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Abstract

Small reservoirs represent a critical water supply to millions of farmers
across semi-arid regions, but their hydrological modelling suffers from data
scarcity and highly variable and localised rainfall intensities. Increased avail-
ability of satellite imagery provide substantial opportunities but the moni-
toring of surface water resources is constrained by the small size and rapid
flood declines in small reservoirs. To overcome remote sensing and hydro-
logical modelling difficulties, the benefits of combining field data, numerical
modelling and satellite observations to monitor small reservoirs were inves-
tigated. Building on substantial field data, coupled daily rainfall-runoff and
water balance models were developed for 7 small reservoirs (1-10 ha) in semi

arid Tunisia over 1999-2014. Surface water observations from MNDWTI clas-
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sifications on 546 Landsat TM, ETM+ and OLI sensors were used to update
model outputs through an Ensemble (n=100) Kalman Filter over the 15
year period. The Ensemble Kalman Filter, providing near-real time cor-
rections, reduced runoff errors by modulating incorrectly modelled rainfall
events, while compensating for Landsat’s limited temporal resolution and
correcting classification outliers. Validated against long term hydrometric
field data, daily volume root mean square errors (RMSE) decreased by 54%
to 31 200 m? across 7 lakes compared to the initial model forecast. The
method reproduced the amplitude and timing of major floods and their de-
cline phases, providing a valuable approach to improve hydrological moni-
toring (NSE increase from 0.64 up to 0.94) of flood dynamics in small water
bodies. In the smallest and data-scarce lakes, higher temporal and spatial
resolution time series are essential to improve monitoring accuracy.
Keywords: Remote sensing, Water balance, Rainfall-runoff model, Data

assimilation, Ensemble Kalman Filter, Water harvesting

1. Introduction

1.1. Hydrology of small water bodies

Small reservoirs have developed across semi-arid areas to reduce transport
of eroded soil and mobilise water resources for local users. Their reduced
costs favoured significant bottom-up development, resulting in several million
small reservoirs worldwide (Lehner et al., 2011). Due to their modest size
and large numbers, field monitoring of small water bodies remains rare except
for scientific purposes (Albergel and Rejeb, 1997), limiting their hydrological

understanding.
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Local studies in Sub-Saharan Africa (Desconnets et al., 1997; Martin-
Rosales and Leduc, 2003), Brazil (Molle, 1991), Mexico (Avalos, 2004), India
(Massuel et al., 2014b) and Tunisia (Grunberger et al., 2004; Zammouri and
Feki, 2005) performed water balance modelling to quantify available resources
and hydrological processes illustrated in figure 1. These exploit field measure-
ments of rainfall, reservoir stage and pan evaporation but difficulties occur
due to the uncertainties in estimating inflow, infiltration and groundwater
inflow, withdrawals and lake evaporation (Li and Gowing, 2005), which must
be modelled, extrapolated and/or neglected based on reasonable assump-
tions. Inflow due to diffuse runoff is often assessed indirectly by closing the
water balance or through rainfall-runoff modelling. The latter notably suffer
from the spatial variability of semi-arid rainfall regimes, leading to model
performance of NSE=0.5 or less, even with site specific field data (Lacombe
et al., 2008; Neppel et al., 1998; Ogilvie, 2015). Difficulties increase when
seeking to upscale site specific data and model water resources in ungauged
small reservoirs (Cudennec et al., 2007; Hrachowitz et al., 2013).

As a result, limited information exists on their water resources, prevent-
ing the optimisation of farming practices and local stakeholder investments
(Wisser et al., 2010). Capturing runoff and favouring evaporation and in-
filtration, these reservoirs also modify the spatio-temporal distribution of
resources. Hydrological studies have shown these can reduce downstream
flows by up to 80 % in small catchments and highlighted their cumulative in-
fluence in larger catchments (Ma et al., 2010; Nyssen et al., 2010). Studies in
China (Gao et al., 2011; He et al., 2003) and Tunisia (Kingumbi et al., 2007;
Lacombe et al., 2008; Ogilvie et al., 2016b) on catchments over 1000 km?
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Fig. 1. Water balance fluxes in small reservoirs

identified reductions ranging between 1 and 50% over the same periods and
catchments, highlighting the uncertainties resulting in part from hydrological

data scarcity on small reservoirs.

1.2. Remote sensing and data assimilation of small water bodies

Satellite imagery is increasingly exploited to provide input data or to
calibrate hydrological models, with remotely sensed values of evaporation,
rainfall and soil moisture (Soti et al., 2010; Zribi et al., 2011) or assessments
of surface water areas (Leauthaud et al., 2013; Ogilvie et al., 2015; Swenson
and Wahr, 2009), lake and river stages (da Silva et al., 2014), and lake water
volumes (Baup et al., 2014; Crétaux et al., 2015; Frappart et al., 2018). Used
extensively across large wetlands, lakes or rivers, and at continental or global
scales, remote sensing has also been applied to provide insights across smaller
water bodies.

Studies using Landsat 30 m or pansharpened 14.5 m (Feng et al., 2016)

notably enabled mapping numerous water bodies and their storage capacities

4
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(Liebe et al., 2005; Sawunyama et al., 2006). Long term Landsat time series
have also recently been used to monitor surface water variations over time.
Pekel et al. (2016) developed a publicly available global data set of surface
water at a monthly scale over 1984-2015. Ogilvie et al. (2018) showed the
benefits of a specific approach to monitor small reservoirs (< 10 ha) and
account for the greater presence of flooded vegetation (Mueller et al., 2016;
Yamazaki and Trigg, 2016) and difficulties resulting from limited spatial (30
m) and temporal resolution (up to 8 day from the combination of Landsat 8
and Landsat 7 satellites). These succeeded in reducing mean surface water
RMSE to 9 300 m? (NRMSE = 24%) but the presence of clouds reduced
image availability reducing the method’s ability to detect rapid floods and
reproduce coherent flood declines.

Data assimilation seeks to combine external sources of data or obser-
vations to beneficially correct or calibrate in real time (i.e. as observations
become available) model outputs. Widely relied on in meteorology, it has be-
come increasingly used in other scientific fields, including hydrology (Beven
and Freer, 2001; Boulet et al., 2002; Clark et al., 2008; Emery et al., 2017,
Moradkhani et al., 2005; Xie and Zhang, 2010) notably to combine the bene-
fits of increasingly available and valuable (precise, accurate, higher temporal
and spatial resolution) remote sensing data.

To overcome the difficulties in monitoring surface water variations in small
reservoirs through hydrological modelling and satellite imagery, the benefits
of combining field data, numerical modelling and remote sensing were inves-
tigated here. A daily hydrological model to simulate volumetric changes in

small reservoirs combined with an Ensemble Kalman filter to reevaluate in
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Fig. 2. Location of Merguellil upper catchment and of neighbouring hydrometeorological data used in

the paper. In bold, the 7 modelled reservoirs.

real time model outputs based on Landsat observations was developed here.
The benefits of this combined model on daily values and mean annual avail-
ability were assessed against field data on 7 gauged reservoirs and compared
with results obtained using only hydrological modelling or Landsat observa-
tions. Finally, the sensitivity of the approach to downgrading the confidence
in input values and moving towards conditions found on ungauged reservoirs

was investigated.

2. Methods

2.1. Study sites

This research focussed on seven small reservoirs in semi-arid central Tunisia

(figure 2) benefiting from long term hydroclimatic data acquired through re-

6
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Fig. 3. Availability of stage field data and rating curves over modelling periods of the 7 lakes

search collaboration with government agencies (Albergel and Rejeb, 1997;
Leduc et al., 2007; Ogilvie, 2015). Field instrumentation on each lake con-
sisted of automatic stage pressure transducers and tipping bucket rainfall
gauges, supplemented by daily limnimetric (ladder) and rainfall readings by
local observers. Thirteen lakes in the vicinity had also been equipped with
evaporation pans. Complementary pressure transducers and automatic rain-
fall gauges were installed as part of this research in 2011 on three lakes
(Hoshas, Morra, Guettar) to extend time series (figure 3) and tend to the
declining monitoring network exacerbated by the Tunisian revolution.

Stage and surface area were converted using site specific Height-Surface-
Volume relations (figure 3) acquired and updated since the 1990s to account
for silting (Albergel and Rejeb, 1997). Complementary surveying was also
carried out on Hoshas in 2014. Figure 4 illustrates the shift in the rating
curves from silting, which can be used to assess the level of uncertainty

associated with volumes in recent years. On Gouazine, after 6 years (2001
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Fig. 4. Change over time of surface area - volume rating curves for two small lakes

vs. 2007) the obsolescence of the rating curve results in a mean RMSE
of 4900 m3, while on Fidh Ali it reaches 25 000 m* on volumes under 80
000 m3. On lakes where rating curves could not be updated (Guettar and
Morra) for logistical reasons (cost, access to lakes and presence of water
and /or vegetation on lake bed), GPS contours nevertheless highlighted that
errors in the H-S rating curves only reached 11-12% after 12 and 22 years
respectively (Ogilvie et al., 2018).

These are inferior to errors generated from extrapolating capacity loss
based on studies on 15 nearby surveyed reservoirs (figure 2), due to the
strong disparities in silting rates and the difficulties in erosion modelling,
especially over extended periods (Albergel and Rejeb, 1997; Baccari et al.,
2008; Hentati et al., 2010; Lacombe, 2007; Ogilvie, 2015). The Gouazine
reservoir benefited from the longest and most reliable time series (figure
3) due to regular maintenance, field observations and six updates to the
stage-surface-volume rating curves but results on other reservoirs enabled to

confront the method on lakes of different capacities ranging between 50 m?
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Fig. 5. Schematic representation of methodology for assimilation of Landsat observations into hydrological

model with the Ensemble Kalman Filter

and 700 000 m? (table 1).

The field data collected were used to estimate the multiple fluxes in the

water balance (WB) of small lakes and develop rainfall-runoff models for their

catchments. Site specific hydrological models were developed over 1999-2014

for seven lakes, before evaluating the benefits of integrating earth observation

data, as illustrated in figure 5.
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2.2. Water balance modelling of 7 small water bodies

2.2.1. Rainfall inputs

Daily rainfall (P, mm/day) over the 7 lakes was interpolated over 1999-
2014 from the 50 manual and automatic rainfall gauges situated at the lakes
and within and around their catchments (figure 2). Inverse Distance Weight-
ing (IDW) interpolation was used after tests showed the marginal benefit
(error reduction by 1 mm) (Ogilvie, 2015) of geostatistical methods such
as Kriging with external drift (Hengl et al., 2007) compared to the lengthy
treatment times. Mean rainfall varied between 299 mm /year + 108 mm/year
to 396 mm/year + 124 mm/year (table 1). The homogeneous distribution of
the rainfall gauges in this catchment inherently accounts for the altitudinal
gradient within subcatchments (Feki et al., 2012; Ogilvie et al., 2016b; Van
Der Heijden and Haberlandt, 2010; Wackernagel, 2004).

2.2.2. Lake evaporation

Lake evaporation rates (F, mm/day) were IDW interpolated based on
field observations from Colorado type sunken pans on 13 lake shores over
1999-2008 (figure 2). Evaporation time series were completed to 2015 based
on linear regressions between each lake and a reference station with contin-
uous observations (El Haouareb), assuming homogeneous evaporation varia-
tions across the basin (R?* = 0.92). Potential lake evaporation varied across
lakes between 1776 mm /year & 143 mm /year to 2019 mm /year 4+ 198 mm /year
(table 1). A pan coefficient (C}) of 0.8 based on water bodies of similar sizes
in semi-arid areas was used (Alazard et al., 2015; Cadier, 1996; Linacre, 1994;
McMahon et al., 2013; Molle, 1991; Riou, 1972).

10



171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

Author-produced version of the article published in Journal of Hydrology, 2018, N°566, p. 109-121.
The original publication is available at https://www.sciencedirect.com
Doi: 10.1016/j.jhydrol.2018.08.076

2.2.3. Infiltration rules

Infiltration (I, mm/day) was modelled based on equation 1 where Z,uer
is the absolute head of water (mm), a the slope, and iy (mm/day) the inter-
cept values provided in table A.1. These were extracted from Lacombe (2007)
and estimated for Guettar, Dekikira and Hoshas (figure 6) during depletion
phases (respectively 1262, 651 and 1546 days) when other fluxes are absent
(rainfall, runoff, withdrawals, releases) based on stage monitoring and esti-
mated evaporation (Lacombe, 2007; Ogilvie, 2015). Mean daily infiltration
varied between 2 mm and 28 mm for a lake on gravely soil (table 1). Re-
cent data do not indicate a noticeable change in infiltration properties from
silting over time, confirming past observations (Lacombe, 2007). Similarly,
uncertainties from silting on the absolute head of water used in infiltration
rules are estimated on average at 12.5% per metre, and may be lower due
to partial silting of the lake floor and constant infiltration rates observed
on four of these lakes (Ogilvie, 2015). Groundwater and subsurface inflow
are often neglected in water budgets (Lacombe, 2007; Li and Gowing, 2005)
as these are minor fluxes and their quantification requires intense monitor-
ing and geochemical methods (Massuel et al., 2014b; Montoroi et al., 2002).
Accordingly, infiltration estimates provided here may in some cases corre-
spond to the combination of infiltration, leaks and groundwater inflow. On
Gouazine, groundwater inflow was shown to reach 50 m?®/day (Grunberger
et al., 2004), meaning absolute infiltration may be up to 2.5 mm/day greater

when the lake is 2 ha and less when surface area rises (Ogilvie, 2015).

I =i+ a* Zyater (]-)

11
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Fig. 6. Infiltration values as a function of stage in the lake estimated during depletion periods

2.2.4. Modelling releases and overflows

Semi-structured interviews with the dam operators revealed the absence
of strict rules to protect the infrastructure as releases depended on further
storm forecasts, government advice, presence of lakes downstream, techni-
cal problems with the valve and pressure from users to maintain maximal
resources for the dry season (Ogilvie, 2015). Releases (R, m®/day) were de-
tected on two lakes after only the most significant events (1% of all events).
Based on the extraordinary decline rates witnessed in instantaneous (15 min)
hydrometric data, releases were modelled on the basis of a 10 000 m?/day
release to reach 80% of V., if and when the latter is exceeded (Lacombe,
2007; Ogilvie, 2015). This also accounts for overflows through the spillway.
Minor releases to flush out sediments and vegetation from the conduit were

increasingly rare and remain of the order of 1000-5000 m?/year.

12
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Table 1: Characteristics of the 7 small reservoirs modelled and their catchments

Lake Catchment  Altitude Initial capacity =~ Rainfall Evaporation Infiltration
size (km?)  (m) (10* m?) (mm/year, (mm/year, (mm/day,

1999-2014) 1999-2014) 1999-2014)

Dekikira 3.31 406 219 396 1842 2.7

Hoshas 7.90 306 130 302 2003 28

Guettar 4.98 393 150 339 1994 10

Gouazine 16.64 397 237 387 1776 9

Fidh Ali 2.74 350 134 324 2019 3.6

Fidh Ben Nasseur 1.82 368 47 327 2016 7.8

Morra 11.69 588 705 299 1917 2

2.2.5. Modelling withdrawals

Regular field visits and quantitative questionnaires with 48 farmers on 22
lakes (Ogilvie, 2015) revealed the extreme heterogeneity of pumping practices
across lakes and years but highlighted the absence, or reduced importance
of withdrawals (TW, m®/day) on most lakes. These represented less than 40
m?/day in the summer months, compared to the 340 m?/day from infiltration
(of 7mm) and evaporation (10 mm) on a small (2 ha) surface area (Lacombe,
2007; Ogilvie, 2015). On Guettar and Morra lakes however, withdrawals to
water fruit trees were estimated to reach over 130 m3/day over April to
October. No withdrawal restrictions to preserve the resource as it wanes

were observed and thus modelled (Ogilvie, 2015).

2.3. Runoff estimation through GR4J catchment modelling

Runoff (@, m3/day) into small reservoirs was assessed using a daily GR4J
rainfall-runoff model developed for each reservoir’s catchment. This lumped

conceptual model is well suited to the relative scarcity of data and used

13
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across semi-arid catchments of comparable size (Perrin et al., 2003). A daily
time step was used to capture the intense rainfall events and corresponds
to the available rainfall and runoff data, as availability of sub-daily data
is extremely limited. It relies on a simple two reservoir structure and four

parameters:

e X1 production store capacity (mm)
e X2 groundwater exchange coefficient (mm/day)
e X3 routing store capacity (mm)

e X4 unit hydrograph time constant (day)

Input variables consist of catchment size delineated using 1 arc second
SRTM digital elevation model, rainfall (P, mm/day) IDW interpolated from
available observations across over 50 gauges (figure 2) and potential evapo-
transpiration (PET, mm/day) interpolated from 180 MODIS-derived 1 km?
monthly tiles. These MOD16 datasets exploit global weather data sets com-
bined with MODIS derived land cover types, leaf area index and albedo (Mu
et al., 2011) to provide monthly PET estimates, at a higher resolution than
the 0.5 ° Climate Research Unit products.

Models were calibrated using an objective function of maximal Nash Sut-
cliffe Efficiency (NSE) on runoff. Qs was estimated based on stage mon-
itoring (figure 3) and a simplified water balance equation, as diffuse sheet
runoff and subsurface runoff prevent direct observations (Albergel et al.,

2003; Lacombe et al., 2008). Several fluxes can be neglected (groundwater

14
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inflow, leaks) or assumed null (e.g. withdrawals) during the violent Horto-
nian runoff events resulting from limited vegetation, low soil water holding
capacities, prominent topography and high rainfall intensity characteristic
of Mediterranean climates (Lacombe et al., 2008). The other water balance
fluxes (P, E, I, releases, overflows) were assessed based on local monitoring
and observations as described previously. The airGR code (Coron et al.,
2017) which allowed for integrated numerical modelling and remote sensing
processing in R, as well as superior results thanks to the HBAN optimisation

function, was used.

2.4. Combining remote sensing observations and hydrological modelling
2.4.1. Landsat surface water observations

The remote sensing observations employed in the Ensemble Kalman Filter
were Landsat-derived surface water areas for each lake over 1999-2014. 526
Landsat 5-8 images available freely from USGS were corrected to surface
reflectance and filtered to remove acquisitions with excessive clouds, shadows
and inactive Scan Line Corrector (SLC-off) pixels over each lake. Flooded
areas were extracted using the Modified Normalised Difference Water Index
(Xu, 2006) calibrated against extensive field data. Full details of the approach
are available in Ogilvie et al. (2018) and led to a mean surface area RMSE
of 9 300 m2. Surface areas were converted to volumes using the available
rating curves and values were linearly interpolated to provide a continuous
time series and allow comparisons with field data (Vy;q) and the Ensemble
Kalman Filter (Vgygr) outputs. Alternate interpolation approaches (Forkel
et al., 2013) to gap fill and smooth daily time series failed here to provide

significant benefit, partly due to the abrupt fluctuations observed contrasting
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with gradual seasonal flood pulses in larger water bodies (Leauthaud et al.,

2013; Ogilvie et al., 2015).

2.4.2. Ensemble Kalman Filter

Ensemble Kalman Filtering (ENKF, Evensen (2003)) is a stochastic data
assimilation method suited to smaller scale non-linear systems, including
where initial states are highly uncertain (Gillijns et al., 2006) as may be the
case due to poor rainfall-runoff modelling of intense rainfall events. It also
reduces the difficulties associated with developing a tangent linear model and
deriving its adjoint counterpart (Vermeulen and Heemink, 2006), required in
variational data assimilation (e.g. 3D-Var, 4D-Var), widely used in the mod-
elling of large systems such as atmospheric circulation models, oceanography,
and more recently in hydrology and hydraulics applications (Oubanas et al.,
2018).

With the Kalman filter, an initial forecast is updated using the Kalman
gain when an external observation is available, based on the following equa-

tions:

Vupdate - Vforecast + Kk * [Y;Jbs - H(Vforecast)] (2>

Yobs = H(Vops) + vg (3)

where K, is the Kalman gain defined as:

Kp=Cyx H" x (H*Cwx* H" + Cv)™* (4)
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Vorecast 18 here the lake volume outputted by our daily hydrological model

f(V) with a random error wy.

Vforecast = f(V) + w (5>

H, called the observation operator, is the model to convert observed state
variables to observations. Where observations are directly inputted, as in
this case, H = Id (identity) and equations simplify as below (equations 6
and 7). The external observation is the remotely sensed lake volume based

on Landsat imagery (Vgs) which have an associated random error vy.

K, = Cy* (Cw + Cv)™* (6)

Vupdate = me"ecast + Kk * [‘/obs + v — Vforecast] (7>

which can here be rewritten as:

Venkr = K * (Vrs +vi) + (1 — Ki) * Vi praras (8)

The forecast step is repeated on a daily basis and Viygecast s updated
when acceptable Landsat observations are available (equation 8). The up-
dated volume (Vgygr) is then fed back into the daily hydrological model
and sequentially updated over 1999-2014 with the valid remote sensing (RS)
observations (figure 5).

C'v is the observation error covariance matrix, C'w is the forecast error
covariance matrix and C'y is the cross covariance matrix between the state

variable and the forecast. As the state variable used is the volume and not
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an intermediary state variable, C'y is equivalent to Cw. Cv and Cw values
were estimated using the covariances of errors between stage observations
and remote sensing observations and between stage and model outputs re-
spectively. Stage related volumes include their own element of error (ladder
readings, rating curve imprecisions and evolving flood bed topography) but
here these are neglected compared to the errors from remote sensing (incl.
radiometric corrections, detection errors) and hydrological modelling. Cw
variance was 20 times greater than C'v variance and contributed to attribut-
ing greater confidence to the Landsat values over the model outputs in the
Kalman filtering. Alternate combinations were tested but these did not lead
to performance improvements. C'w remained constant as recommended by
Clark et al. (2008), allowing the method to be used on periods and lakes with
non-continuous ground truth data.

In the Ensemble version of the Kalman filter, n values of the initial state
are generated and each ensemble member is run through the forecast and
update step. The n values of the initial state are generated based upon a
random synthetic error y so that values have mean value initial state and
predefined covariance C'y. Initial states are the same as V' (equation 5) and
not an intermediary variable, so y was taken to be wy, the forecast error
(Moradkhani et al., 2005). The n ensemble of external observations are
generated randomly to obtain a normal (Gaussian) distribution with error
Uk, 1.e. centred on the observation value and with predefined covariance C'v
(Reichle et al., 2002). Here n = 100, as Gillijns et al. (2006) reveal marginal

benefits above 100 and greater errors for n values below 40.
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2.5. Performance and sensitivity of the ENKF approach

The performance of the Ensemble Kalman Filter (Vgnygr) was assessed
against available field data (Vyq) and compared with the performance of
using only hydrological model (Viypigras) and only remote sensing (Vgs)
data. NSE values were calculated but considering their sensitivity to tim-
ing of outputs and ability to disguise certain errors (Moussa, 2010), RMSE
values were provided. The performance in terms of individual daily volumes
was investigated as well as on annual water availability, considering their
importance to local users.

The method’s performance, as inputs and parameters were degraded, was
then tested on four lakes to study its sensitivity and identify the ability of
RS observations to correct for greater uncertainties. The influence of re-
duced rainfall observation networks was considered, based on rainfall time
series interpolated after artificially removing gauges in the catchment. In-
formation gathered across 15 gauged reservoirs was also used to consider
the applicability of the approach to nearby ungauged catchments based on
average infiltration rules, transposing GR4J parameters and modeling an av-
erage surface volume power relation adapted for silting over time detailed in

Ogilvie et al. (2016a).

3. Results and discussion

3.1. Hydrological modelling of small water bodies

Figure 7 illustrates the daily volume dynamics on lake Gouazine simulated

by the hydrological model. Compared to the long term field observations,
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results highlight the ability of the model to reproduce coherent flood dy-
namics and declines rates, for floods of varying amplitudes. Flood peaks
were however, in some cases, under and over estimated as in 2003 (-54%) or
2007 (4+198%) according to field data on lake Gouazine. Difficulties occurred
due to the low performance of the GR4J rainfall-runoff model, where NSE
reached values around 0.5-0.6 on Gouazine and Dekikira, but nearer 0.2-0.3
on other lakes (table 2), notably on lakes with less extensive and reliable field
data (rainfall, stage and rating curves). Though low, these are comparable
to previous GR4J results in the basin (Lacombe, 2007) and due largely to
insufficient rainfall gauge densities which fail to capture the high intensities

of very localised rainfall events (Neppel et al., 1998).

3.1.1. Rainfall-runoff modelling limitations

To simulate the uncertainties from the absence of upstream rainfall gauges
in the catchments of small reservoirs, rainfall was interpolated for the Gouazine
catchment after artifically excluding its upstream gauge data. IDW interpo-
lated rainfall was then underestimated by 20.3% on 44 out of 53 events over 20
mm. The performance of the GR4J model decreased marginally (NSE=0.55),
however for the combined WB+GR4J model NSE declined from 0.57 to 0.24,
due to the knock on effect of errors during the flood decline (e.g. floods
missed in 2012 and 2014 in figure 12). Conversely, rainfall underestimation
forced the model during calibration to increase runoff coefficients, leading to
overestimation on other events which had been accurately detected due to
their larger spatial extent. These results highlight the importance of reli-
able upstream gauges to detect orographic rainfall intensities and the order

of magnitude of uncertainties in catchments where upstream stations are
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by the hydrological model (Vv p4GRras), the remote sensing observations (Vgg) and their combination

through Ensemble Kalman Filtering (VEnkF)
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unavailable (i.e. all here, except Gouazine).

Even with an upstream station, certain events were underestimated on
Gouazine (in 2003, 2005, and 2009 on figure 7) due to undetected localised
storm cells. At the event scale, altitude variograms (e.g. KED) were not suffi-
cient either to correctly modulate over space the amplitude of events. Though
meteorological satellite observations (e.g. TRMM) do not provide reliable es-
timates at the event scale on such small catchments (< 20 km?), these or even
phone signal networks (Doumounia et al., 2014; Overeem et al., 2013) may
help define variograms and improve geostatistical interpolation. In larger
catchments or where the density of observations is greater, distributed mod-
els may also help account for space-time rainfall variability (Aouissi et al.,
2018).

Errors from the limited rainfall gauge density were further exacerbated
by inherent measurement gaps and errors due to equipment malfunctions
(obstructions, low maintenance) and the absence of sub-daily time series to
capture the flood peak accurately. Though 93% of storms over 10 mm were
separated by 24 hours (Lacombe, 2007), certain large events were poorly
modelled as substantial rains scattered over successive days, led to very high
runoff on the third day only, due to saturated soils and delayed subsurface
flows, causing calibration difficulties. Furthermore, the volume of the first
storms can be overestimated due to silting, and because ladders rarely moni-
tor the lowest stage levels, due to logistical reasons of installation and regular

access.
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3.1.2. Heterogeneous catchment responses

The low GR4J performance partly translated difficulties to model the
catchment’s response. The intensity but also land cover, antecedent soil
humidity or conservation works such as contour benches can significantly in-
fluence runoff coefficients in these catchments as discussed in (Ogilvie et al.,
2016b). Model parameter X1 notably seeks to account for the soil humidity
and the threshold effect, leading to greater runoff once X1 is saturated. The
lumped (i.e. not spatialised) nature of the GR4J model makes accounting
for localised changes in catchment behaviour (water conservation works, land
cover and cropping) difficult however. Model choice guided by limited data
availability precluded the selection of a more data intensive semi-distributed
and /or physical model capable of accounting for discrete changes over time
in land cover and land use. Changing model parameters over time can al-
ternatively indirectly account for this but only at the catchment scale. On
Gouazine, where numerous studies discuss the possible reduction in runoff
from the development of contour benches on 43% of its catchment area (Nasri,
2007), calibrating over 1997-2003 led to a routing store capacity (X3 param-
eter) 5 times greater than over the whole period, possibly pointing to the
greater retention capacity from water soil and conservation works. Model
performance improved (NSE rose to 0.67) but only marginally as it remained

affected by the other difficulties discussed above.

3.2. Combining remote sensing and hydrological modelling
3.2.1. Ensemble Kalman filter performance on daily volumes

Figure 7 compares the daily volume dynamics on lake Gouazine based on

outputs from the hydrological model, the remote sensing observations, and
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their combination through the Ensemble Kalman filter. Remotely sensed
volumes provided greater accuracy in the estimations of flood peaks than
the hydrological model however outliers remained present (e.g. 2006 and
2013). Furthermore, the low frequency of acceptable observations (on average
1.5/month) led to poor representation of the rapid flood rises as in 2003
(Ogilvie et al., 2018).

The Ensemble Kalman filter improved the performance of the site-specific
hydrological models, with Landsat observations notably modulating the ini-
tial Viyprgras forecast and usefully correcting the flood peaks under and
overestimated by the model (figure 7). These errors were carried through the
decline phase of the hydrological models and figure 8 clearly illustrates the
correction from the satellite observation which draws volumes closer to the
1:1 line, raising the NSE value, for instance from 0.57 to 0.81 on Gouazine.
This effect was pronounced on larger lakes that do not dry out, as overes-
timations in the model outputs led to a progressive drift, which the ENKF
usefully corrected (figure 9).

Accordingly, RMSE (table 2) reduced thanks to the Landsat corrections
on 5 of the lakes (Dekikira, Gouazine, Fidh Ali, Morra and Guettar). Mean
RSME reduced by 54% to 31 200 m? across all lakes and 21 400 m® when
excluding the much larger dam (Morra). Compared to the range of flood val-
ues experienced by these lakes, NRMSE reached an acceptable 0.26. Greater
errors were observed due in part to reduced model performance, preponder-
ant remote sensing uncertainties (e.g. Hoshas) and less reliable hydrometric
field data (HSV on Morra and Guettar). The lower NSE on the smallest

reservoirs (Hoshas, Fidh Ben Nasseur) were to be expected here considering
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the spatial resolution (30 m) of satellite imagery used here and the mean
flooded surface area around 1000 m? (Ogilvie et al., 2018).

Remote sensing observations are capable of representing flood dynamics
with low RMSE but suffer from overclassifications due to undetected clouds
and from the reduced temporal resolution of Landsat imagery (on average 1.5
image/month due to clouds) (Ogilvie et al., 2018). The ENKF approach de-
veloped here enabled remote sensing outliers to be rapidly corrected here, as
seen on Gouazine in 2012 (figures 7 and 8) and Morra (figure 9) for instance.
The combination with rainfall-runoff modelling also reduced interpolation er-
rors resulting from insufficient observations close to the flood peak as seen on
figure 7. Similarly, the ENKF' also helped identify additional flood peaks as
in 2006. Over long periods, ENKF led to a reduction of RMSE near 10% on
Dekikira and Guettar. Large errors in the initial forecast led to marginally
higher RMSE with ENKF than Vg on some lakes. However, as seen in figure
7, the ENKF approach enabled a more coherent and accurate reproduction
of daily flood dynamics even on these lakes. Over a single hydrological year,
the reduction in RMSE from ENKF over interpolated remote sensing obser-

vations also reached up to 46% on Gouazine.

3.2.2. Ensemble Kalman Filter performance on annual water availability
The method’s performance in assessing annual water availability rather
than fine flood dynamics (i.e. individual observations) is shown in figures 10
and 11, and summarised in table 3. The ENKF method improved on the
initial Viyp1cras results (NSE=0.62), except on the smallest lakes (Hoshas
and Fidh Ben Nasseur). Nevertheless, the orders of magnitude of the ENKF

estimated volumes on Hoshas (figure 10) remain correct in comparison to
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Table 2: Ensemble Kalman Filter performance on daily volumes

Lakes (modelled Initial NSE RMSE (m?) NRMSE
period) capacity Viwp+eras Vrs Venkr Vwsiaras Vrs  Venkr VenkF
(10°m?)

Gouazine (1999-2014) 237 0.57 0.84 0.81 45200 25300 25900 0.09
Dekikira (1999-2008) 219 0.69 0.73 0.78 44000 25800 23700 0.13
Fidh Ali (1999-2005) 134 0.17 0.70 0.55 39200 20900 20900 0.24
Fidh Ben Nasseur (1999-2001) 47 0.45 0.11 0.44 6500 1500 6600 0.21
Morra (1999-2014) 705 0.12 0.62 0.46 274300 76400 90000 0.30
Hoshas (2001-2014) 130 0.48 0.02 0.02 3000 23400 23100 0.56
Guettar (2003-2014) 150 0.18 0.50 0.49 62500 31800 28300 0.25

much larger volumes on nearby lakes. Again, by modelling the decline be-
tween two Landsat observation and reducing certain outliers, the ENKF also
improved upon Vg on certain lakes (e.g. Gouazine, Dekikira) but on others,
the poor initial forecast degraded the ENKF performance (e.g. Guettar and
Morra). Overall, ENKF displayed superior results than on individual values
due to the annual smoothing of observations, leading to very high levels of
NSE (0.99 across all lakes) and a mean RMSE (excluding the larger Morra
dam) reduced here to 10 500 m?.

On Hoshas, Viyp1gras continued to perform better than Vgyip despite
underestimating all events, due to the small and short floods experienced
which lead to a drastic, incorrect increase in water availability from single
remote sensing outliers. These were removed here through cloud and shadow
filtering and capping volume outputs to the known maximum capacities,

however residual outliers due to undetected cirrus clouds or shadows remain.
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Fig. 11. Scatterplot between modelled and observed mean daily volumes per year for 7 lakes, 1999-2014
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Improvements in the way clouds (especially cirrus clouds) are detected as well
as increased temporal and spatial accuracy will help reduce remote sensing
errors. Higher spatial resolution will increase precision, while more frequent
images will allow outliers to be corrected faster, reducing water availability
errors which depend on the lag between subsequent correct observations.
Improvements in the method may also be gained by defining specific Kalman
gain values for each RS observation to reflect for the presence of clouds at the
image level and the associated greater uncertainty over specific observations.

Interestingly, remote sensing uncertainties affected the smaller lakes (e.g.
Hoshas) where errors are proportionally more important but also lakes with
limited variation in surface area. On Morra for instance, the variations are
contained within the % error of surface area estimates from our MNDWI
method. Accordingly, on Morra ENKF outputs for individual observations
were heavily affected (NSE=0.46), but mean annual availability performed
well (NSE=0.89).

3.3. Ensemble Kalman filter performance as data uncertainties rise

Figure 12 and table 4 illustrate the difficulties in modelling daily flood
dynamics as uncertainties in the data inputs rise. In the absence of upstream
rainfall gauges, the performance of the hydrological model degraded (cf. sec-
tion 3.1.1) and RMSE rose by 28%. The ENKF however continues to improve
performance and correct for these errors, with NSE on daily volumes reduc-
ing marginally from 0.81 to 0.75. RMSE values for the daily observations
increase by 21% but remain 46 % lower than the initial WB+GR4J forecast
thanks to the remote sensing corrections. Using an average locally derived

infiltration rule based on 13 small reservoirs (Ogilvie, 2015) prevented the
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Table 3: Ensemble Kalman Filter performance on mean annual water availability

Lakes (modelled Mean NSE RMSE (m?)
period) daily Vwwpicras Vrs Venkr Vwpieris Vrs  Venkr
volume
(m?®)
Gouazine (1999-2014) 42800 0.38 0.87 0.89 36700 13500 11500
Dekikira (1999-2008) 59000 0.65 0.71 0.89 41600 20500 14500
Fidh Ali (1999-2005) 32200 0.09 0.52  0.60 35300 13500 12400
Fidh Ben Nasseur (1999-2001) 1000 0.66 0.67 NA 4300 2400 4400
Morra (1999-2014) 448900 0.40 0.89 0.89 304500 31700 55700
Hoshas (2001-2014) 800 0.37 0.11 0.09 2400 8700 9500
Guettar (2003-2014) 29000 0.09 0.88 0.74 56500 7100 10700
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Fig. 12. Modelled daily volumes on Gouazine lake when degrading inputs. Top: with no rainfall gauge

in the catchment. Bottom: with the average infiltration value from 15 reservoirs
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model on Gouazine to reproduce the emptying of the lakes between succes-
sive events. This lead to a rising drift in volumes and RMSE values of the
Vv B+Gray initial forecast rising drastically to 97 000 m®. Again, the Kalman
filter using Landsat observations provided valuable corrections and RMSE
values on individual observations remained close (+ 15%) to those with the
site specific model. As the confidence in the model inputs & parameters (on
I, P,) degrades or significant additional fluxes can not be modelled reliably
(releases, withdrawals), the benefit of assimilation with remote sensing ob-
servations as expected increases. However the benefit of Vgygr over simply
exploiting interpolated Vgzg values also declines, due to the initial forecast
becoming so uncertain. RMSE on Vg remains on average 18% lower than
Venkr in these four examples (table 4).

When considering ungauged catchments with no locally calibrated GR4J
parameters and no site specific HSV relation, the Kalman gain continues to
valuably correct the hydrological model’s initial forecast, reducing RMSE by
30% (table 4). The increase in RMSE for Vgygp is however amplified by
the uncertainties in Vzg, due to the surface-volume power relations used. A
locally derived power relation was shown to increase errors to near 40% on
Dekikira due to the difficulty in accounting for local lake morphologies and
the abrupt changes from silting (Ogilvie et al., 2016a). New techniques based
on high spatial resolution sensors open up increased possibilities to acquire at
lower costs (time, equipment) sufficient topographic detail to render surface
volumes rating curves (Avisse et al., 2017; Baup et al., 2014; van Bemmelen
et al., 2016; Massuel et al., 2014a) of multiple reservoirs of different geo-

morphology. Similarly, data assimilation with Landsat observations could be
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Table 4: Kalman Filter performance on daily volumes when degrading model inputs and parameters

RMSE (m?/day) RMSE increase (%)
Lake Degraded inputs
Vwiicras  Ves  Venxkr Vwpieris  Ves  Venkr
Gouazine Rainfall data 57800 25300 31400 +28% +0%  +21%
Gouazine Infiltration data 97000 25300 29800  +115%  +0% +15%
Dekikira  GR4J parameters and HSV 52800 35800 38500 +20% +39%  +63%
Fidh Ali  GR4J parameters and HSV 43000 20100 29000 +10% 3% +39%

used to calibrate over time the GR4J parameters, notably X1, based on the
estimated runoff. This approach was not explored here due to the rainfall
uncertainties observed at this sub basin scale and the temporal resolution of
Landsat imagery, which would lead to incorrect quantification of daily runoff

and thus calibration of the parameters.

4. Conclusions

Landsat surface water estimates coupled with an Ensemble Kalman Filter
showed their potential to improve hydrological modelling of small reservoirs.
Remote sensing observations provided vital corrections to the flood ampli-
tudes incorrectly estimated by the GR4J model which suffered notably from
rainfall detection issues. Conversely, site specific rules on depletion fluxes
(infiltration, withdrawals, etc.) led to an accurate modelling of the flood de-
cline, improving over interpolated Landsat observations, limited by reduced
temporal resolution. Overall performance reached high skill levels (NSE rose
from 0.64 to 0.94 on daily values) and RMSE reduced by two thirds down to

10 500 m?® when considering annual water availability.
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Uncertainties from limited data availability (rainfall, infiltration, stage
data to calibrate P-QQ models) were seen to increase the benefit of the ENKF
approach, but can also degrade the hydrological model to a point where it
becomes preferable to rely exclusively on interpolated Landsat surface area
observations. These performed well except on the smallest lakes, coherent
with the medium resolution imagery used here, and due to certain outliers
whose interpolation can reduce skill values over short periods. Time series
from the new generation of high temporal and spatial resolution satellite
imagery (e.g. Sentinel-2) are expected to further improve the accuracy of
remote sensing and associated data assimilation approaches on these smaller
reservoirs.

The Kalman filter approach may also be varied to seek to correct not
individual observations, but rather to estimate model inputs (e.g. rainfall) or
model parameters. This could notably be developed to improve hydrological
models on ungauged lakes, but would require frequent satellite observations,
close to flood peaks to provide sufficient accuracy in estimating daily runoff.
Similarly, over decline phases, where sufficient confidence in infiltration and
evaporation exists, the remote sensing observations could be used to identify
withdrawal rates. The ENKF method may also be enhanced by fine tuning
(Moradkhani et al., 2005) the covariances to compose with both sources of
uncertainty and provide greater confidence to remote sensing observations
over field data based on additional criteria (lake size, cloud presence across
image, etc.).

By drastically improving the performance of hydrological modelling in

data scarce semi-arid catchments, the Ensemble Kalman filter may improve
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local water availability assessments (Wisser et al., 2010) but also provides
much needed data on the runoff captured by multiple reservoirs. These may
then serve as multiple runoff gauges to be integrated into larger scale models
(Gal et al., 2016; Liebe et al., 2009) and feed into the growing discussions

over their influence for downstream water users and uses.
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Table A.1: Infiltration values (mm/day) for small reservoirs in and around the Merguellil upper catchment.

Values for Fidh Ali, Fidh Ben Nasseur and Morra were adapted from Lacombe (2007)

Lake Mean infiltration Infiltration for Z,;, (i9) Infiltration for Z,,., Infiltration rise per m (a*1000)

Dekikira 2.7 2.70 2.7 0

Hoshas 28 3.62 7.1 24.50
Guettar 10 10.00 10.0 0

Gouazine 9 13.00 7.5 -1.38
Fidh Ali 3.6 3.60 3.6 0

Fidh Ben Nasseur 7.8 3.06 12.5 3.14

Morra 2 1.48 2.5 0.53
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