0 , sin1
and D, the margin of stability they have, with respect to a region of the space where the washing out of at
least one biomass is stable. For a planar operating diagram, we must fix one of the three operating parameters
D, sin0 or sin1 . In Section 5.1, we fix sin1 and we determine the operating diagrams in the plane (sin0 , D) and, in
Section 5.2, we give the operating diagrams in the plane (sin1 , D) with sin0 fixed.
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Table 1. Existence and local stability of steady states.

Steady state Existence condition Stability condition

SS0 Always exists sin0 < F0(D) and D > µ1(sin1 )− a1

SS1 sin0 > F0(D) sin0 + sin1 < F1(D)
SS2 sin0 + sin1 > F1(D) and sin0 > F2(D) Stable when it exists
SS3 µ1(sin1 ) > a1 and D < µ1(sin1 )− a1 sin0 < F2(D)

Table 2. The cases µ1(sin1 ) < a1.

Condition Region SS0 SS1 SS2

F0(D) < sin0 < F1(D)− sin1 (sin0 , D) ∈ R1 U S
sin0 < F0(D) (sin0 , D) ∈ R2 S

F1(D)− sin1 < sin0 (sin0 , D) ∈ R6 U U S

Table 3. The cases µ1(sin1 ) > a1.

Condition Region SS0 SS1 SS2 SS3

F0(D) < sin0 < F1(D)− sin1 (sin0 , D) ∈ R1 U S
D > D sin0 < F0(D) (sin0 , D) ∈ R2 S

F1(D)− sin1 < sin0 (sin0 , D) ∈ R6 U U S
sin0 < F2(D) (sin0 , D) ∈ R3 U S

D < D F2(D) < sin0 < F0(D) (sin0 , D) ∈ R4 U S U
sin0 > F0(D) (sin0 , D) ∈ R5 U U S U

5.1. Operating diagram with respect to (sin0 , D) and sin1 fixed

In a first step, we fix sin1 and we illustrate the equilibria existence and stability domains in the plane (sin0 , D).
Let F0(D), F1(D) and F2(D) be the functions defined by (4.1). We define the curve γ0 of equation sin0 =
F0(D), the curve γ1 of equation sin0 = F1(D) − sin1 and the curve γ2 of equation sin0 = F2(D). We denote
D = µ1(sin1 )− a1, see Table 1.

These curves with the line D = D separate the operating plane (sin0 , D) in at most six regions as shown in
Figure 3, labelled R1, . . . , R6.

The results of Proposition 4.1 are summarized in the next theorem which shows the existence and local
stability of the steady states SS0, . . ., SS3 in the regions R1, · · · , R6 of the operating diagram, for a given sin1 .
The regions Ri, i = 1, . . . , 6 of operating diagram are colored by four different colors. Each color corresponds to
one and only one stable steady-state: in the region R4, R5 and R6, SS2 exists and is stable. In R5, all the other
steady states exist but are unstable. In the region R4, (respectively R6), the steady-state SS1 (respectively SS3)
does not exist and the other steady-states exist. Therefore these regions are all colored in the same yellow color.
Similarly the region R2 (in green) is the stability region of the washout steady-state SS0, the region R1 (in
blue) is the stability region of steady-state SS1 and R3 (in purple) is the stability region of steady state SS3. It
is useful to state the next properties on the functions Fi, i = 0, 1, 2.

Lemma 5.1. We have

• If µ1(sin1 ) < a1 then F0(D) < F1(D)− sin1 .
• If µ1(sin1 ) > a1 and D > µ1(sin1 )− a1 then F0(D) < F1(D)− sin1 .
• If µ1(sin1 ) > a1 and D < µ1(sin1 )− a1 then F2(D) < F0(D).
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Table 4. Existence and local stability of steady states, according to sin1 .

Steady state Existence condition Stability condition

SS0 Always exists sin1 > F3(D) and sin1 < F1(D)− F2(D)
SS1 D̄3 > 0 and sin1 < F3(D) sin1 < F1(D)− sin0
SS2 sin1 > F1(D)− sin0 , D̄1 > 0 and D < D̄1 Stable when it exists
SS3 sin1 > F1(D)− F2(D) D > D̄1

Table 5. The cases D̄1 < 0, D̄3 < 0 and 0 < D < D̄2eee.

Condition Region SS0 SS3

sin1 < F1(D)− F2(D) (sin1 , D) ∈ R2 S
F1(D)− F2(D) < sin1 (sin1 , D) ∈ R3 U S

Table 6. The cases D̄1 < 0, D̄3 > 0 and 0 < D < D̄2.

Condition Region SS0 SS1 SS3

sin1 < F3(D) (sin1 , D) ∈ R1
1 U S

F3(D) < sin1 < F1(D)− F2(D) (sin1 , D) ∈ R2 S
F1(D)− F2(D) < sin1 (sin1 , D) ∈ R3 U S

Table 7. The cases D̄1 > 0, D̄3 > 0 and 0 < D < D̄2.

Conditions Region SS0 SS1 SS2 SS3

sin1 < F3(D) (sin1 , D) ∈ R1
1 U S

D̄1 < D F3(D) < sin1 < F1(D)− F2(D) (sin1 , D) ∈ R2 S
F1(D)− F2(D) < sin1 (sin1 , D) ∈ R3 U S

F3(D) < sin1 (sin1 , D) ∈ R4 U S U
D < D̄1 F1(D)− F2(D) < sin1 < F3(D) (sin1 , D) ∈ R5 U U S U

F1(D)− sin0 < sin1 < F1(D)− F2(D) (sin1 , D) ∈ R6 U U S
sin1 < F1(D)− sin0 (sin1 , D) ∈ R1

2 U S

For a detailed proof, see the Appendix A. We can now state the following result:

Theorem 5.2. The existence and stability properties of the system (2.1), in the plane (sin0 , D), are summarized
in the following tables:

The letter S (resp. U) means that the corresponding equilibrium is LES (resp. unstable). The absence of letter
means that the equilibrium does not exist.

The proof is given in the Appendix A.
These results are essentially the same as those presented in Table 1. Notice that Table 2 is identical to the

Table 2 of [5], it corresponds to the case where the concentration sin1 is small or equal to zero. Table 3 emerges
due to the presence of sin1 : three regions – where SS3 exists – appear. Moreover, in the regions Ri, i = 1, . . . , 6,
there is only one stable steady state and all other equilibria are unstable or not even exist.
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Table 8. Nominal parameters values for a syntrophic model of degradation of fatty acids and
hydrogen by the acetogenic bacteria and methanogenic hydrogenetrophic bacteria, respectively.

Parameters Units Nominal values

m0 d−1 0.52
K0 kg COD/m3 0.124
m1 d−1 2.10
K1 kg COD/m3 0.25
Ki kg COD/m3 0.035
a0 d−1 0.02
a1 d−1 0.02

Figure 2. Operating diagram of the model (2.1) for sin1 = 0.005 KgCODm−3 and D =
0.021 d−1. The region R2 (in green) is the stability region of the washout steady-state SS0,
R1 (in blue) is the stability region of steady-state SS1 , R6, R5 and R4 (in yellow) are the
stability region of steady-state SS2 and the region R3 (in purple) is the stability region of
steady-state SS3. (the figure at right is a zoom of the bottom of the figure at left)

5.2. Operating diagram with respect to (sin1 , D) and sin0 fixed

Now, let sin0 be fixed. Since the function s1 7→ µ0(s0, s1) is decreasing, it has a decreasing inverse function
z 7→M2(s0, z), so that, for all s0, s1 ≥ 0, and z ∈ [0, supµ0(s0, ·)[

s1 = M2(s0, z)⇐⇒ z = µ0(s0, s1).

We define the function:

F3(D) = M2

(
sin0 , D + a0

)
. (5.1)

Let D̄1, if it exists, be the largest solution of F2(D) = sin0 , and D̄2 = min(m1−a1, D2), such that F1 is defined
in [0, D̄2[. Let D̄3 the solution of F3(D) = 0. Since F3 is decreasing, then D̄3 < 0 implies that F3(D) < 0.
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Figure 3. Operating diagram of the model (2.1) for sin1 = 0.03 KgCODm−3 and D =
0.205 d−1.

Figure 4. Operating diagram of the model (2.1) for sin1 = 0.05 KgCODm−3 and D = 0.33 d−1.

To illustrate the regions of existence and stability of the steady states in the plane (sin1 , D), we first express
the conditions of Table 1 according to sin1 , which gives the following table:

It is useful to state the next properties on the functions Fi, i = 1, 2, 3.

Lemma 5.3. We assume that D̄2 > 0. Then, we have

• If D > D̄1 then F3(D) < F1(D)− F2(D) < F1(D)− sin0 .
• If D < D̄1 and D̄1 > 0 then F1(D) − sin0 < F1(D) − F2(D) < F3(D). Moreover, the three curves of

functions F1 − F2, F1 − sin0 and F3 intersect at D = D̄1 satisfying D̄3 > D̄1.
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Figure 5. Operating diagram of the model (2.1) for sin0 = 0.005 KgCODm−3.

For a detailed proof, see the Appendix A.
The regions Ri, i = 1, . . . , 6 appear in the plane (sin1 , D) as the regions delimited by the following curves : Γ0

is the curve of the function sin1 = F1(D)− sin0 , Γ1 is the curve of the function sin1 = F1(D)− F2(D) and Γ2 is
the curve of the function sin1 = F3(D). These curves with the line D = D̄1 separate the operating plane (sin1 , D)
in at most six regions as shown in Figure 6. We notice that the region R1 is divided into two subregions defined
as follows R1 = R1

1 ∪R1
2.

We can now state the following result:

Theorem 5.4. The existence and stability properties of the system (2.1), in the plane (sin1 , D), are given in the
following tables:

The proof is given in the Appendix A.

6. Simulations

The stability regions of steady states are given by the operating diagram in the plane (sin0 , D) in Figures 2–4,
for different values of sin1 . For the simulations, we use the following growth functions:

µ0 (s0, s1) =
m0s0

K0 + s0

1
1 + s1/Ki

, µ1 (s1) =
m1s1

K1 + s1

For the operating diagrams in Figure 2, 3 and 4, we use the parameters of Table 3 of [5] and obtained from
Table 1 of [11], see Table 8.

The inverse functions M1(.) and M0(., s1) of the functions µ1(.) and µ0(., s1) can be calculated explicitly: we
have

y ∈ [0,m1[7→M1(y) =
K1y

m1 − y
,

y ∈
[
0,

m0

1 + s1/Ki

[
7→M0(y, s1) =

K0y
m0

1+s1/Ki
− y

.
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Figure 6. Operating diagram of the model (2.1) for sin0 = 0.05 KgCODm−3.

Figure 7. Operating diagram of the model (2.1) for sin0 = 5 KgCODm−3.

The functions F0(D) , F1(D) and F2(D) are given explicitly by

F0(D) =
K0(D + a0)(1 + sin1

Ki
)

m0 − (D + a0)(1 + sin1
Ki

)
,

F1 (D) =
K1(D + a1)
m1 − (D + a1)

+
K0(D + a0)(1 + M1(D+a1)

Ki
)

m0 − (D + a0)(1 + M1(D+a1)
Ki

)
,

F2 (D) =
K0(D + a0)(1 + M1(D+a1)

Ki
)

m0 − (D + a0)(1 + M1(D+a1)
Ki

)
.

(6.1)
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F0 is defined if D <
m0 − a0(1 + sin1

Ki
)

1 + sin1
Ki

and
(m0 − a0)Ki

a0
≥ sin1 .

F1 is defined if D < m1− a1 and (Ki−K1)D2 + ((Ki−K1)(a0 + a1)−Ki(m1 +m0))D+ ((m0− a0)Ki(m1−
a1)− a0a1K1) > 0,

F2 is defined if (Ki−K1)D2 +((Ki−K1)(a0 +a1)−Ki(m1 +m0))D+((m0−a0)Ki(m1−a1)−a0a1K1) > 0,

that is to say if D ∈ [0, D̄2[.
Figures 2–4 illustrate the operating diagrams for increasing values of sin1 . When sin1 is small, namely sin1 =

0.005, the most important regions are the regions Ri, i = 1, 2, 6, (see Fig. 2). These regions correspond to those
obtained in the case sin1 = 0, see (Fig. 1 of [5]). Increasing sin1 leads to the emergence of the existence region
of equilibrium SS3 Ri, i = 3, 4, 5 and to the reduction of the region R1 and R6, (see Figs. 3 and 4). Thus, the
input concentration of the second species leads to the emergence of a new region related to the new equilibrium
SS3 and to changes in the size of the existence and stability regions of the other equilibria.

Including sin1 in the model changes slightly the operating diagram of [5]. On the first side, when sin1 increases,
D̄ increases (it may be verified that dD̄

dsin1
> 0). The stability region of SS2 under the curve γ2 remains the

same (γ2 does not depend to sin1 ). On the other side, the stability region R3 of SS3, which corresponds to
the extinction of the first species, increases in size. When the dilution value of D is small and S0in large, the
coexistence steady-state is stable. If D large and S0in small, then washout steady-state is stable.

The stability region of steady states are given by the operating diagram in the plane (sin1 , D), see Figures 5–7,
for different values of sin0 . The function F3 is given by:

F3(D) =
m0Kis

in
0

(D + a0)(K0 + sin0 )
−Ki.

F3 is defined if m0Kis
in
0 −a0Ki(K0+sin0 )

Ki(K0+sin0 )
≥ D and sin0 ≥ a0K0

m0−a0
.

When sin0 increases, D̄1 increases and new regions R4, . . ., R6 appear under the line D = D̄1 and Γ0. This
regions correspond to the stability region of the coexistence steady state SS2. D̄2 = 0.24 d−1. It does not depend
on the values of sin0 . When D̄1 increases the regions R1, R2 and R3 become very small, see Figure 7.

7. Discussion

We have considered a model of an ecosystem involving two bacteria in a chemostat where there are two
resources in the input. More precisely, we have proposed a mathematical model involving a syntrophic relation-
ship of two bacteria. For one of the populations, one resource is needed for its growth and the other is inhibitory
for the other population growth. One of the populations produces as a by-product the resource that is inhibitory
to itself but needed for growth by the other population.

Extending the model studied in [5] by considering that there may have some s1in in the influent and using a
more general class of kinetics functions, we show that the qualitative behavior of the system can be significantly
modified. We have highlighted the existence of a new equilibrium point corresponding to the washout of the
first species and the existence of the second.

By using the operating diagram, we can show how the system behaves when we vary the three operating
parameters sin0 , sin1 and D while varying the two others in given ranges. To plot the operating diagrams in
the plan, we must fixe one of the three operating parameters sin0 , sin1 or D. We determine first the operating
diagrams in the plane (sin0 , D), for fixed values of sin1 . Then, we fix sin0 and the stability regions are described
in the plane (sin1 , D). We can also fix the dilution rate D, if needed, and give the stability regions in the plane
(sin1 , s

in
0 ). For sake of brevity, we do not give this last diagram, in the present work.
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The operating diagrams are divided at most into six regions, colored into four different colors corresponding
to the stability regions of the four steady-states. In all cases, we have shown that, whatever the region of space
considered, there exists only one locally exponentially stable steady state.

The operating diagrams can be useful to interpret experimental results. The biologists use the results of
operating diagrams to know what value of operating parameters to choose for controlling the biogaz (methane
or hydrogen) rate product. In particular, R4, R5 and R6 are the regions of interest for an operator (regions
where the coexistence of all species is guaranteed). To optimize the process, one may now couple the informations
provided by these diagrams together with plots representing the total amount of biogas produced. Then, two
cases may arise: either the operator can act on the input substrate characteristics (for instance in combining
several substrate deposits for instance within the framework of codigestion) or he can predict the issue of the
process performance given input characteristics.

Appendix A

Proof of Proposition 2.1. For all initial condition s0(0) > 0, if it exists one first time t0 > 0 such as s0(t0) = 0,
then we have ṡ0(t0) = Dsin0 > 0. Therefore s0(t) > 0 for all t > t0. Since s0(t) > 0 for all t ∈ [0, t0], then
s0(t) > 0 for all t > 0.

On the other hand, for all initial conditions xi(t) > 0 for i = 1, 2, if it exists one first time t0 > 0 such as
xi(t0) = 0, then we have ẋi(t0) = 0, then xi(t) are null from this time t0, then xi(t) > 0 for all t > 0.

Finally, for all initial condition s1(0) > 0, if it exists one first time t0 > 0 such as s1(t0) = 0, we obtained
ṡ1(t0) = µ0(s0, 0)x0 +Dsin1 > 0. Therefore s1(t) > 0 for all t > t0. Since s1(t) > 0 for all t ∈ [0, t0], then s1(t) > 0
for all t > 0.

This proves the positivity of solutions of (2.1).
To demonstrate that all solutions of (1) are bounded, we set z = 2s0 + x0 + s1 + x1

then

ż = D(2sin0 + sin1 − z)− a0x0 − a1x1.

We deduce that, ż 6 D(2sin0 + sin1 − z). We now set

v = z − 2sin0 − sin1 ,

then, v̇ 6 −Dv. By applying Gronwall Lemma, we obtain v(t) 6 v(0)e−Dt and consequently

z(t) 6 (2sin0 + sin1 ) + (−2sin0 − sin1 + z(0))e−Dt, for all t > 0.

We deduce that

z(t) 6 max(z(0), 2sin0 + sin1 ) for all t > 0.

Concequently, the solutions of (2.1) are bounded for all t > 0.

Proof of Proposition 3.1. From the equivalence

s0 = M0(y, s1)⇐⇒ y = µ0(s0, s1),

we have:

for all y ∈ [0,m0(s1)[ and s1 > 0, µ0(M0(y, s1), s1) = y. (A.1)



14 Y. DAOUD ET AL.

Then, if we take the derivative of equation (A.1) according to y and we use H3, we obtain:

∂M0

∂y
(y, s1) = [

∂µ0

∂s0
(M0(y, s1), s1)]−1 > 0.

Now, if we take the derivative of equation (A.1) according to s1 and we use H3, we obtain:

∂M0

∂s1
(y, s1) = −[

∂µ0

∂s1
(M0(y, s1), s1][

∂µ0

∂s0
(M0(y, s1), s1]−1 > 0.

Finally, from the equivalence s1 = M1(y)⇐⇒ y = µ1(s1), we have for all y ∈ [0,m1[, µ1(M1(y)) = y. Taking
the derivative of this equation according to y and using H4, we obtain:

dM1

dy
(y) = [

∂µ1

∂s1
(M1(y))]−1 > 0.

Proposition 3.1 is necessary to establish the results of Proposition 3.2.

Proof of Proposition 3.2. A steady state (s0, x0, s1, x1) of (2.1) is a solution of the set of algebraic equations
(3.1)–(3.4).

• For SS0, x0 = 0, x1 = 0. As a result of (3.1) and (3.3), we deduce that s0 = sin0 and s1 = sin1 .
Then, SS0 =

(
sin0 , 0, s

in
1 , 0

)
. It always exists.

• For SS1, x0 6= 0, x1 = 0. As a consequence of (3.2), we deduce that µ0(s0, s1) = D + a0. We have

D(sin0 − s0) = µ0(s0, s1)x0 and D(s1 − sin1 ) = µ0(s0, s1)x0.

Hence, x0 = D
D+a0

(
sin0 − s0

)
and D(sin0 − s0) = D(s1 − sin1 ), so that s0 + s1 = sin0 + sin1 . Therefore, s0 is

a solution of equation

µ0(s0, s
in
0 + sin1 − s0) = D + a0.

SS1 exists if and only if this equation has a solution in the interval (0, sin0 + sin1 ).
The function

s0 7→ ψ(s0) = µ0(s0, s
in
0 + sin1 − s0)

is strictly increasing since its derivative

dψ

ds0
(s0) =

∂µ0

∂s0
(s0, s1)− ∂µ0

∂s1
(s0, s1)

is positive.
Using ψ(0) = 0 and ψ(sin0 +sin1 ) = µ0(sin0 +sin1 , 0) we conclude that equation µ0(s0, s

in
0 +sin1 −s0) = D+a0

has a solution in the interval (0, sin0 + sin1 ) if and only if ψ(sin0 + sin1 ) = µ0(sin0 + sin1 , 0) > D + a0, which
means that:

sin0 + sin1 > M0(D + a0, 0).
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Now, SS1 exists if and only if all his components are strictly positive. For that, it’s sufficient that s0 < sin0
because sin0 < sin0 + sin1 . By applying ψ who is strictly increasing and by using µ0, we obtain: D + a0 <
µ0(sin0 , s

in
1 ) which is equivalent to say that:

sin0 > M0(D + a0, s
in
1 ).

Since sin0 < sin0 + sin1 , using the same arguments, we obtain: µ0(sin0 , s
in
1 ) < µ0(sin0 + sin1 , 0). So, if

D + a0 < µ0(sin0 , s
in
1 ),

then, necessarily

D + a0 < µ0(sin0 + sin1 , 0).

Therefore, SS1 exists if and only if

sin0 > M0(D + a0, s
in
1 ).

Then, SS1 = (s01, x01, s11, 0), where s01 is the solution of the equation:
µ0(s01, (sin0 + sin1 )− s01) = D+ a0, x01 = D

D+a0
(sin0 − s01) and s11 = (sin0 + sin1 )− s01. It exists if and only

if sin0 > M0

(
D + a0, s

in
1

)
.

• For SS2, x0 6= 0 et x1 6= 0. As a consequence of (3.2) and (3.4), we deduce that s0 and s1 are solutions of
the set of equations

µ0(s0, s1) = D + a0, µ1(s1) = D + a1.

Applying M1, we obtain s1 = M1(D + a1) and s0 is a solution of equation

µ0 (s0,M1(D + a1)) = D + a0

Applying M0, we obtain s0 = M0 (D + a0,M1(D + a1)). As a result of (3.1) and (3.3)

x0 =
D

D + a0

(
sin0 − s0

)
, x1 =

D

D + a1

(
sin0 + sin1 − s0 − s1

)
.

SS2 exists if and only if sin0 + sin1 > s0 + s1 and sin0 > s0. This means that:

sin0 + sin1 > M0 (D + a0,M1(D + a1)) +M1(D + a1),

and

sin0 > M0 (D + a0,M1(D + a1))).

Then, SS2 = (s02, x02, s12, x12), where s02 = M0 (D + a0,M1(D + a1)), x02 = D
D+a0

(
sin0 − s02

)
,

s12 = M1(D + a1) and x12 = D
D+a1

(
(sin0 + sin1 )− s02 − s12

)
. It exists if and only if sin0 > M0

(D + a0,M1(D + a1)) and sin0 + sin1 > M0 (D + a0,M1(D + a1)) +M1(D + a1).
• For SS3, x0 = 0 et x1 6= 0. As a consequence of (3.1) and (3.4), we deduce that s0 = sin0 and s1 are solution

of this equation

µ1(s1) = D + a1.
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Applying M1, we obtain

s1 = M1(D + a1)

As a result of (4), we have:

x1 =
D

D + a1

(
sin1 −M1(D + a1)

)
.

Then, SS3 =
(
sin0 , 0,M1(D + a1), D

D+a1

(
sin1 −M1(D + a1)

))
. It exists if and only if sin1 > M1(D + a1).

Proof of Proposition 4.1. The local stability of each steady state depends on the sign of the real parts of
the eigenvalues of the corresponding Jacobian matrix. At a given steady state (s0, x0, s1, x1), this matrix is
given by:

J =


−D − Ex0 −µ0 Fx0 0

Ex0 µ0 −D − a0 −Fx0 0
Ex0 µ0 −D − Fx0 −Gx1 −µ1

0 0 Gx1 µ1 −D − a1

 , (A.2)

where

E =
∂µ0

∂s0
(s0, s1) > 0, F = −∂µ0

∂s1
(s0, s1) > 0, G =

dµ1

ds1
(s1) > 0.

The eigenvalues of (A.2) are the roots of its characteristic polynomial det(J − λI). Notice that we have used
the opposite sign for the partial derivative F = −∂µ0

∂s1
(s0, s1), so that all constants involved in the computations

become positive, which will simplify the analysis of the characteristic polynomial of (A.2).

• For SS0 =
(
sin0 , 0, s

in
1 , 0

)
, the Jacobian matrix (A.2) reads

J =


−D −µ0(sin0 , s

in
1 ) 0 0

0 µ0(sin0 , s
in
1 )−D − a0 0 0

0 µ0(sin0 , s
in
1 ) −D −µ1(sin1 )

0 0 0 µ1(sin1 )−D − a1

 .
Its eigenvalues are λ1 = µ0(sin0 , s

in
1 )−D− a0, λ2 = µ1(sin1 )−D− a1 and λ3 = λ4 = −D. For being stable,

we need λ1 < 0 and λ2 < 0. Therefore, SS0 is stable if and only if

µ0(sin0 , s
in
1 ) < D + a0,

and

µ1(sin1 ) < D + a1.

For s1 fixed, since the function s0 7→ µ0(s0, s1) is increasing, we have the following equivalence:

µ0(sin0 , s
in
1 ) < D + a0 ⇐⇒ sin0 < M0(D + a0, s

in
1 ).
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The function s1 7→ µ1(s1) is increasing, then we have:

µ1(sin1 ) < D + a1 ⇐⇒ sin1 < M1(D + a1).

Therefore, SS0 is locally exponentially stable if and only if sin1 < M1(D+ a1) and sin0 < M0

(
D + a0, s

in
1

)
.

• For SS1 = (s01, x01, s11, 0), where s01 is the solution of the equation: µ0(s01, (sin0 + sin1 )− s01) = D + a0,
x01 = D

D+a0
(sin0 − s01) and s11 = (sin0 + sin1 )− s01, the Jacobian matrix (A.2) becomes:

J =


−D − Ex0 −D − a0 Fx0 0

Ex0 0 −Fx0 0
Ex0 D + a0 −D − Fx0 −µ1

0 0 0 µ1 −D − a1


Its characteristic polynomial is:

det(J − λI) = (λ− µ1 +D + a1)(λ+D)
(
λ2 + [D + (E + F )x0]λ+ (D + a0)(E + F )x0

)
Its eigenvalues are λ1 = µ1 −D − a1, λ2 = −D and λ3 and λ4 are the roots of the following quadratic
equation:

λ2 + [D + (E + F )x0]λ+ (D + a0)(E + F )x0 = 0

Since λ3λ4 = (D + a0)(E + F )x0 > 0 and λ3 + λ4 = − [D + (E + F )x0] < 0, the real parts of λ3 and λ4

are negative. So, for being stable we must have λ1 < 0. Therefore, SS1 is stable if and only if

µ1(sin0 + sin1 − s0) < D + a1

where s0 is the solution of µ0(s0, (sin0 + sin1 )− s0) = D + a0. Since the function s1 7→ µ1(s1) is increasing,
we have the following equivalence

µ1(sin0 + sin1 − s0) < D + a1 ⇐⇒ s0 > sin0 + sin1 −M1(D + a1).

Since the function s0 7→ ψ(s0) = µ0

(
s0, s

in
0 + sin1 − s0

)
is increasing, we deduce that ψ (s0) >

ψ
(
sin0 + sin1 −M1(D + a1)

)
. Since,

ψ (s0) = µ0

(
s0, s

in
0 + sin1 − s0

)
= D + a0

Therefore, the condition µ1(sin0 + sin1 − s0) < D + a1 of stability of SS1 is equivalent to:

D + a0 > µ0

(
sin0 + sin1 −M1(D + a1),M1(D + a1)

)
.

Since the function s0 7→ µ0(s0,M1(D + a1)) is increasing, the condition D + a0 > µ0(sin0 + sin1 −M1(D +
a1),M1(D + a1)) is equivalent to

sin0 + sin1 −M1(D + a1) < M0 (D + a0,M1(D + a1)) ,

which is equivalent to

sin0 + sin1 < M1(D + a1) +M0 (D + a0,M1(D + a1)) .
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Therefore, SS1 is locally exponentially stable if and only if sin0 + sin1 < M0 (D + a0,M1(D + a1)) + M1

(D + a1).
• For SS2 = (s02, x02, s12, x12), where s02 = M0 (D + a0,M1(D + a1)), x02 = D

D+a0

(
sin0 − s02

)
, s12 =

M1(D + a1) and x12 = D
D+a1

(
(sin0 + sin1 )− s02 − s12

)
.

At SS2, the Jacobian matrix is given by:

J =


−D − Ex0 −D − a0 Fx0 0

Ex0 0 −Fx0 0
Ex0 D + a0 −D − Fx0 −Gx1 −D − a1

0 0 Gx1 0

 .
Its characteristic polynomial is:

det(J − λI) = λ4 + f1λ
3 + f2λ

2 + f3λ+ f4,

where

f1 = Gx1 + (E + F )x0 + 2D,
f2 = EGx0x1 + (2D + a0)(E + F )x0 + (2D + a1)Gx1 +D2,

f3 = (2D + a0 + a1)EGx0x1 +D(D + a0)(E + F )x0 +D(D + a1)Gx1,

f4 = (D + a0)(D + a1)EGx0x1.

We use the Routh–Hurwitz criterium for the stability of SS2. Using the same arguments as Appendix D
[5], we have:

fi > 0 for i = 1, . . . , 4, (A.3)
f1f2 − f3 > 0, (A.4)
f1f2f3 − f2

1 f4 − f2
3 > 0. (A.5)

According to (A.3), (A.4) and (A.5) the Routh–Hurwitz criteria are satisfied. Therefore, SS2 is stable
if and only if x0 = x02 > 0 and x1 = x12 > 0. This means that sin0 > M0 (D + a0,M1(D + a1)) and
sin0 + sin1 > M0 (D + a0,M1(D + a1)) +M1(D + a1). Therefore, SS2 is stable as long as it exists.

• For SS3 =
(
sin0 , 0,M1(D + a1), D

D+a1

(
sin1 −M1(D + a1)

))
, the Jacobian matrix (A.2) becomes

J =


−D −µ0 0 0

0 µ0 −D − a0 0 0
0 µ0 −D −Gx1 −D − a1

0 0 Gx1 0

 .
Its characteristic polynomial is:

det(J − λI) = (−D − λ)(µ0 −D − a0 − λ) ([D +Gx1 + λ]λ+ (D + a1)Gx1) .

Its eigenvalues are λ1 = −D, λ2 = µ0 −D − a0 and λ3 and λ4 are the roots of the following quadratic
equation:

λ2 + [D +Gx1]λ+ (D + a1)Gx1 = 0.
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Since λ3λ4 = (D + a1)Gx1 > 0 and λ3 + λ4 = −(D +Gx1) < 0, the real parts of λ3 and λ4 are negative.
Therefore, SS3 is locally exponentially stable if and only if λ2 < 0, that is to say

µ0(sin0 ,M1(D + a1)) < D + a0,

which is equivalent to

sin0 < M0(D + a0,M1(D + a1)).

Proof of Proposition 4.2. F0 is defined if and only if M0

(
D + a0, s

in
1

)
is defined. This means that, D + a0 <

m0(sin1 ) which is equivalent to D < m0(sin1 )− a0 = D0.
F1 is defined if and only if M1(D+ a1) and M0 (D + a0,M1(D + a1)) are defined. This means that, D+ a1 <

m1 and D + a0 < m0(M1(D + a1)). Since the function D 7−→ m0(M1(D + a1)) is decreasing then m0(M1(D +
a1)) < m0(M1(a1)). D + a0 < m0(M1(D + a1)) is satisfied if and only if D < D2 where D2 is the positive
solution, if it exists, of D + a0 = m0(M1(D + a1)). The solution D2 ≥ 0 exists if and only if a0 < m0(M1(a1)).
Thus, F1 is defined on [0,min(m1 − a1, D2)[.

By the same way, F2 is defined on [0, D2[ when it exists.

The idea of the proof of Theorem 5.2 is based on Lemma 5.1 and comparison between the growth functions.
We first prove Lemma 5.1.

Proof of Lemma 5.1.

• If we have µ1(sin1 ) < a1 < D + a1 then sin1 < M1(D + a1). M0 is increasing with respect
to the second variable then M0(D + a0, s

in
1 ) < M0(D + a0,M1(D + a1)). By using sin1 < M1

(D + a1), which is equivalent to M1(D + a1)− sin1 > 0, we obtain

M0(D + a0, s
in
1 ) < M0(D + a0,M1(D + a1)) +M1(D + a1)− sin1 .

Therefore, F0(D) < F1(D)− sin1 , for all D > 0.
• If we have µ1(sin1 ) > a1 and D > D = µ1(sin1 ) − a1 ⇔ µ1(sin1 ) < D + a1. Then, sin1 < M1(D + a1) and
M0(D + a0, s

in
1 ) < M0(D + a0,M1(D + a1)). Since M1(D + a1) > sin1 , we obtain

M0(D + a0, s
in
1 ) < M0(D + a0,M1(D + a1)) +M1(D + a1)− sin1 .

Therefore, F0(D) < F1(D)− sin1 , for all D > 0.
• If we have µ1(sin1 ) > a1 and D < D = µ1(sin1 )− a1 ⇔M1(D + a1) < sin1 . Then, we have

M0(D + a0,M1(D + a1)) < M0(D + a0, s
in
1 ).

Therefore, F2(D) < F0(D), for all D > 0.
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Proof of Theorem 5.2. Theorem 5.2 follows from Lemma 5.1 and the next inequalities:

• If µ1(sin1 ) < a1 and F1(D)− sin1 < sin0 then F2(D) < sin0 , for all D > 0.
Indeed, if µ1(sin1 ) < a1 then M1(D + a1)− sin1 > 0. Then,

M0(D + a0,M1(D + a1)) < M0(D + a0,M1(D + a1)) +M1(D + a1)− sin1 = F1(D)− sin1 .

Since F1(D)− sin1 < sin0 then F2(D) < sin0 .
• If µ1(sin1 ) > a1, D > D and F1(D)− sin1 < sin0 then F2(D) < sin0 , for all D > 0.

Indeed, D > D ⇔ µ1(sin1 ) < D + a1 ⇔M1(D + a1)− sin1 > 0. Then,

M0(D + a0,M1(D + a1)) < M0(D + a0,M1(D + a1)) +M1(D + a1)− sin1 = F1(D)− sin1 .

Finally, F1(D)− sin1 < sin0 implies that F2(D) < sin0 .
• If µ1(sin1 ) > a1, D < D and F0(D) < sin0 then F1(D)− sin1 < sin0 , for all D > 0.

Indeed, D < D = µ1(sin1 )− a1 ⇔M1(D + a1) < sin1 . Since F0(D) = M0(D + a0, s
in
1 ) < sin0 , then

F1(D)− sin1 = M0(D + a0,M1(D + a1)) +M1(D + a1)− sin1 < M0(D + a0, s
in
1 ),

which implies that F1(D)− sin1 < sin0 .
• If µ1(sin1 ) > a1, D < D and F2(D) < sin0 then F1(D)− sin1 < sin0 , for all D > 0.

Indeed, D < D = µ1(sin1 )− a1 ⇔M1(D + a1) < sin1 . Since F2(D) = M0(D + a0,M1(D + a1)) < sin0 , then

F1(D)− sin1 = M0(D + a0,M1(D + a1)) +M1(D + a1)− sin1 < M0(D + a0,M1(D + a1)).

Finally, we obtain

F1(D)− sin1 < sin0 .

The proof of Theorem 5.4 is based on Lemma 5.3 and comparison between growth functions. We first prove
Lemma 5.3.

Proof of Lemma 5.3.

• If D > D̄1 then F2(D) > F2(D̄1) = sin0 and we obtain

F1(D)− sin0 > F1(D)− F2(D).

In the other hand, we have M0(D+ a0,M1(D+ a1)) > sin0 . Since µ0 is increasing with respect to the first
variable then D + a0 > µ0(sin0 ,M1(D + a1)). M2 is decreasing with respect to the second variable then
M2(sin0 , D + a0) < M1(D + a1). Finally, we obtain

F1(D)− F2(D) > F3(D).

• If D < D̄1 and D̄1 > 0, then F2(D) < F2(D̄1) = sin0 and we obtain

F1(D)− sin0 < F1(D)− F2(D).
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Now, M0(D + a0,M1(D + a1)) < sin0 implies that D + a0 < µ0(sin0 ,M1(D + a1)). M2 is decreasing with
respect to the second variable then M2(sin0 , D + a0) > M1(D + a1). Finally, we obtain

F1(D)− F2(D) < F3(D).

• We have F2(D̄1) = sin0 then F1(D̄1) − F2(D̄1) = F1(D̄1) − sin0 . This implies that F1 − F2 and F1 − sin0
intersect at the value D = D̄1. On the other hand, F2(D̄1) = sin0 is equivalent to M0(D̄1 + a0,M1(D̄1 +
a1)) = sin0 . Then, we have µ0(sin0 ,M1(D̄1 + a1)) = D̄1 + a0. Now, F3(D̄1) = M2(sin0 , D̄1 + a0) which is
equivalent to µ0(sin0 , F3(D̄1)) = D̄1 + a0. The two last equalities lead to F3(D̄1) = M1(D̄1 + a1). Thus,
F3(D̄1) = F1(D̄1)− F2(D̄1) = F1(D̄1)− sin0 . Consequently, F3, F1 − F2 and F1 − sin0 intersect at D = D̄1.
Since F3 is decreasing, then D̄3 = sup

D
F3(D) then D̄3 > D̄1.

Proof of Theorem 5.4. Theorem 5.4 is a consequence of Lemma 5.3. Notice that if D̄3 < 0 then F3(D) < 0 and
since D̄1 < D̄3, the case D̄1 > 0 and D̄3 < 0 cannot occur.
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